Представь в виде степени с рациональным показателем считая что a 0

Степень с рациональным показателем

Мы уже знакомы с понятием степени с целым показателем. Давайте разберемся, что такое степень с рациональным показателем.

Рациональный показатель – это выражение вида \(\frac

\), где \(p\)-некоторое целое число, а \(q\) – натуральное число, причем \(q\ge2\).

Положительное число \(a\) в рациональной степени \(\frac

\) является арифметическим корнем степени \(q\) из числа \(a\) в степени \(p\):

Обращаем ваше внимание, что

Неважно в каком порядке – сначала извлечь корень или возвести в степень, от этого смысл выражения не теряется. Как удобнее, так и считайте.

Пусть есть некоторое положительное число \(a\) и целое число \(p\), тогда справедливы следующие соотношения:

где \(k\) и \(q\) – натуральные числа большие 1.

Давайте попробуем их доказать:

Из определения степени с рациональным показателем следует, что:

Опять из определения и свойства корня n-й степени следует:

Третья формула на наш взгляд очевидна, просто сократить степень справа и получите исходное выражение.

Свойства степени с рациональным показателем

Пусть \(a\) и \(b\) – некоторые положительные числа, а числа \(m\) и \(n\) – рациональные числа. Тогда выполняются соотношения:

При умножении степеней с рациональным показателем и одинаковым основанием их показатели степени складываются.

При делении степеней с рациональным показателем и одинаковым основанием их показатели степени вычитаются.

При возведении степени с рациональным показателем в степень с рациональным показателем их показатели перемножаются.

Степень с рациональным показателем от произведения двух положительных чисел равна произведению степеней этих множителей.

Степень с рациональным показателем от частного двух положительных чисел равна частному степеней этих чисел.

И еще два очень важных свойства степеней. Они вам понадобятся при решении показательных уравнений и неравенств.

Пусть опять есть некоторое положительное число \(a>1\) и рациональные числа \(n\) и \(m\).

При \(n \gt 0\) \(a^n \gt 1\),

При \(n \lt 0\) \(0 \lt a^n \lt 1\).

Если же \(a \gt 1\) и \(n \gt m\), то

Если \( 0 \lt a \lt 1 \) и \(n \gt m\), то

Разберем несколько примеров:

Так как основание степени больше единицы \(3 \gt 1\) и \(\frac<1> <3>\lt \frac<1><2>\).

Так как \(0 \lt \frac<1> <5>\lt 1\) и \(\frac<1> <3>\lt \frac<1><2>\)

Описание урока

От успешной сдачи государственного экзамена по математике зависит поступление в высшее учебное заведение. Степень с рациональным показателем – важная тема, изучение которой необходимо для успешной подготовки к ЕГЭ. От того, насколько хорошо она освоена, зависит в будущем, насколько легко будет решать уравнения и производить более сложные операции с числами. Задание номер 15 строится на умении работать с такими степенями. Чтобы понимать, о чём идёт речь, стоит ознакомиться с определением степени с рациональным показателем и её основными свойствами, которые пригодятся и при работе с функциями.

Важно запомнить, что число А не должно быть меньше 0, а число q не равно 1.

Свойства степени с рациональным показателем

Знание свойств степеней с показателем, равным рациональному числу, облегчает работу с уравнениями и функциями, где содержатся такие выражения. Внимательно их изучив, можно достаточно быстро выполнять задания, что немаловажно в процессе написания ЕГЭ.

Одно из основных свойств: произведение двух степеней с одинаковым основанием равно основанию в степени, равной сумме степеней двух множителей.

При делении степеней с рациональным показателем из показателя делимого вычитают показатель делителя. У степени с рациональным показателем есть и другие свойства, которые также присущи степени с обыкновенным показателем. Их легко запомнить, а чтобы примеры помогли внимательнее рассмотреть свойства, посмотрите видео, в котором о них рассказывается подробнее.

Источник

Свойства степеней и действия с ними

Зачем нужны степени? Где они тебе пригодятся? Почему тебе нужно тратить время на их изучение?

Как обычно — чтобы облегчить себе жизнь. Знание свойств степеней позволит тебе упрощать вычисления и считать быстрее, что пригодится и в жизни и на ОГЭ или ЕГЭ!

Чтобы узнать все о степенях и научиться пользоваться свойствами степеней, читай эту статью.

P.S Если ты хорошо знаешь степени и тебе надо только повторить, переходи сразу к продвинутому уровню.

