Прямая ам касательная к окружности ав хорда этой окружности докажите что

Презентация была опубликована 8 лет назад пользователем212.75.150.160

Похожие презентации

Презентация на тему: » 664. 664. Прямая АМ – касательная к окружности, АВ – хорда этой окружности. Докажите, что угол МАВ измеряется половиной дуги АВ, расположенной внутри.» — Транскрипт:

2 Прямая АМ – касательная к окружности, АВ – хорда этой окружности. Докажите, что угол МАВ измеряется половиной дуги АВ, расположенной внутри угла МАВ.МА В О

3 Блиц-опрос. Блиц-опрос. Найдите угол МАВ.МА В О

4 Блиц-опрос. Блиц-опрос. Найдите угол МАВ.МА В О : 2 = / : 2 = / / /

5 Блиц-опрос. Блиц-опрос. Найдите дугу АВ. М А В О = = 172 0

6 Блиц-опрос. Блиц-опрос. Найдите дугу АВ. М А В О = / / / / 2 = /

7 Через точку А проведены касательные АВ (В – точка касания) и секущая, которая пересекает окружность в точках Р и Q. Докажите, что АВ 2 = АР АQ.АВ Q Р РВ ВQВQ = АР АВ АQАQ = АВР АQВ по 1 признаку подобия АВ 2 = АР АQ.Р

9 Через точку А, лежащую вне окружности, проведены две секущие, одна из которых пересекает окружность в точках В 1, С 1, а другая – в точках В 2, С 2. Докажите, что АВ 1 АС 1 = АВ 2 АС 2 АD 2 = AB 1 АC 1 D А С1С1С1С1 В1В1В1В1 В2В2В2В2 С2С2С2С2 АD 2 = AB 2 АC 2 =

10 А С В Свойство медиан треугольника. Свойство медиан треугольника. Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. В1В1В1В1 А1А1А1А1 О ВО В1ОВ1О = АО А1ОА1О СО С1ОС1О == 2 1 С1С1С1С1 1

11 Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон. В А Теорема С L K М 12

12 Каждая точка, лежащая внутри угла и равноудаленная от сторон угла, лежит на его биссектрисе. В А Обратная теорема С L K М

13 Биссектрисы треугольника пересекаются в одной точке. В А Следствие СK А1А1А1А1 В1В1В1В1 С1 О М L ОМ=ОК ОК =ОL По теореме о биссектрисе угла = По обратной теореме т. О лежит на биссектрисе угла С ОМ ОLОL 2

14 a С Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярно к нему. М В Определение Прямая a – серединный перпендикуляр к отрезку.

15 m O Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. к отрезку равноудалена от концов этого отрезка. BA Теорема М

16 Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему. Обратная теорема BA m O N

17 По теореме о серединном перпендикуляре к отрезку Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. C B Следствие A m р ОA=ОB ОB =ОC = По обратной теореме т. О лежит на сер. пер. к отрезку АС ОAОA ОCОCn О3

18 Высоты треугольника (или их продолжения) пересекаются в одной точке. (или их продолжения) пересекаются в одной точке.Теорема C B A А2А2А2А2 С2С2С2С2 В2В2В2В2 A1A1A1A1 В1В1В1В1 С1С1С1С1 По теореме о серединных перпендикулярах: серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. 4

19 Замечательные точки треугольника. Точкапересечения медиан Точкапересечения биссектрис Точкапересечения высот Точкапересечениясерединных перпенди куляров

20 Треугольник, который опирается на острие иглы в точке пересечения медиан, находится в равновесии! Точка, обладающая таким свойством, называется центром тяжести треугольника.

21 А В С К М O Т тупоугольного треугольника Высоты тупоугольного треугольника пересекаются в точке О, которая лежит во внешней области треугольника. прямоугольного треугольника Высоты прямоугольного треугольника пересекаются в вершине С. остроугольного треугольника Высоты остроугольного треугольника пересекаются в точке О, которая лежит во внутренней области треугольника. O А В С Точка пересечения высот называется ортоцентр.

22 Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется биссектрисой треугольника. Эта точка замечательная – точка пересечения биссектрис является центром вписанной окружности. O

23 Эта точка замечательная – точка пересечения серединных перпендикуляров к сторонам треугольника является центром описанной окружности. Серединным перпендикуляром к отрезку Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярно к нему. O

Источник

Геометрия

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Понятие окружности и круга

Тарелки, шины, колеса и монеты – все эти предметы имеют одинаковую форму, их называют круглыми. Этот термин понятен каждому, однако в геометрии каждое понятие надо строго определять. Дадим строгое определение понятию окружности:

Та точка, от которой равноудалены все точки, образующие окруж-ть, именуется центром окружности. Обратите внимание, что сам центр частью окружности НЕ считается. Расстояние, отделяющее точки окруж-ти от ее центра, именуют радиусом окружности. Получается, что для построения окруж-ти достаточно знать только ее радиус и центр. Выглядит она так:

Для построения окруж-ти используется специальный инструмент – циркуль. Он представляет собой два длинных стрежня, которые соединены шарниром. На конце одного стержня находится иголка, на конце другого – грифель карандаша или иной пишущий предмет. Сначала необходимо выставить расстояние между концами стержней – оно будет равно радиусу окруж-ти. Потом иголку ставят в центр будущей окруж-ти, после чего поворачивают циркуль так, что его пишущий конец оставил на бумаге след:

Отрезок, соединяющий две точки окруж-ти, именуется хордой. Хорда, проходящая через центр окруж-ти, именуется диаметром окружности.

Особо отметим, что сам диаметр также считается хордой.

Непосредственно из определения окруж-ти вытекает первое важное её свойство – все радиусы, построенные в одной окруж-ти, равны друг другу.

Так как центр окруж-ти делит ее диаметр на два отрезка, каждый из которых – это радиус, то диаметр окружности равен двум ее радиусам:

Традиционно диаметр обозначается буквой D, а радиус – буквой R. Получается, что справедлива формула:

Очевидно, что диаметр длиннее, чем любая другая хорда окружности, не являющаяся диаметром. Докажем это. Пусть хорда AВ не проходит через О, центр окруж-ти (он почти всегда обозначается именно этой буквой). Тогда можно построить ∆AВО:

Мы знаем про неравенство треугольника, согласно которому любая сторона треугольника меньше суммы двух других. В данном случае можно записать, что

Источник

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Найдите хорду, на которую опирается угол 120°, вписанный в окружность радиуса Прямая ам касательная к окружности ав хорда этой окружности докажите что

Применим теорему синусов к треугольнику ABC:

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Приведём другое решение.

Вписанный угол дополняет половину центрального угла, опирающегося на ту же хорду, до 180°, значит, Прямая ам касательная к окружности ав хорда этой окружности докажите чтоПо теореме косинусов:

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Ошибка в последней строчке. Перед 6 не плюс, а минус.

В последней строчке все верно: Прямая ам касательная к окружности ав хорда этой окружности докажите что.

Хорда AB делит окружность на две части, градусные величины которых относятся как 5:7. Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Из точки C хорда АВ видна под углом АCВ. Пусть большая часть окружности равна 7x, тогда меньшая равна 5x.

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Значит, меньшая дуга окружности равна 150°, а большая — 210°. Вписанный угол равен половине дуги, на которую он опирается, значит, опирающийся на большую дугу угол АCВ равен 105°.

В условии сказано под меньшей дугой окружности, a в ответе дано под большей. Правильно?

Решение верно, по условию точка лежит на меньшей дуге.

Хорда AB стягивает дугу окружности в 92°. Найдите угол ABC между этой хордой и касательной к окружности, проведенной через точку B. Ответ дайте в градусах.

Угол между касательной и хордой равен половине дуги, заключённой между ними. Поэтому он равен 46.

Через концы А и В дуги окружности с центром О проведены касательные АС и ВС. Угол СAB равен 32°. Найдите угол AОB. Ответ дайте в градусах.

Угол между касательной и хордой, проведённой в точку касания, измеряется половиной дуги, заключённой между его сторонами. Поэтому величина меньшей дуги АВ окружности равна 64°. Центральный угол измеряется дугой, на которую он опирается, поэтому угол АОВ равен 64°.

Примечание об изменении задания.

Ранее это задание и аналогичные к нему в Открытом банке были формулированы иначе.

Задание.Угол между хордой AB и касательной BC к окружности равен 32°. Найдите величину меньшей дуги, стягиваемой хордой AB. Ответ дайте в градусах.

Решение. Угол между касательной и хордой, проведённой в точку касания, измеряется половиной дуги, заключённой между его сторонами. Значит, искомая величина дуги равна 64°.

Источник

Касательная к окружности

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МА 2 = МВ × МС = 16 х 4 = 64

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Задача 2

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

Источник

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Радиус OB окружности с центром в точке O пересекает хорду AC в точке D и перпендикулярен ей. Найдите длину хорды AC, если BD = 1 см, а радиус окружности равен 5 см.

Найдем отрезок DO: DO = OB − BD = 5 − 1 = 4. Так как OB перпендикулярен AC, треугольник AOD — прямоугольный. По теореме Пифагора имеем: Прямая ам касательная к окружности ав хорда этой окружности докажите что. Треугольник AOC — равнобедренный так как AO = OC = r, тогда AD = DC. Таким образом, AC = AD·2 = 6.

Найдите величину (в градусах) вписанного угла α, опирающегося на хорду AB, равную радиусу окружности.

Проведем радиусы OA и OB. Так как по условию задачи хорда AB равна радиусу, то треугольник AOB — равносторонний, следовательно, все его углы равны 60°. Угол AOB — центральный и равен 60° Угол ACB — вписанный и опирается на ту же дугу, что и угол AOB. Таким образом, Прямая ам касательная к окружности ав хорда этой окружности докажите что

К окружности с центром в точке О проведены касательная AB и секущая AO. Найдите радиус окружности, если AB = 12 см, AO = 13 см.

Соединим отрезком точки O и B; полученный отрезок — радиус, проведённый в точку касания, поэтому OB перпендикулярен AB. Задача сводится к нахождению катета OB прямоугольного треугольника AOB. Из теоремы Пифагора:

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Вписанный прямой угол опирается на диаметр окружности, поэтому радиус окружности, описанной вокруг прямоугольного треугольника, равен половине гипотенузы. По теореме Пифагора имеем:

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Длина хорды окружности равна 72, а расстояние от центра окружности до этой хорды равно 27. Найдите диаметр окружности.

Проведём построение и введём обозначения, как показано на рисунке. Рассмотрим треугольники AOH и HOB, они прямоугольные, OH — общая, AO и OB равны как радиусы окружности, следовательно, эти треугольники равны, откуда Прямая ам касательная к окружности ав хорда этой окружности докажите чтоПо теореме Пифагора найдём радиус окружности:

Прямая ам касательная к окружности ав хорда этой окружности докажите что

Диаметр равен двум радиусам, следовательно, Прямая ам касательная к окружности ав хорда этой окружности докажите что

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *