Преодоление звукового барьера самолетом что происходит
Что происходит во время преодоления звукового барьера самолетом
Первый пилот, сумевший преодолеть звуковой барьер — Чарльз Йегер, совершивший полет на самолете Bell X-1 осенью 1947 года. В Советском Союзе данный подвиг повторили летчики Федоров и Соколовский, пилотировавшие истребитель ЛА-176 на высоте более 15 тысяч метров. Сверхзвуковая скорость судна составляла 1104 км/час, на которой он мог пройти порядком тысячи километров без дозаправок. Число маха — это отношение скорости звука к скорости, с которой передвигается летательный аппарат. Названо в честь известного австрийского физика Эрнста Маиевского, изучавшего причины возникновения ударных волн и аэродинамические процессы при сверхзвуковом передвижении тел.
Что такое звуковой барьер?
Самолёт FA-18 Hornet, движущийся с околозвуковой скоростью
Потребность в преодолении звукового барьера возникла в годы Второй мировой войны, когда многие летчики замечали, что при увеличении скорости истребителя ухудшается его управляемость и ряд других важных характеристик, таких как корректировка элеронов и воздушных рулей. Пилоты самолетов поршневого типа, предпринимавшие попытки развить предельные скорости, неизбежно сталкивались с волновым кризисом, выбраться из которого без пикирования не представлялось возможным.
Значимую роль в задаче объяснения и преодоления звукового барьера сыграли научные работы, посвященные исследованиям сверхзвукового движения газа.
Величина сверхзвуковой скорости полета
Пока самолет передвигается с небольшой скоростью (до 420 км/час) на высоте до 3 тысяч метров, вычислить точные параметры полета довольно просто. Однако в случае преодоления звукового барьера самолетом падает не только температура за бортом, но и плотность воздушной среды. Когда приборы демонстрируют эквивалентные показания скорости на высоте 2 тысячи метров и 10 тысяч метров, в условиях разреженного воздуха реальная скорость будет больше.
Величина сверхзвуковой скорости полета
На скорости звука воздушное пространство перестает быть однородным и сильно затрудняет передвижение низкоскоростных летательных аппаратов. Создается среда, в которой возникают скачки уплотнения и изменение характера обтекания самолета, что создает предпосылки для волнового кризиса. Скачок уплотнения увеличивает энтропию газа, которая уменьшается в процессе прохождения звукового барьера.
Особенности сверхзвукового полета
Переход на сверхзвуковую скорость сопровождается ударной волной, возникающей из-за разницы давления. В случае, если она будет длиться больше секунды, фюзеляж судна может не выдержать подобных нагрузок, что приведет к его крушению. Если посмотреть на преодоление самолетом звукового барьера на видео, то можно заметить, что ударной волной разрушаются практически все стекла жилых домов, расположенных на поверхности земли.
После того как американский летчик Чарльз Йегер сумел впервые преодолеть звуковой барьер, он был поражен воцарившейся в кабине самолета «божественной тишиной». В момент, когда стрелке махметра удается перевалить за отметку 1.0, звуковое давление внутри судна заметно уменьшается. Однако повышается риск деформации фюзеляжа и других частей летательного аппарата.
На показатели энергетики (интенсивности) скачка уплотнения оказывают влияние условия окружающей среды, конструктивные особенности самолета и скорость его передвижения. Пилотам гиперзвуковых пассажирских лайнеров «Concorde» и «ТУ-144» было дозволено преодолевать звуковой барьер исключительно над поверхностью океана в воздушном пространстве, превышающем на несколько тысяч метров высоту передвижения стандартных летательных аппаратов гражданской авиации.
Что происходит с самолетом во время преодоления звукового барьера?
Что происходит с летательным аппаратом при достижении скорости звука? Начинается образование ударных волн, которые появляются в хвостовой части самолета, в задней и фронтальной кромке, а также на острие фюзеляжа. Скачок уплотнения обладает очень малой толщиной, а фронт ударной волны отличается кардинальными изменениями, происходящими со свойствами потока. Его скоростные показатели снижаются по отношению к телу, и скорость приобретает свойства дозвуковой. Кинетическая энергия частично преображается в газовую (внутреннюю).
Хлопок сверхзвукового самолета представляет собой «звуковой удар», который возникает из-за скачков давления воздуха. Хлопок появляется в результате прохождения основной волны и воспринимается слушателем каждый раз, когда самолет пролетает над его головой.
