Прямая ам касательная к окружности ав хорда этой окружности докажите что
Презентация была опубликована 8 лет назад пользователем212.75.150.160
Похожие презентации
Презентация на тему: » 664. 664. Прямая АМ – касательная к окружности, АВ – хорда этой окружности. Докажите, что угол МАВ измеряется половиной дуги АВ, расположенной внутри.» — Транскрипт:
2 Прямая АМ – касательная к окружности, АВ – хорда этой окружности. Докажите, что угол МАВ измеряется половиной дуги АВ, расположенной внутри угла МАВ.МА В О
3 Блиц-опрос. Блиц-опрос. Найдите угол МАВ.МА В О
4 Блиц-опрос. Блиц-опрос. Найдите угол МАВ.МА В О : 2 = / : 2 = / / /
5 Блиц-опрос. Блиц-опрос. Найдите дугу АВ. М А В О = = 172 0
6 Блиц-опрос. Блиц-опрос. Найдите дугу АВ. М А В О = / / / / 2 = /
7 Через точку А проведены касательные АВ (В – точка касания) и секущая, которая пересекает окружность в точках Р и Q. Докажите, что АВ 2 = АР АQ.АВ Q Р РВ ВQВQ = АР АВ АQАQ = АВР АQВ по 1 признаку подобия АВ 2 = АР АQ.Р
9 Через точку А, лежащую вне окружности, проведены две секущие, одна из которых пересекает окружность в точках В 1, С 1, а другая – в точках В 2, С 2. Докажите, что АВ 1 АС 1 = АВ 2 АС 2 АD 2 = AB 1 АC 1 D А С1С1С1С1 В1В1В1В1 В2В2В2В2 С2С2С2С2 АD 2 = AB 2 АC 2 =
10 А С В Свойство медиан треугольника. Свойство медиан треугольника. Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. В1В1В1В1 А1А1А1А1 О ВО В1ОВ1О = АО А1ОА1О СО С1ОС1О == 2 1 С1С1С1С1 1
11 Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон. В А Теорема С L K М 12
12 Каждая точка, лежащая внутри угла и равноудаленная от сторон угла, лежит на его биссектрисе. В А Обратная теорема С L K М
13 Биссектрисы треугольника пересекаются в одной точке. В А Следствие СK А1А1А1А1 В1В1В1В1 С1 О М L ОМ=ОК ОК =ОL По теореме о биссектрисе угла = По обратной теореме т. О лежит на биссектрисе угла С ОМ ОLОL 2
14 a С Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярно к нему. М В Определение Прямая a – серединный перпендикуляр к отрезку.
15 m O Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. к отрезку равноудалена от концов этого отрезка. BA Теорема М
16 Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему. Обратная теорема BA m O N
17 По теореме о серединном перпендикуляре к отрезку Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. C B Следствие A m р ОA=ОB ОB =ОC = По обратной теореме т. О лежит на сер. пер. к отрезку АС ОAОA ОCОCn О3
18 Высоты треугольника (или их продолжения) пересекаются в одной точке. (или их продолжения) пересекаются в одной точке.Теорема C B A А2А2А2А2 С2С2С2С2 В2В2В2В2 A1A1A1A1 В1В1В1В1 С1С1С1С1 По теореме о серединных перпендикулярах: серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. 4
19 Замечательные точки треугольника. Точкапересечения медиан Точкапересечения биссектрис Точкапересечения высот Точкапересечениясерединных перпенди куляров
20 Треугольник, который опирается на острие иглы в точке пересечения медиан, находится в равновесии! Точка, обладающая таким свойством, называется центром тяжести треугольника.
21 А В С К М O Т тупоугольного треугольника Высоты тупоугольного треугольника пересекаются в точке О, которая лежит во внешней области треугольника. прямоугольного треугольника Высоты прямоугольного треугольника пересекаются в вершине С. остроугольного треугольника Высоты остроугольного треугольника пересекаются в точке О, которая лежит во внутренней области треугольника. O А В С Точка пересечения высот называется ортоцентр.
22 Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется биссектрисой треугольника. Эта точка замечательная – точка пересечения биссектрис является центром вписанной окружности. O
23 Эта точка замечательная – точка пересечения серединных перпендикуляров к сторонам треугольника является центром описанной окружности. Серединным перпендикуляром к отрезку Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярно к нему. O
Геометрия
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Понятие окружности и круга
Тарелки, шины, колеса и монеты – все эти предметы имеют одинаковую форму, их называют круглыми. Этот термин понятен каждому, однако в геометрии каждое понятие надо строго определять. Дадим строгое определение понятию окружности:
Та точка, от которой равноудалены все точки, образующие окруж-ть, именуется центром окружности. Обратите внимание, что сам центр частью окружности НЕ считается. Расстояние, отделяющее точки окруж-ти от ее центра, именуют радиусом окружности. Получается, что для построения окруж-ти достаточно знать только ее радиус и центр. Выглядит она так:
Для построения окруж-ти используется специальный инструмент – циркуль. Он представляет собой два длинных стрежня, которые соединены шарниром. На конце одного стержня находится иголка, на конце другого – грифель карандаша или иной пишущий предмет. Сначала необходимо выставить расстояние между концами стержней – оно будет равно радиусу окруж-ти. Потом иголку ставят в центр будущей окруж-ти, после чего поворачивают циркуль так, что его пишущий конец оставил на бумаге след:
Отрезок, соединяющий две точки окруж-ти, именуется хордой. Хорда, проходящая через центр окруж-ти, именуется диаметром окружности.
Особо отметим, что сам диаметр также считается хордой.
Непосредственно из определения окруж-ти вытекает первое важное её свойство – все радиусы, построенные в одной окруж-ти, равны друг другу.
Так как центр окруж-ти делит ее диаметр на два отрезка, каждый из которых – это радиус, то диаметр окружности равен двум ее радиусам:
Традиционно диаметр обозначается буквой D, а радиус – буквой R. Получается, что справедлива формула:
Очевидно, что диаметр длиннее, чем любая другая хорда окружности, не являющаяся диаметром. Докажем это. Пусть хорда AВ не проходит через О, центр окруж-ти (он почти всегда обозначается именно этой буквой). Тогда можно построить ∆AВО:
Мы знаем про неравенство треугольника, согласно которому любая сторона треугольника меньше суммы двух других. В данном случае можно записать, что
Прямая ам касательная к окружности ав хорда этой окружности докажите что
Найдите хорду, на которую опирается угол 120°, вписанный в окружность радиуса
Применим теорему синусов к треугольнику ABC:
Приведём другое решение.
Вписанный угол дополняет половину центрального угла, опирающегося на ту же хорду, до 180°, значит, По теореме косинусов:
Ошибка в последней строчке. Перед 6 не плюс, а минус.
В последней строчке все верно: .
Хорда AB делит окружность на две части, градусные величины которых относятся как 5:7. Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.
Из точки C хорда АВ видна под углом АCВ. Пусть большая часть окружности равна 7x, тогда меньшая равна 5x.
Значит, меньшая дуга окружности равна 150°, а большая — 210°. Вписанный угол равен половине дуги, на которую он опирается, значит, опирающийся на большую дугу угол АCВ равен 105°.
В условии сказано под меньшей дугой окружности, a в ответе дано под большей. Правильно?
Решение верно, по условию точка лежит на меньшей дуге.
Хорда AB стягивает дугу окружности в 92°. Найдите угол ABC между этой хордой и касательной к окружности, проведенной через точку B. Ответ дайте в градусах.
Угол между касательной и хордой равен половине дуги, заключённой между ними. Поэтому он равен 46.
Через концы А и В дуги окружности с центром О проведены касательные АС и ВС. Угол СAB равен 32°. Найдите угол AОB. Ответ дайте в градусах.
Угол между касательной и хордой, проведённой в точку касания, измеряется половиной дуги, заключённой между его сторонами. Поэтому величина меньшей дуги АВ окружности равна 64°. Центральный угол измеряется дугой, на которую он опирается, поэтому угол АОВ равен 64°.
Примечание об изменении задания.
Ранее это задание и аналогичные к нему в Открытом банке были формулированы иначе.
Задание.Угол между хордой AB и касательной BC к окружности равен 32°. Найдите величину меньшей дуги, стягиваемой хордой AB. Ответ дайте в градусах.
Решение. Угол между касательной и хордой, проведённой в точку касания, измеряется половиной дуги, заключённой между его сторонами. Значит, искомая величина дуги равна 64°.
Касательная к окружности
Касательная к окружности, секущая и хорда — в чем разница
В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.