Прямая и обратная геодезические задачи что это
Что такое обратная и прямая геодезическая задача: суть, методы решения, назначение
В строительстве большую часть времени занимают геодезические работы. Это комплекс различных измерений и вычислений на местности. Стоит ли говорить, что качество выполненных работ зависит от точности полученных результатов. Это влияет на размещение зданий и сооружений, а также возведение их конструктивных элементов. Все должно соответствовать проектным показателям и техническим регламентам. Геодезические работы выполняются в объеме, определенном особенностями объекта и стадией его реализации. Компания «Промтерра» специализируется на их проведении с составлением необходимых чертежей, схем и расчетов. Для этого есть все составляющие: действующая лицензия, опыт, допуск СРО, штат специалистов. Один из вопросов, который поступает при выполнении работ, касается геодезической задачи. Что это такое, как используется в работе и ее назначение.
Математика в действии
По своей сути геодезические задачи — это математика в чистом виде. Основная задача состоит в определении взаимного положения точек принадлежащих какой-либо поверхности. Наиболее часто приходится иметь дело с прямыми и обратными геодезическими задачами, но на этом математические вычисления не заканчиваются. В зависимости от поставленных условий могут применяться и другие виды. Например, решение треугольника по измеренным углам и сторонам. Интересный исторический факт: с геодезическими задачами исследователи этой темы работают уже больше трех веков, а споры относительно методов дальше продолжаются.
Что такое прямая геодезическая задача
Эта разновидность предполагает вычисление координат, то есть широты и долготы определенной точки. А она, в свою очередь, лежит на математически правильной поверхности — земном эллипсоиде. Вычисления производятся по координатам другой точки, по длине и азимуту геодезической линии. Точность решения зависит от корректности исходных данных. Для проведения вычислений используют формулы нахождения приращений и определения координат.
Специалисты применяют разные методы для получения результатов. Наиболее востребованными считаются косвенный и прямой. Они отличаются тем, что в основе лежит точность исходных данных. Косвенные методы решения очень чувствительны к ним. Если в исходнике есть значительные расстояния, изменения по азимуту, то вычисления не получится сделать, или они будут с большими погрешностями. Прямые методы работают по соотношениям сфероидической геодезии, поэтому результаты можно получить более точные. Кстати, прямой тип геодезических задач применяется при вычислении координат в теодолитном ходе.
Что такое ОГЗ: суть обратной геодезической задачи
При работе над обратной геодезической задачей вычисления проводятся по известным координатам двух точек на земном эллипсоиде. Это нужно для получения значений горизонтального положения линий между ними, а также дирекционного угла этой самой линии. В этом состоит суть. Для получения искомых величин используется вычисление румба и расстояние между координатами точек. Нужно помнить, что дирекционный угол при этом находится по четверти системы координат, которая и является объектом, где размещены искомые позиции. Для решения нужно учитывать знаки приращения, которые свойственны для определенных четвертей. В этом типе задач уделяют большое значение сходимости результатов, поэтому расчеты могут проводиться несколько раз. На это влияют свойства горизонтального положения между точками. В каких случаях применяется обратная геодезическая задача? В тех, когда по известным двум точкам и их координатам определяют расстояние не только между ними, но и дирекционный угол линии.
В том или ином виде геодезические задачи возникают и в других направлениях — в полигонометрии, триангуляции, но на этом не заканчивается востребованность. Используется также, когда стоит задача определения взаимного положения точек по исходным данным длины и направления соединяющей линии. Есть ряд случаев, когда геодезические задачи решают с использованием формул аналитической геометрии в пространстве. Речь идет о пространственных прямоугольных координатах. Для этого используют пространственные компоненты направления прямой линии между этими точками.
Обратный тип геодезической задачи — не просто математическая проверка и вычисления. Она имеет практическое значение, ведь используется при вычислении длин проектных линий. Кроме этого, используется при выполнении привязки теодолитных ходов к пунктам геодезической сети, съемочных сетей и сетей сгущения. Еще одно практическое назначение — определение направления с пункта на пункт при отсутствии видимости. Обратная геодезическая задача используется в промышленном и гражданском строительстве.
А как решать обратные задачи, если в исходнике большие расстояния? В этом случае рекомендуется использовать метод итерации. Его можно использовать при расстояниях до 20 000 км. Итерация основана на решении прямой геодезической задачи любым выбранным методом — численным или аналитическим. И точность решения именно ОГЗ определяется решением ПГЗ.
Прямые и обратные геодезические задачи требуют получения точных результатов. Насколько получится достичь поставленной цели, зависит от исходных сведений и выбранного метода решения. Вычисление способом Бесселя, методом Рунге-Кутта-Фельберга, итерации, численного интегрирования — в каждом отдельном случае выбор зависит от расстояний и координат точек. В штате компании «Промтерра» работают опытные специалисты в сфере инженерной геодезии, поэтому за решение даже самых сложных задач можно быть спокойными. Тема геодезических задач всегда остается актуальной, поэтому отслеживание последних тенденций в проведении вычислений для получения точных результатов — необходимость. Важно отметить, что подобного плана математические методы востребованы не только в геодезической сфере деятельности, но и в навигации, корректировке ракетного огня и др.
Прямая и обратная геодезические задачи на плоскости
При вычислительной обработке выполненных на местности измерений, а также при проектировании инженерных сооружений и расчетах для перенесения проектов в натуру возникает необходимость решения прямой и обратной геодезических задач.
Прямая геодезическая задача. По известным координатам х1 и у1 точки 1, дирекционному углу a1-2 и расстоянию d1-2 до точки 2 требуется вычислить ее координаты х2, у2.
Рис. 3.5. К решению прямой и обратной геодезических задач |
Координаты точки 2 вычисляют по формулам (рис. 3.5):
(3.4)
(3.5)
Обратная геодезическая задача. По известным координатам х1, у1 точки 1 и х2, у2 точки 2 требуется вычислить расстояние между ними d1-2 и дирекционный угол a1-2.
Из формул (3.5) и рис. 3.5 видно, что
. (3.6)
Для определения дирекционного угла a1-2 воспользуемся функцией арктангенса. При этом учтем, что компьютерные программы и микрокалькуляторы выдают главное значение арктангенса
w =,
I четверть | П четверть | Ш четверть | IV четверть | |
Dх | + | — | — | + |
Dу | + | + | — | — |
w | + | — | + | — |
Формулы | a=w | a=w+180° | a=w+180° | a=w+360° |
Рис. 3.6. Дирекционные углы и главные значения арктангенса в I, II, III и IV четвертях
Расстояние между точками вычисляют по формуле
(3.6)
или другим путем – по формулам
(3.7)
Программами решения прямых и обратных геодезических задач снабжены, в частности, электронные тахеометры, что дает возможность непосредственно в ходе полевых измерений определять координаты наблюдаемых точек, вычислять углы и расстояния для разбивочных работ.
Прямая и обратная геодезические задачи. Их применение в геодезическом производстве
а) Прямая геодезическая задача
Рис. 3.5. Прямая геодезическая задача
Дано: координаты точки 1 х1, у1; горизонтальное проложение линии 1 – 2: d1,2;
дирекционный угол линии 1 – 2: a1,2 (рис.3.5).
Найти: координаты точки 2: х2, у2.
Решение: координаты точки 2: х2 = х1 + Dх; у2 = у1 + Dу, (3.6)
где приращения координат Dх = d · cos a; Dу = d · sin a, (3.7)
Знаки приращений координат Dх и Dу зависят от знаков функций sin a и cos a.
б) Обратная геодезическая задача
Рис. 3.6. Обратная геодезическая задача
Найти: горизонтальное проложение линии 1 – 2: d1,2; дирекционный угол линии 1 – 2: a1,2.
; (3.10)
. (3.11)
По значению tg a определяется румб линии. По знакам приращений координат определяется четверть, а по четверти определяется дирекционный угол линии.
Рис. 3.7. Знаки приращений координат в зависимости от четверти
Прямая геодезическая задача применяется при вычислении координат в теодолитном ходе. Обратная геодезическая задача применяется в тех случаях, когда по известным координатам 2-х точек определяют расстояние между ними и дирекционный угол линии.
Понятие о прямой и обратной геодезических задачах
В геодезии существуют две стандартные задачи о вычислении элементов взаимного расположения двух точек: прямая и обратная геодезические задачи.
Прямая геодезическая задача – это вычисление координат X2, Y2 второго пункта, если известны координаты X1, Y1 первого пункта, дирекционный угол α и длина S линии, соединяющей эти пункты (рисунок 1). Прямая геодезическая задача решается по формулам:
,
,
,
.
Величины ΔX и ΔY называются
Обратная геодезическая задача – это вычисление дирекционного угла α и длины S линии, соединяющей два пункта с известными координатами X1, Y1 и X2, Y2 (рисунок 1). Для решения обратной геодезической задачи разработаны два алгоритма: через арктангенс и через арккосинус.
В первом алгоритме обратная задача решается по формулам:
; ;
; ;
1-я четверть: ΔX>0 ; ΔY>0 ; α = r ;
2-я четверть: ΔX 0 ; α = 180 0 – r ;
3-я четверть: ΔX 0 + r ;
4-я четверть: ΔX>0 ; ΔY 0 – r ;
Частный случай: ΔX=0 решается отдельно:
Длина линии вычисляется по формуле и контролируется по формулам .
Во втором алгоритме задача решается по формулам:
;
; ;
Прямая и обратная геодез задачи
Геодезическая задача – математического вида задача, связаная с определением взаимного положения точек земной поверхности и подразделяется на прямую и обратную задачу.
Обратная геодезическая задача (ОГЗ) заключается в определении по геодезическим координатам двух точек на земном эллипсоиде длины и дирекционного угла направления между этими точками.
В зависимости от длины геодезической линии, соединяющей рассматриваемые точки, применяются различные методы и формулы, разработанные в геодезии. По размерам принятого земного эллипсоида (см. Эллипсоид Красовского) составляются таблицы, облегчающие решение геодезических задач и рассчитанные на использование определённой системы формул.
Для определения координат точки в прямой геодезической задаче обычно применяют формулы:
1) нахождения приращений :
2) нахождения координат :
В обратной геодезической задаче находят дирекционный угол и расстояние:
1) вычисляют румб по формуле :
2) находят дирекционный угол в зависимости от четверти угла :
3) определяют расстояние между точками :
Геодезическая задача в том и другом виде возникает при обработке полигонометрии и триангуляции, а также во всех тех случаях, когда необходимо определить взаимное положение двух точек по длине и направлению соединяющей их линии или же расстояние и направление между этими точками по их геодезическим координатам. В ряде случаев геодезические задачи решают в пространственных прямоугольных координатах по формулам аналитической геометрии в пространстве. В этих случаях вместо длины и дирекционного угла, соединяющей две точки, используют длину и пространственные компоненты направления прямой линии между этими точками.
Тахетрическая съемка
Тахеометрическая съемка – топографическая съемка, выполняемая с помощью теодолита или тахеометра и дальномерной рейки (вехи с призмой), в результате которой получают план местности с изображением ситуации и рельефа.
Тахеометрическая съемка выполняется самостоятельно для создания планов или цифровых моделей небольших участков местности в крупных масштабах (1: 500 – 1: 5000) либо в сочетании с другими видами работ, когда выполнение стереотопографической или мензульной съемокэкономически нецелесообразно или технически затруднительно. Ее результаты используют при ведении земельного или городского кадастра, для планировки населенных пунктов, проектирования отводов земель, мелиоративных мероприятий и т.д. Особенно выгодно ее применение для съемки узких полос местности при изысканиях трасс каналов, железных и автомобильных дорог, линий электропередач, трубопроводов и других протяженных линейных объектов.
Слово «тахеометрия» в переводе с греческого означает «быстрое измерение». Быстрота измерений при тахеометрической съемке достигается тем, что положение снимаемой точки местности в плане и по высоте определяется одним наведением трубы прибора на рейку, установленную в этой точке. Тахеометрическая съемка выполняется обычно с помощью технических теодолитов или тахеометров.
При использовании технических теодолитов сущность тахеометрической съемки сводится к определению пространственных полярных координат точек местности и последующему нанесению этих точек на план. При этом горизонтальный угол B между начальным направлением и направлением на снимаемую точку измеряется с помощью горизонтального круга, вертикальный угол v – вертикального круга теодолита, а расстояние до точки D – дальномером. Таким образом, плановое положение снимаемых точек определяется полярным способом (координатами в,d), а превышения точек – методом тригонометрического нивелирования.
Преимущества тахеометрической съемки по сравнению с другими видами топографических съемок заключаются в том, что она может выполняться при неблагоприятных погодных условиях, а камеральные работы могут выполняться другим исполнителем вслед за производством полевых измерений, что позволяет сократить сроки составления плана снимаемой местности. Кроме того, сам процесс съемки может быть автоматизирован путем использования электронных тахеометров, а составление плана или ЦММ – производить на базе ЭВМ и графопостроителей. Основным недостатком тахеометрической съемки является то, что составление плана местности выполняется в камеральных условиях на основании только результатов полевых измерений и зарисовок. При этом нельзя своевременно выявить допущенные промахи путем сличения плана с местностью.