Масштаб подобных изменений прямо пропорционален скорости гиперзвукового потока. Число маха в данном случае превышает 5, а температурные показатели серьезно повышаются, что выступает причиной ряда проблем для летательных аппаратов, передвигающихся на сверхзвуковых скоростях. Повреждение термозащитных оболочек спровоцировало крушение многоразового космического транспортного корабля NASA под названием «Columbia» в 2003 году. Шаттл входил в земную атмосферу для совершения посадки и был поврежден ударной волной высокой силы.
Российский пассажирский сверхзвуковой самолет
Первый пассажирский самолет, который преодолел звуковой барьер, — ТУ-144, созданный инженерами из конструкторского бюро Туполева. Для преодоления звукового барьера лайнер был выполнен в форме бесхвостового низкоплана, оснащенного дополнительными силовыми установками. ТУ-144 был лишен привычных для летательных средств предыдущего поколения закрылков и предкрылков, а переход на гиперзвуковой режим осуществлялся благодаря сложной процедуре перераспределения топлива в задние центровочные баки.
Сверхзвуковой высотный бомбардировщик Валькирия
Без затруднений преодолевает звуковой барьер высотный бомбардировщик «Валькирия» XB-70, развивающий скорость свыше трех махов (3673 км/час) и поднимающийся на высоту свыше 20 тысяч метров. Для передвижения на гиперзвуковой скорости конструкторы были вынуждены снизить взлетную массу, а также перевести самолет на пентаборан (бороводородную топливную смесь), обладающую повышенной энергией сгорания. Бомбардировщик представляет собой «бесхвостку», выполненную из высокопрочной инструментальной стали.
Звуковой барьер.Часть1
Звуковой барьер в аэродинамике — название ряда явлений, сопровождающих движение летательного аппарата (например, сверхзвукового самолёта, ракеты) на скоростях, близких к скорости звука или превышающих её, а проще говоря «звуковым барьером» в аэродинамике называют резкий скачок воздушного сопротивления, возникающий при достижении самолетом некоторой пограничной скорости, близкой к скорости звука. При достижении этой скорости характер обтекания самолета воздушным потоком меняется кардинальным образом, что в свое время сильно затрудняло достижение сверхзвуковых скоростей.
Обычный, дозвуковой, самолет не способен устойчиво лететь быстрее звука, как бы его ни разгоняли, — он просто потеряет управление и развалится в воздухе…
Для справки: Классификация скоростей в атмосфере
Читать подробнее источник:
Сверхзвуковая скорость — скорость частиц вещества выше скорости звука или распространения волны сжатия ( ударной волны ), для данного вещества, или скорость тела движущегося в веществе с более высокой скоростью, чем скорость звука для данной среды…
Ударная волна(ассоциируется со взрывом) — этот фактор является наиболее поражающим, потому как производит разрушение всего, что попадается на пути. Источником энергии выступает сильное давление, которое образуется в центре взрыва. Газы, которые возникают вследствие реакции, стремительно расширяются и расходятся во все стороны от центра взрыва с огромной скоростью (около 2 км/с).
О Числе Маха (М) — в механике сплошных сред — один из критериев подобия в механике жидкости и газа . Представляет собой отношение скорости течения в данной точке газового потока к местной скорости распространени я звука в движущейся среде — назван по имени немецкого учёного Эрнста Маха (нем.E. Mach)...
Важность значения числа Маха:
— важное значение числа Маха объясняется тем, что оно определяет, превышает ли скорость течения газовой среды (или движения в газе тела) скорость звука или нет. Сверхзвуковые и дозвуковые режимы движения имеют принципиальные различия;
— для авиации это различие выражается в том, что при сверхзвуковых режимах возникают узкие слои быстрого значительного изменения параметров течения ( ударные волны ), приводящие к росту сопротивления тел при движении,
— концентрации тепловых потоков у их поверхности и возможности прогорания корпуса тел и тому подобное…
Предельно упрощённое объяснение числа Маха:
Число Маха(М) — является мерой влияния сжимаемости среды в потоке данной скорости на его поведение и определяется:
M=v /a, где: v — скорость потока, a — местная скорость звука.
Почему преодоление самолетом звукового барьера сопровождается взрывоподобным хлопком? И что такое «звуковой барьер»?
С «хлопком» происходит недоразумение, вызванное неверным пониманием термина «звуковой барьер». Этот «хлопок» правильно называть «звуковым ударом».
Самолет, движущийся со сверхзвуковой скоростью, создает в окружающем воздухе ударные волны, скачки воздушного давления.
Упрощенно эти волны можно представить себе в виде сопровождающего полет самолета конуса, с вершиной, как бы привязанной к носовой части фюзеляжа, а образующими,
Когда граница этого воображаемого конуса, обозначающая фронт ударной звуковой волны, достигает уха человека(с точки А), то резкий скачок давления воспринимается на слух как хлопок.
Другими словами, если бы сверхзвуковой самолет с постоянной, но сверхзвуковой скоростью принялся летать над слушателем туда-сюда, то хлопок слышался бы каждый раз, спустя некоторое время после пролета самолета над слушателем на достаточно близком расстоянии. Для преодоления звукового барьера ученым пришлось разработать крыло со специальным аэродинамическим профилем и придумать другие ухищрения. Интересно, что пилот современного сверхзвукового самолета хорошо чувствует «преодоление» своим летательным аппаратом звукового барьера: при переходе на сверхзвуковое обтекание ощущается «аэродинамический удар» и характерные «скачки» в управляемости. Вот только с «хлопками» на земле эти процессы напрямую не связаны…
Перед тем, как самолет преодолеет звуковой барьер, может образоваться необычное облако(туман), происхождение которого до сих пор не ясно. Согласно наиболее популярной гипотезе, рядом с самолетом происходит падение давления и возникает так называемая сингулярность Прандтля-Глауэрта с последующей конденсацией капелек воды из влажного воздуха, а именно возникновение облака (тумана) связано лишь с резким перепадом давления, сопровождающим полёт самолёта. В результате аэродинамических эффектов за элементами конструкции самолёта образуются не только области повышенного давления, но и области разрежения воздуха (возникают колебания давления). Именно в этих областях разрежения (протекающего, фактически, без теплообмена с окружающей средой, так как процесс “очень быстрый”) и конденсируется водяной пар. Причиной этому служит резкое падение “локальной температуры”, приводящее к резкому смещению так называемой “точки росы”…. Читать подробнее: Звуковой барьер и сверхзвуковой полёт — dxdt.ru
Так что, если влажность воздуха и температура подходят, то такой туман – вызванный интенсивной конденсацией атмосферной влаги – сопровождает весь полёт самолёта.
И не обязательно на сверхзвуковой скорости. Например, на фотографии, бомбардировщик B-2, а это дозвуковой самолёт, сопровождается характерной дымкой… Читать подробнее:
Собственно, конденсат вы видите и на фотках внизу:
Почему при преодолении звукового барьера слышится хлопок
Ударная волна, вызванная летательным аппаратом
Фото №1 ударных волн при обтекании модели сверхзвуковым потоком в аэродинамической трубе (Аэродинамическая лаборатория NASA) NASA удалось получить фото ударной волны при преодолении самолётом звукового барьера
Жёлтая зона — след ударной волны на земле.
Снаружи конуса ударной волны(Маха), а на земле — перед жёлтой зоной самолёт не слышен.
Распространение ударной волны, вызванной сверхзвуковым самолётом (источник).
При обтекании сверхзвуковым воздушным потоком твёрдого тела на его передней кромке образуется ударная волна (иногда не одна, в зависимости от формы тела).
На фото №1 слева видны ударные волны, образованные на острие фюзеляжа модели, на передней и задней кромках крыла и на заднем окончании модели…
Кроме того скачки уплотнения могут быть также присоединенными, когда они примыкают к поверхности тела, двигающегося со сверхзвуковой скоростью или же отошедшими, если они с телом не соприкасаются.
Обычно скачки становятся присоединенными, если сверхзвуковой поток обтекает какие-либо остроконечные поверхности.
Для самолета это, например, может быть заостренная носовая часть, ПВД, острый край воздухозаборника. При этом говорят «скачок садится», например, на нос(вид а и в).
А отошедший скачок может получиться при обтекании закругленных поверхностей, например, передней закругленной кромки толстого аэродинамического профиля крыла(вид б).
Различные узлы корпуса летательного аппарата создают в полете довольно сложную систему скачков уплотнения…
На некотором расстоянии от летательного аппарата промежуточные скачки либо догоняют головной и сливаются с ним, либо их догоняет хвостовой.
Интенсивность ( другими словами энергетика) ударной волны (скачка уплотнения) зависит от различных параметров(скорости движения летательного аппарата, его конструктивных особенностей, условий среды и др.) и определяется перепадом давления на ее фронте.
По мере удаления от вершины конуса Маха, то есть от самолета, как источника возмущений ударная волна ослабевает, постепенно переходит в обычную звуковую волну и в конечном итоге совсем исчезает…
Волновой кризис
Физическая сущность
Термин волновой кризис применяется и к водным судам, движущимся со скоростями, близкими к скорости волн на поверхности воды. Развитие волнового кризиса затрудняет рост скорости. Преодоление судном волнового кризиса означает выход на режим глиссирования (скольжения корпуса по поверхности воды)…
Уже в ходе Второй мировой войны скорость истребителей стала приближаться к скорости звука. При этом пилоты иногда стали наблюдать непонятные в то время и угрожающие явления, происходящие с их машинами при полётах с предельными скоростями…
Рис. 1а. Крыло в близком к звуковому потоке Рис. 1б. Крыло в сверхзвуковом потоке
Чем все это чревато?
Первое – это значительный рост аэродинамического сопротивления в диапазоне трансзвуковых скоростей (около М=1, более или менее). Это сопротивление растет за счет резкого увеличения одной из его составляющих – волнового сопротивления. Для образования многочисленных скачков уплотнения (или ударных волн) при торможении сверхзвукового потока, как я уже говорил выше, тратится энергия, и берется она из кинетической энергии движения летательного аппарата. То есть самолет элементарно тормозится (и очень ощутимо!). Это и есть волновое сопротивление. Более того, скачки уплотнения из-за резкого торможения потока в них, способствуют отрыву пограничного слоя после себя и превращения его из ламинарного в турбулентный. Это еще более увеличивает аэродинамическое сопротивление.
Второе . Из-за появления местных сверхзвуковых зон на профиле крыла и дальнейшем их сдвиге к хвостовой части профиля с увеличением скорости потока и, тем самым, изменения картины распределения давления на профиле, точка приложения аэродинамических сил (центр давления) тоже смещается к задней кромке. В результате появляется пикирующий момент относительно центра масс самолета, заставляющий его опустить нос.
Во что все это выливается… Из-за довольно резкого роста аэродинамического сопротивления самолету требуется ощутимый запас мощности двигателя для преодоления зоны трансзвука и выхода на, так сказать, настоящий сверхзвук…
Как осуществляется штурм звукового барьера?
Рекомендации для безопасных околозвуковых и сверхзвуковых полётов сводятся к следующему:
— на дозвуковых скоростях полёта следует избегать скоростей, при которых начинается волновой кризис (эти скорости зависят от аэродинамических характеристик самолёта и от высоты полёта);
— переход с дозвуковой скорости на сверхзвуковую реактивными самолётами должен выполняться насколько возможно быстрее, с использованием форсажа двигателя, чтобы избежать длительного полёта в зоне волнового кризиса…
Конструкторские решения для преодоления «звукового барьера»
В наше время волновой кризис уже достаточно хорошо изучен и преодоление звукового барьера (если это требуется : особого труда не составляет. На самолетах, которые предназначены для полетов с достаточно большими скоростями применены определенные конструктивные решения и ограничения, облегчающие их летную эксплуатацию…
Современные дозвуковые самолёты с крейсерской скоростью полёта, достаточно близкой к звуковой (свыше 800 км/ч), обычно выполняются со стреловидным крылом и оперением с тонкими профилями, что позволяет сместить скорость, при которой начинается волновой кризис, в сторону больших значений.
Сверхзвуковые самолёты, которым приходится проходить участок волнового кризиса при наборе сверхзвуковой скорости, имеют конструктивные отличия от дозвуковых, связанные как с особенностями сверхзвукового течения воздушной среды, так и с необходимостью выдерживать нагрузки, возникающие в условиях сверхзвукового полёта и волнового кризиса, в частности — треугольное в плане крыло с ромбовидным или треугольным профилем...
Как известно, волновой кризис начинается при числах М, близких к единице. Поэтому практически все реактивные дозвуковые лайнеры (пассажирские, в частности) имеют полетное ограничение по числу М. Обычно оно находится в районе 0,8-0,9М. Летчику предписывается следить за этим. Кроме того на многих самолетах при достижении уровня ограничения срабатывает сигнализация , после чего скорость полета должна быть снижена. Практически все самолеты, летающие на скоростях как минимум 800 км/ч и выше имеют стреловидное крыло (по крайней мере по передней кромке). Оно позволяет отодвинуть начало наступления волнового кризиса до скоростей, соответствующих М=0,85-0,95.
Ту-160 с изменяемой геометрией
крыла в полёте
МиГ-25 с цельно-поворотным
стабилизатором
Управляющие поверхности хвостового оперения из-за ухудшения условий управляемости на сверхзвуке имеют достаточно большую площадь. Часто стабилизаторы бывают цельно-поворотными, а на некоторых сверхзвуковых самолетах цельноповоротными сделаны и кили.
Форма – тоже важно. Например, японские авиационные конструкторы, не так давно, в середине 2015, создали беспилотный планер модели D-SEND 2. Его форма спроектирована особым образом, позволяя существенно уменьшить интенсивность и количество ударных волн, возникающих, когда аппарат летит на сверхзвуковой скорости. После проведённых испытаний, японские авиаконструкторы смогли с уверенностью заявить – интенсивность ударных волн, при полёте их детища на скорости, превышающей быстроту распространения звука, — в два раза меньше, чем у «Конкорда»…
Каковы же особенности D-SEND 2? Прежде всего – его носовая часть не осесимметричная. Киль смещён к ней, и при этом, горизонтальное хвостовое оперение установлено как цельноповоротное. Оно также расположено под отрицательным углом к продольной оси.
И при этом законцовки оперения располагаются ниже, чем точка крепления. Крыло, плавно сопряжённое с фюзеляжем, выполнено с нормальной стреловидностью, но ступенчатое.
По примерно такой же схеме сейчас, по состоянию на ноябрь 2018, проектируют пассажирский сверхзвуковой AS2. Работают над ним профессионалы из Lockheed Martin. Заказчиком выступает NASA…
masterok
Мастерок.жж.рф
Хочу все знать
Необычную картину можно иногда наблюдать во время полета реактивных самолетов, которые словно выныривают из облака тумана. Это явление называется эффектом Прандтля-Глоерта и заключается в возникновении облака позади объекта, движущегося на околозвуковой скорости в условиях повышенной влажности воздуха.
Причина возникновения этого необычного явления заключается в том, что летящий на высокой скорости самолёт создаёт область повышенного давления воздуха впереди себя и область пониженного давления позади. После пролёта самолёта область пониженного давления начинает заполняться окружающим воздухом. При этом в силу достаточно высокой инерции воздушных масс сначала вся область низкого давления заполняется воздухом из близлежащих областей, прилегающих к области низкого давления.
Этот процесс локально является адиабатическим процессом, где занимаемый воздухом объём увеличивается, а его температура понижается. Если влажность воздуха достаточно велика, то температура может понизиться до такого значения, что окажется ниже точки росы. Тогда содержащийся в воздухе водяной пар конденсируется в виде мельчайших капелек, которые образуют небольшое облако.
По мере того, как давление воздуха нормализуется, температура в нём выравнивается и вновь становится выше точки росы, и облако быстро растворяется в воздухе. Обычно время его жизни не превышает долей секунды. Поэтому при полёте самолёта кажется, что облако следует за ним — вследствие того, что оно постоянно образуется сразу позади самолёта, а затем исчезает.
Существует распространённое заблуждение, что возникновение облака из-за эффекта Прандтля-Глоерта означает, что именно в этот момент самолёт преодолевает звуковой барьер. В условиях нормальной или слегка повышенной влажности облако образуется только при больших скоростях, близких к скорости звука. В то же время при полётах на малой высоте и в условиях очень высокой влажности (например, над океаном) этот эффект можно наблюдать и при скоростях, значительно меньших скорости звука.
Кликабельно 2100 рх
С “хлопком” происходит недоразумение, вызванное неверным пониманием термина “звуковой барьер”. Этот “хлопок” правильно называть “звуковым ударом”. Самолет, движущийся со сверхзвуковой скоростью, создает в окружающем воздухе ударные волны, скачки воздушного давления. Упрощенно эти волны можно представить себе в виде сопровождающего полет самолета конуса, с вершиной, как бы привязанной к носовой части фюзеляжа, а образующими, направленными против движения самолета и распространяющимися довольно далеко, например до поверхности земли.
Клкиабельно 2500 рх
Другими словами, если бы сверхзвуковой самолет с постоянной, но сверхзвуковой скоростью принялся летать над слушателем туда-сюда, то хлопок слышался бы каждый раз, спустя некоторое время после пролета самолета над слушателем на достаточно близком расстоянии.