НАЧАЛЬНЫЙ УРОВЕНЬ

Степени. Коротко о главном

Определение степени:

Представь в виде степени с рациональным показателем считая что a 0

Свойства степеней:

Произведение степеней с одинаковым основанием:\( <^>\cdot <^>=<^>\)
Произведение степеней с одинаковыми показателями:\( <^>\cdot <^>=<<\left( a\cdot b \right)>^>\)
Деление степеней с одинаковым основанием:\( \frac<<^>><<^>>=<^>\)
Деление степеней с одинаковыми показателями:\( \frac<<^>><<^>>=<<\left( \frac \right)>^>\)
Возведение степени в степень:\( <<\left( <^> \right)>^>=<^>\)
Дробная степень:\( <^<\frac>>=\sqrt[m]<<^>>\)

Особенности степеней:

Возведение в степень – это такая же математическая операция, как сложение, вычитание, умножение или деление.

Сейчас объясню все человеческим языком на очень простых примерах. Будь внимателен. Примеры элементарные, но объясняющий важные вещи. Начнем со сложения.

Сложение

Объяснять тут нечего. Ты и так все знаешь: нас восемь человек. У каждого по две бутылки колы. Сколько всего колы? Правильно – 16 бутылок. Теперь умножение.

Умножение

Тот же самый пример с колой можно записать по-другому: \(\displaystyle 2\cdot 8=16\).

Математики — люди хитрые и ленивые. Они сначала замечают какие-то закономерности, а потом придумывают способ как быстрее их «считать».

В нашем случае они заметили, что у каждого из восьми человек одинаковое количество бутылок колы и придумали прием, который называется умножением.

Согласись, \(\displaystyle 2\cdot 8=16\) считается легче и быстрее, чем \(\displaystyle 2+2+2+2+2+2+2+2=16\).

И еще одна важная деталь. Ошибок при таком счете делается гораздо меньше. Математики из Стэнфорда, кстати, считают, что человек, знающий приемы счета, делает это в два раза легче и быстрее и совершает в два раза меньше ошибок. Работы меньше, а результат лучше.

Итак, чтобы считать быстрее, легче и без ошибок, нужно всего лишь запомнить таблицу умножения. Ты, конечно, можешь делать все медленнее, труднее и с ошибками, но лучше ее запомнить! Вот таблица умножения. Выучи ее наизусть.

Представь в виде степени с рациональным показателем считая что a 0

И другая таблица, красивее:

Представь в виде степени с рациональным показателем считая что a 0

А какие еще хитрые приемы счета придумали ленивые математики? Правильно – возведение числа в степень.

Возведение числа в степень

Если тебе нужно умножить число само на себя пять раз, то математики говорят, что тебе нужно возвести это число в пятую степень.

Например, \(\displaystyle 2\cdot 2\cdot 2\cdot 2\cdot 2=<<2>^<5>>\). Математики помнят, что два в пятой степени – это \(\displaystyle 32\).

И решают такие задачки в уме – быстрее, легче и без ошибок.

Для этого нужно всего лишь запомнить то, что выделено цветом в таблице степеней чисел. Поверь, это сильно облегчит тебе жизнь.

Представь в виде степени с рациональным показателем считая что a 0

Кстати, почему вторую степень называют квадратом числа, а третью — кубом? Что это значит? Очень хороший вопрос. Сейчас будут тебе и квадраты, и кубы.

Примеры из жизни

Начнем с квадрата или со второй степени числа.

Представь себе квадратный бассейн размером \( \displaystyle 3\) метра на \( \displaystyle 3\) метра. Бассейн стоит у тебя на даче. Жара и очень хочется купаться.

Но… бассейн без дна! Нужно застелить дно бассейна плиткой. Сколько тебе надо плитки? Для того чтобы это определить, тебе нужно узнать площадь дна бассейна.

Ты можешь просто посчитать, тыкая пальцем, что дно бассейна состоит из \( \displaystyle 9\) кубиков метр на метр. Если у тебя плитка метр на метр, тебе нужно будет \( \displaystyle 9\) кусков. Это легко…

Но где ты видел такую плитку? Плитка скорее будет \( \displaystyle 10\) см на \( \displaystyle 10\) см. И тогда «пальцем считать» замучаешься. Тогда придется умножать.

Итак, по одной стороне дна бассейна у нас поместится \( \displaystyle 30\) плиток (\( \displaystyle \frac<300\ см><10\ см>=30\) штук) и по другой тоже \( \displaystyle 30\) плиток.

Ты заметил, что для определения площади дна бассейна мы умножили одно и то же число само на себя? Что это значит? Раз умножается одно и то же число, мы можем воспользоваться приемом «возведение в степень».

Конечно, когда у тебя всего два числа, все равно перемножить их или возвести в степень. Но если у тебя их много, то возводить в степень значительно проще и ошибок при расчетах получается тоже меньше.

Иными словами, вторую степень числа всегда можно представить в виде квадрата. И наоборот, если ты видишь квадрат – это ВСЕГДА вторая степень какого-то числа.

Квадрат – это изображение второй степени числа.

Представь в виде степени с рациональным показателем считая что a 0

Представь в виде степени с рациональным показателем считая что a 0

Теперь куб или третья степень числа. Тот же самый бассейн. Но теперь тебе нужно узнать, сколько воды придется залить в этот бассейн. Тебе нужно посчитать объем. (Объемы и жидкости, кстати, измеряются в кубических метрах. Неожиданно, правда?)

Нарисуй бассейн: дно размером \( \displaystyle 3\) на \( \displaystyle 3\) метра и глубиной \( \displaystyle 3\) метра и попробуй посчитать, сколько всего кубов размером метр на метр войдет в твой бассейн.

Прямо показывай пальцем и считай! Раз, два, три, четыре…двадцать два, двадцать три… Сколько получилось? Не сбился? Трудно пальцем считать?

Так-то! Бери пример с математиков. Они ленивы, поэтому заметили, что чтобы посчитать объем бассейна, надо перемножить друг на друга его длину, ширину и высоту.

В нашем случае объем бассейна будет равен \( \displaystyle 3\cdot 3\cdot 3=27\) кубов… Легче правда?

А теперь представь, насколько математики ленивы и хитры, если они и это упростили. Свели все к одному действию. Они заметили, что длина, ширина и высота равна и что одно и то же число перемножается само на себя…

Представь в виде степени с рациональным показателем считая что a 0

Остается только запомнить таблицу степеней. Если ты, конечно, такой же ленивый и хитрый как математики. Если любишь много работать и делать ошибки – можешь продолжать считать пальцем.

Ну и чтобы окончательно убедить тебя, что степени придумали лодыри и хитрюги для решения своих жизненных проблем, а не для того чтобы создать тебе проблемы, вот тебе еще пара примеров из жизни.

У тебя есть \( \displaystyle 2\) миллиона рублей. В начале каждого года ты зарабатываешь на каждом миллионе еще один миллион. То есть каждый твой миллион в начале каждого года удваивается. Сколько денег у тебя будет через \( \displaystyle 5\) лет?

Если ты сейчас сидишь и «считаешь пальцем», значит ты очень трудолюбивый человек и.. глупый. Но скорее всего ты дашь ответ через пару секунд, потому что ты – умный! Итак, в первый год — два умножить на два… во второй год — то, что получилось, еще на два, в третий год… Стоп!

Ты заметил, что число \( \displaystyle 2\) перемножается само на себя \( \displaystyle 6\) раз. Значит, два в шестой степени – \( \displaystyle 64\) миллиона! А теперь представь, что у вас соревнование и эти \( \displaystyle 64\) миллиона получит тот, кто быстрее посчитает…

Стоит запомнить степени чисел, как считаешь?

У тебя есть \( \displaystyle 1\) миллион. В начале каждого года ты зарабатываешь на каждом миллионе еще два. Здорово правда? Каждый миллион утраивается. Сколько денег у тебя будет через \( \displaystyle 4\) года?

Уже скучно, потому что ты уже все понял: три умножается само на себя \( \displaystyle 4\) раза.

Теперь ты знаешь, что с помощью возведения числа в степень ты здорово облегчишь себе жизнь. Давай дальше посмотрим на то, что можно делать со степенями и что тебе нужно знать о них.

Источник

Алгебра

А Вы уже инвестируете?
Слышали про акцию в подарок?

Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб

План урока:

Степень с рациональным показателем

Напомним, что в 7 классе мы впервые познакомились с понятием степени, причем тогда рассматривались случаи, когда показателем степени является натуральное число. В 8 классе понятие степени было расширено, теперь в него включались случаи, когда показатель являлся целым числом. Настоятельно рекомендуем перечитать соответствующие уроки. Сегодня же мы можем сделать ещё один шаг вперед и рассмотреть степени с рациональными показателями.

При расширении понятия степени важно обеспечить то, чтобы уже известные правила работы с целыми степенями работали и для дробных показателей. Одно из свойств степеней выглядит так:

Подставим в эту формулу следующие значения переменных:

Мы специально выбрали эти числа такими, чтобы произведение mn равнялось единице:

Подставляем эти значения:

(3 1/6 ) 6 = 3 1/6 • 6 = 3 1 = 3

Однако по определению корня n-ой степени число, дающее при возведении в шестую степень тройку, является корнем шестой степени из трех. То есть можно записать:

С помощью подобных преобразований нам удалось указать, чему равно число, возведенное в дробную степень. Аналогично можно показать, что для любого а > 0 справедлива формула:

Действительно, если возвести левую часть в n-ую степень, то получим:

(а 1/ n ) n = a 1/ n • n = a

Значит, по определению корня n-ой степени

Ограничение а > 0 необходимо для того, чтобы не рассматривать случаи, когда подкоренное выражение является отрицательным.

C учетом этого выполним преобразование:

В результате несложных преобразований нам удалось получить формулу, позволяющую возводить число в степень, у которой рациональный показатель!

Приведем несколько примеров вычисления дробных степеней:

Часто при вычислениях удобнее сначала извлечь корень из числа, а потом полученный результат возвести в степень:

Напомним, что одну и ту же дробь можно представить разными способами, например:

1/2 = 2/4 = 3/6 = 4/8 = 5/10 = 0,5

Возникает вопрос – изменится ли значение дробной степени, если мы приведем дробь к новому знаменателю? Очевидно, что нет, но всё же убедимся в этом на примере. Сначала возведем в степень 1/2 число 25:

Теперь заменим дробь 1/2 на идентичную ей дробь 2/4:

Согласитесь, возводить число 81 в 25-ую степень не очень легко! Поэтому поступим иначе. Сократим дробь 25/100:

0,25 = 25/100 = 25/(25•4) = 1/4

Теперь вычисления будет более простыми:

Вообще легко запомнить, что 0,25 = 1/4, а 0,5 = 1/2. Замена десятичных дробей обыкновенными дробями сильно упрощает вычисления. Приведем примеры:

Свойства дробных степеней и операции с ними

Когда мы изучали степени с целыми показателями, мы выяснили, что правила работы с ними ничем не отличаются от правил работы со степенями с натуральным показателем. Оказывается, эти же правила работают и для степеней с рациональным показателем. Сформулируем основные свойства дробных степеней.

Например, справедливы следующие действия:

5 0,5 •5 2,5 = 5 0,5 + 2,5 = 5 3 = 125

19 5/3 •19 1/3 = 19 5/3 + 1/3 = 19 2 = 361

29,36 –0,37 •29,36 1,37 = 29,36 –0,37 + 1,37 = 29,36 1 = 29,36

Вот несколько примеров подобных вычислений:

17 4,5 :17 3,5 = 17 4,5–3,5 = 17 1 = 1

4 9,36 :4 6,36 = 4 9,36–6,36 = 4 3 = 64

20 12 :20 14 = 20 12–14 = 20 –2

Проиллюстрируем это правило примерами:

(6 0,25 ) 8 = 6 0,25•8 = 6 2 = 36

(9 3/2 ) 2 = 9 (3/2)•2 = 9 3 = 729

(25 4 ) 0,125 = 25 4•0,125 = 25 0,5 = 5

Покажем, как можно применять данное правило:

4 1/6 •16 1/6 = (4•64) 1/6 = 64 1/6 = 2

0,5 1,5 •50 1,5 = (0,5•50) 1,5 = 25 1,5 = 25 1+0,5 = 25 1 •25 0,5 = 25•5 = 125

4,9 0,5 •10 0,5 = (4,9•10) 0,5 = 49 0,5 =7

Это правило можно применять следующим образом:

360 0,5 :10 0,5 = (360:10) 0,5 = 36 0,5 = 6

500 3 :50 3 = (500:50) 3 = 10 3 = 1000

6,25 1/4 :0,01 1/4 = (6,25:0,01) 1/4 = 625 1/4 = 5

Заметим, что степени очень удобны тем, что с их помощью легко упростить работу с корнями, ведь если

то верное и обратное:

То есть любое выражение с корнями в виде степени с рациональным показателем.

Пример. Вычислите значение выражения

Решение. Корней много, поэтому для удобства заменим их степенями

Получили тоже самое выражение, но в более компактном виде. Посчитаем его значение:

(9 1/4 ) 1/5 •3 9/10 = (9 0,25 ) 0,2 •3 0,9 = 9 0,25•0,2 •3 0,9 = 9 0,05 •3 0,9 = (3 2 ) 0,05 •3 0,9 =

=3 2•0,05 •3 0,9 = 3 0,1 •3 0,9 = 3 0,1•0,9 = 3 1 = 3

Пример. Упростите выражение

(81 n+1 – 65•81 n ) 0,25

Решение. Степень 81 n+1 можно представить как произведение:

81 n+1 = 81 n •81 1 = 81•81 n

С учетом этого можно записать:

(81 n+1 – 65•81 n ) 0,25 = (81•81 n – 65•81 n ) 0,25 = (81 n (81 – 65)) 0,25 =

= (81 n •16) 0,25 = 81 0,25 n •16 0,25 = 81 0,25 n •16 1/4 = 2•81 0,25 n

Сравнение степеней

Напомним, что из двух корней n-ой степени больше тот, у которого больше подкоренное выражение:

Отсюда следует вывод, что если a 1/ n 1/ n

теперь возведем каждую часть этого неравенства в степень m. Тогда получим неравенство:

Получили, что из двух степеней с одинаковыми показателями меньше та, у которой меньше основание (правила сравнения будем нумеровать, чтобы на них удобнее было ссылаться):

В частности, справедливы следующие неравенства:

Здесь мы рассматривали случаи, когда показатель степени является положительным числом. А что делать, если он отрицательный? Тогда степень следует «перевернуть», воспользовавшись уже известной вам формулой:

Пример. Сравните выражения с рациональным показателем степени:

20 –3,14 и 50 –3,14

Решение. Избавимся от знака минус в показателе:

20 –3,14 = (1/20) 3,14 = 0,05 3,14

50 –3,14 = (1/50) 3,14 = 0,02 3,14

Получили две степени с одинаковым и, что принципиально важно, положительным показателем. Из них больше та, у которой больше основание. То есть из неравенства 0,02 3,14 3,14

Особенным является случай, когда показатель степени равен нулю. Напомним, что любое число в нулевой степени (кроме самого нуля) равно единице, а выражение 0 0 не имеет смысл. Это значит, что числа в нулевой степени равны друг другу, даже если у них разные основания:

18,3546 0 = 12,3647 0 = 1

Несколько сложнее сравнивать числа, у которых одинаковые основания, но различные показатели. Здесь возможны три случая – основание либо равно единице, либо больше неё, либо меньше неё.

На основании этого правила можно записать, что:

Единица в любой степени равна самой себе. Поэтому, если у двух чисел в основании записана именно она, то они должны быть равны друг другу:

1 –7,56 = 1 –0,15 = 1 0,236 = 1 521,36 = 1

0,5 = 1/2 = 1/(2 1 ) = 2 –1

0,5 7,6 = (2 –1 ) 7,6 = 2 –7,6

0,5 8,9 = (2 –1 ) 8,9 = 2 –8,9

Такие числа мы уже умеем сравнивать. Так как

Например, справедливы неравенства:

0,57 15,36 > 0,57 16,47

Рассмотрим чуть более сложное задание на сравнение степеней, где надо использовать одновременно несколько правил.

Пример. Докажите, что

0,9 0,9 + 0,8 0,8 + 0,7 0,7 1/3

Решение. Напрямую вычислить значение выражений в правой и левой части затруднительно. Однако мы можем усиливать неравенство, чтобы получить более простые выражения.

Усилить неравенство – это значит увеличить его меньшую или уменьшить большую часть. Например, неравенство 10 1/3 :

Также ясно, что 27 1/3 1/3 (правило 1). Усилим исходное неравенство:

0,9 0,9 + 0,8 0,8 + 0,7 0,7 1/3 (1)

Действительно, если (1) справедливо, то мы можем записать двойное неравенство

0,9 0,9 + 0,8 0,8 + 0,7 0,7 1/3 1/3

Опустив здесь среднюю часть, получим исходное неравенство. Так как 27 1/3 = 3, мы можем переписать (1) так:

0,9 0,9 + 0,8 0,8 + 0,7 0,7 0,8 0,8 (снова используем правило 1). С другой стороны, 0,9 0,8 0,7 (правило 3). Значит, можно записать двойное неравенство:

Их левые части стоят в (2). Следовательно, можно усилить (2):

0,9 0,7 + 0,9 0,7 + 0,9 0,7 0,7 0,7 0,7 :

Из правила 1 следует, что (4) справедливо. Но мы получили его, усиливая исходное неравенство. Из справедливости более сильного неравенства следует и справедливость более слабого. Следовательно, из справедливости (4) вытекает верность исходного неравенства, которое и надо было доказать.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *