Пожелтение листьев осенью это химическое явление потому что

Почему листья осенью желтеют

Почему с приходом осени деревья меняют наряд с зеленого на желтый? Оказывается, у растений есть свои причины «переодеться».

Как зеленый лист становится желтым

В любом листе спрятаны сразу несколько красок, за каждую из которых отвечает специальное вещество — пигмент. Так, пигмент хлорофилл дает листьям зеленый цвет, ксантофилл — желтый, каротин — оранжевый, антоцианы — красный. Какого пигмента в листе больше, такого он и будет цвета.

Весной и летом, когда в растениях активно двигается сок, в листьях больше хлорофилла. Он не только дает сочную окраску зелени: с его помощью внутри каждого дерева, куста или травы, создаются питательные вещества. Благодаря хлорофиллу живут и люди: чтобы приготовить свою «еду», растения используют углерод, который мы выдыхаем, а в воздух выпускают кислород, которым мы дышим.

Осенью внутри деревьев перестает кипеть работа, и хлорофилла становится меньше. Из-за того что вокруг холодает, но еще остается много яркого света, этот пигмент начинает разрушаться, уступая место другим цветам. В пасмурные дни деревья дольше стоят зелеными, а солнечная осень быстро перекрашивает листья в желтый и другие оттенки.

Смена цвета показывает, что листья постепенно готовятся к тому, чтобы опасть.

Почему листья опадают

Почему хвоя остается зеленой

Не все листья осенью меняют наряд на золотой: хвойные и другие вечнозеленые растения остаются ярко-зеленого цвета.

Секрет в том, что пожелтение и опадение листьев — это подготовка дерева к суровой зиме. Но ели не боятся зимы: тонкие иголки спокойно переносят холода. В них меньше воды, внутри вязкий смолистый сок, а сверху — восковая пленка, которая их защищает.

Хотя хвойные деревья тоже замедляют свой рост зимой, им хватает питательных веществ для своих листьев, и поэтому они не собираются желтеть и опадать. Хлорофилл не покидает иголки, и красавица-ель остается зимой и летом одним цветом.

Интересно, что хвоя тоже опадает, но не так, как обычные листья: дерево осыпается постепенно, круглый год, и иголки постоянно заменяются новыми. Поэтому здоровая ель всегда кажется пышной. Если же хвойное дерево пожелтело и иголку опали, это может значить, что оно болеет или сохнет, потому что ему мало воды.

Источник

Почему осенью на деревьях желтеют и опадают листья?

Листья цвета лета

За изумрудную листву любого растения отвечает специальное вещество хлорофилл — пигмент, придающий листьям зелёный окрас. Он не только дарит свежий травяной цвет, но и питает растения, участвуя в процессе образования глюкозы и прочих питательных веществ.

Вырабатывается этот пигмент благодаря процессу фотосинтеза. Листья поглощают углерод, а выделяют кислород. Происходит это в комфортных условиях — при наличии тепла и солнца. Помимо кислорода при фотосинтезе вырабатывается и известный нам хлорофилл.

С наступлением холодного времени года солнечный день укорачивается: погода уже не радует теплом, света становится меньше. Хлорофилл перестаёт активно вырабатываться, и на смену ему приходят другие пигменты.

Каждый Охотник Желает Знать

Осенними красками листва обязана особым веществам-пигментам. Каротин отвечает за оранжевый цвет. Такой пигмент можно встретить не только на осенних кронах деревьев, но и в обычной морковке. Жёлтые листья появляются благодаря ксантофилу, а красные — антоциану.

Условия выработки пигментов разные. Если хлорофиллу нужно много тепла и солнца, то ксантофилу и каротину достаточно тепла и немного света. А вот чтобы получить много багряных листьев, нужна холодная погода и яркое солнце. Мороз и обилие света — это условия появления большого количества антоциана в листве.

Пожелтение листьев осенью это химическое явление потому что

Листья жёлтые над городом кружатся

Осенней порой деревья сначала радуют нас яркими красками, но с приближением зимней поры начинают избавляться от листьев. Зачем и почему так происходит?

С приходом холодного времени года почва начинает промерзать. Деревья перестают получать нужное количество влаги и питательных веществ. Жизненные процессы начинают останавливаться, растения уходят в спячку. Для того чтобы не тратить силы на питание, растения вынуждены избавляться от лишнего груза — и сбрасывать листву.

У основания черешка (узкая часть листа, место крепления листовой пластинки к стеблю) образуется особый отделительный пробковый слой, блокирующий «доставку» питательных веществ от дерева. Обессиленным листьям становится всё сложнее держаться на ветках и постепенно они начинают опадать. Как и при появлении разноцветной кроны, так и при листопаде, все процессы не протекают мгновенно. Именно поэтому сначала мы видим размеренную смену красок листвы, а затем медленное избавление деревьев от своего яркого наряда.

Листопад — обязательное условие существования деревьев, помогающее им ежегодно обновлять свою листву. С приходом весны через корни деревья снова начинают получать необходимое количество воды из оттаявшей почвы и возрождают свою пышную крону.

Больше интересных материалов:

Ёлки-иголки

Но почему же хвойные деревья так же не сбрасывают свою «зелень», ведь иголки — это тоже разновидность листьев?

Всё дело в строении иголочек. Верхний клеточный слой представляет собой плотную оболочку, покрытую тонким восковым слоем. Благодаря такой жёсткой «экипировке» хвойным деревьям не страшны холода. Особая форма хвоинок обеспечивает меньшую степень площади поверхности, следовательно иголки испаряют влаги значительно меньше, чем обычные листья.

Естественно, иголки тоже стареют и опадают. Однако происходит это не в один момент, а постепенно на протяжении года или даже нескольких лет, поэтому смена хвои протекает не так заметно, как у лиственных деревьев.

Но и среди хвойных деревьев есть исключения, например, лиственница. Она произрастает в суровых условиях и не может испарять влагу зимой. Поэтому, как и лиственные деревья, также с приближением зимы сбрасывает свою хвою.

Источник

Почему желтеют листья на деревьях осенью?

Пожелтение листьев осенью это химическое явление потому что

Почему желтеют листья на деревьях: Pixabay

Окружающий мир настолько привычен, что нередко становится малозаметным фоном для каких-то важных, по мнению индивида, событий и дел. Однако, когда наступает осень, приходит с ней период, проигнорировать который невозможно, — листопад. В эту красивую, воспетую поэтами пору многие дети (а нередко и взрослые) начинают интересоваться, а почему желтеют листья? В статье расскажем, в чем особенность данного явления, по какой причине листья осенью слетают с деревьев, а также для чего они вообще нужны растениям.

Почему желтеют листья осенью?

Прежде всего разберемся с самой листвой, а точнее, с ее оттенком. Она, кстати, бывает в зависимости от окружающих условий:

Почему так происходит? Все дело в накапливаемых пигментах (это такие природные красящие вещества). Так, в частности название:

Почему осенью листья желтеют? Это связано в первую очередь со сменой сезонов. Дело в том, что:

Листья деревьев осенью, лишившись изумрудного пигмента, не становятся бесцветными, так как содержат и другие красящие вещества, о которых сказано выше. Так почему листья желтеют, краснеют или становятся оранжевого цвета? Это зависит от преобладания в них какого-то определенного пигмента.

Объяснив, почему листья желтеют, нелишне рассказать и о причинах, заставляющих их становиться буро-коричневыми. Этот оттенок возникает, только когда все пигменты листа разрушаются. В итоге остаются только мембраны клеток, а они, собственно, и окрашены в коричневый.

Пожелтение листьев осенью это химическое явление потому что

Почему желтеют листья осенью на деревьях: Nur.kz

Для чего нужны листья?

Из вышеприведенного раздела становится понятно, что листва деревьев имеет чрезвычайно важное значение. Без нее растение не способно полноценно питаться, но, оставшись с ней в определенный момент, может и погибнуть. Впрочем, обо всем по порядку:

Каково предназначение листьев?

Оно двоякое. Листья:

Пока листва занимается фотосинтезом, корневая система дерева поставляет собранные в грунте:

Все это по специальным каналам направляется к листьям, где и происходит соединение воды и микроэлементов с углекислым газом и солнечным светом.

Приготовленный столь сложным способом питательный раствор далее расходуется на развитие дерева, его рост и плодоношение. В процессе еще выделяется (как побочный продукт) кислород, без которого человек и животные существовать не могут.

Почему опадают листья?

Когда облетают деревья, то это свидетельствует о том, что они не способны больше поддерживать свои процессы жизнедеятельности в нормальном режиме. Падающие листья появляются не только с наступлением холодов, но и нередко во время сильной засухи. Причина в обоих случаях одна и та же — необходимость экономить ресурсы.

Лишь некоторые деревья научились в процессе эволюции сберегать крону, невзирая на экстремальные погодные условия. Так, например, эвкалипты разворачивают свои листья боком к солнцу, что предохраняет их от потери влаги.

Этот процесс всегда инициируется деревом. Дело обстоит так:

Описанный процесс универсален: так опадают листья практически у всех деревьев.

Почему не желтеют ели?

Почему желтеют и осыпаются листья с обычных деревьев, понятно. А чем особенны хвойные? Ели, сосны и другие представители хвойных, как и все деревья, также сбрасывают листву (иголки — это и есть листики). Однако этот процесс протекает вяло, постоянно и независимо от времени года. Потому он не бросается в глаза. Желтеть же им нет нужды, поскольку иглы почти не испаряют влагу.

Пожелтение листьев осенью это химическое явление потому что

Почему желтеют листья на деревьях осенью: Pixabay

Нетрудно понять, почему желтеют листья и вслед за этим опадают. Важность этого процесса для дерева переоценить невозможно. Не имей растение способности избавляться от листьев, оно наверняка бы погибло.

Узнавайте обо всем первыми

Подпишитесь и узнавайте о свежих новостях Казахстана, фото, видео и других эксклюзивах.

Источник

Молекулярные тайны осенних листьев

фото автора статьи

Автор
Редактор
Рецензент

Статья на конкурс «Био/Мол/Текст»: Иосиф Бродский писал: «Осень — хорошее время, если вы не ботаник». Однако многие ботаники и физиологи растений с этим не согласятся, ведь, говоря словами Николая Заболоцкого, «осенний мир осмысленно устроен». В природе ни одна смена года не проходит без удивительного каскада молекулярных реакций и биохимических процессов, и осень — не исключение. Погрузимся в тайные механизмы фотосинтеза и тонкую гормональную перестройку, чтобы проследить за всеми процессами, ответственными за яркие краски осени.

Пожелтение листьев осенью это химическое явление потому что

Конкурс «Био/Мол/Текст»-2020/2021

Эта работа опубликована в номинации «Свободная тема» конкурса «Био/Мол/Текст»-2020/2021.

Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

Пожелтение листьев осенью это химическое явление потому что

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Статья в изначальном виде была написана мной (Анной Вишневской) для сообщества «Биология» во «ВКонтакте» и опубликована там же: vk.com/@biovk-molekulyarnye-tainy-osennih-listev. Настоящая версия, поданная на конкурс, имеет доработки и правки.

Как известно, за цвет листьев отвечают пигменты. Это очень важные (в чем мы неоднократно убедимся) вещества различной природы, которые имеются не только у растений, но и у других организмов (в том числе у нас). Что-то красивое и разноцветное (рис. 1 и 2) не может закрепиться в процессе эволюции просто так, так что и пигменты нужны не для придания цвета, а для обеспечения особых физиологических функций. Именно поэтому их синтез и распад строго регулируются в зависимости от условий и потребностей организма. Разберемся в этом подробнее!

Пожелтение листьев осенью это химическое явление потому что

Рисунок 1. Желтеющий лист ореха маньчжурского (Juglans mandshurica)

фото автора статьи, сделано в Суворовском парке (Москва)

Пожелтение листьев осенью это химическое явление потому что

Рисунок 2. Пожелтевший лист ореха маньчжурского (Juglans mandshurica)

фото автора статьи, сделано в Суворовском парке (Москва)

А что там, внутри листьев?

Для того чтобы ответить на этот вопрос, нужно понять, какие красящие вещества (пигменты) в них обычно содержатся. Попробуем провести эксперимент, выделив, а затем разделив пигменты зеленого листа (рис. 3).

Пожелтение листьев осенью это химическое явление потому что

Рисунок 3. Хроматографическое разделение пигментов листа

Для начала разотрем листья в ступке, добавив 96%-ный спирт, который поможет разрушить остальные, не интересующие нас компоненты клетки. Эти ненужные компоненты мы обязательно отфильтруем (видео 1), чтобы получить чистую вытяжку (экстракт) пигментов.

Видео 1. Фильтрация экстракта листа

Пигменты — это химические вещества, поэтому для понимания эксперимента нам потребуются некоторые знания по химии. Вспомним одно важное правило из уроков химии: подобное растворяется в подобном. Так, в спирте как в полярном растворителе хорошо растворяются полярные вещества (например, хлорофиллы и некоторые каротиноиды), хотя на данном этапе работы там содержатся все пигменты, присутствующие в живом листе, в том числе и неполярные. Эти неполярные соединения можно легко отделить, используя неполярный растворитель (например бензин). Отделить можно и в пробирке, но для большей наглядности эксперимента мы возьмем фильтровальную бумажку (в лабораториях для более качественного разделения используют специальную хроматографическую бумагу или пластинки с нанесенным на них селикогелем). Капнув совсем немного полученной спиртовой вытяжки листа на бумажку (неподвижная фаза) (рис. 4), поставим ее в стакан, куда заранее мы налили неполярный растворитель (например, бензин или уайт-спирит) и где теперь содержатся пары неполярного растворителя.

Пожелтение листьев осенью это химическое явление потому что

Рисунок 4. Нанесение экстракта листа на хроматографическую бумажку

Пожелтение листьев осенью это химическое явление потому что

Рисунок 5. Хроматографическая бумажка в стакане с бензином. Видны разделившиеся пигменты.

Со временем пары бензина будут как бы «тянуть» то, что хочет раствориться в нем (неполярные соединения, например, каротины), вверх по бумажке (рис. 5). Адсорбирующие свойства бумажки также помогут физически разделить растительные пигменты, схожие по физико-химическим свойствам, но отличающиеся структурно.

Впервые подобный метод разделения пигментов зеленого листа применил русский ботаник-физиолог и биохимик растений Михаил Семенович Цвет в 1900 году. Этот метод спустя несколько лет был назван хроматографией. Хроматография позволяла разделить самые разные вещества: витамины, гормоны и многое другое, что в значительной степени расширило возможности их изучения. Именно благодаря этому методу ученому впервые удалось выделить в чистом виде ряд важнейших пигментов растения! Каких? Чтобы ответить на этот вопрос, посмотрим на результаты нашего эксперимента.

На хроматографической бумажке можно увидеть набор разноцветных полос (рис. 6), каждая из которых (в идеале) содержит один тип пигментов.

Пожелтение листьев осенью это химическое явление потому что

Рисунок 6. Результат хроматографического разделения пигментов листа (с использованием в качестве подвижной фазы уайт-спирита)

Наверняка вам сразу бросаются в глаза две зеленые полоски — они содержат хлорофиллы. Хлорофилл а по химической структуре отличается от хлорофилла b наличием метильной группы вместо альдегидной (рис. 7).

Пожелтение листьев осенью это химическое явление потому что

Рисунок 7. Структурная формула хлорофиллов а и b

схема автора статьи с использованием формул из «Википедии»

Это делает хлорофилл a менее полярным, поэтому он поднимается по нашей бумажке выше.

Есть и желтые линии разного оттенка — это каротиноиды. Существует две группы каротиноидов: ксантофиллы и каротины (рис. 8). Ксантофиллы в своем составе содержат кислород, поэтому являются полярными, а каротины кислорода не содержат, и поэтому неполярны.

Пожелтение листьев осенью это химическое явление потому что

Рисунок 8. Разнообразие каротиноидов

Все эти пигменты необходимы для важнейшего процесса в жизни растений — фотосинтеза. Фотосинтез — это мощнейший механизм в биосфере, позволяющий преобразовать солнечную энергию в энергию химических связей. Напомню, что фотосинтез можно разделить на световую и темновую (светонезависимую) фазы, причем обе из них идут только на свету! Световая фаза фотосинтеза включает в себя разнообразные процессы, главная цель которых — преобразование солнечной энергии в энергию химических связей (прежде всего АТФ и НАДФН+Н + ). Для того чтобы получить АТФ, нужно запустить работу фермента АТФ-синтазы, а для того чтобы получить НАДФН, необходимо восстановить НАДФ + (то есть дать ему электроны). В осуществлении всех этих процессов на мембранах тилакоидов внутри хлоропластов помогает электрон-транспортная цепь.

Пожелтение листьев осенью это химическое явление потому что

Рисунок 9. Электрон-транспортная цепь хлоропласта

Пожелтение листьев осенью это химическое явление потому что

Рисунок 10. Структурная организация фотосистемы I. Отмечен реакционный центр и цепь кофакторов, участвующих в переносе электрона внутри фотосистемы I. Зеленым показаны хлорофиллы; оранжевым — филлохиноны; желто-красным — три железосернистых кластера.

Перенос электрона начинается с того, что особые белки — фотосистемы (их в цепи переноса электрона две: фотосистема I и фотосистема II) — улавливают квант света. Именно тут перед любым фотосинтетическим организмом (а это может быть не только растение) встает нелегкая задача: уловить как можно больше света и использовать его энергию для переноса электрона. Для этого рядом с фотосистемами и внутри них существуют специальные антенные комплексы, которые содержат хлорофиллы и каротиноиды. Особую роль в фотосистемах играют так называемые реакционные центры, представленные димерами хлорофиллов (рис. 10). Именно от них и будет отделяться электрон, который побежит по переносчикам цепи и попадет на НАДФ + (существуют, однако и другие варианты транспорта электронов, но о них мы говорить не будем).

Хлорофиллы а и b, а также дополнительные пигменты каротиноиды выступают в качестве антенн (рис. 11), собирающих как можно большее количество энергии света.

Пожелтение листьев осенью это химическое явление потому что

Рисунок 11. Схематическая структура антенного комплекса фотосистем. Попадающие на молекулы пигментов фотоны переводят их в возбужденное состояние, и это возбуждение передается путем экситонного механизма и в конечном итоге достигает реакционного центра. В реакционном центре происходит разделение зарядов, и электрон начинает двигаться по ряду переносчиков.

Как нетрудно догадаться, зеленые хлорофиллы в осенних листьях разрушаются, и в этот момент листья приобретают цвет каротиноидов (рис. 12).

Пожелтение листьев осенью это химическое явление потому что

Рисунок 12. Лист клена платановидного (Acer platanoides)

фото автора статьи

Бывают, однако, и красные листья (тогда как красных пигментов в нашей хроматограмме мы не нашли). Красный цвет (рис. 13) обусловлен антоцианами, присутствие которых описанным методом обнаружить не получится потому, что антоцианы водорастворимы и, следовательно, не экстрагируются этанолом. К тому же их синтез у растений нередко связан с защитной функцией, но к этому мы еще вернемся.

Пожелтение листьев осенью это химическое явление потому что

Рисунок 13. Химия осенних листьев

Что заставляет листву менять цвет?

Для того чтобы ответить на этот вопрос, необходимо разобраться в том, благодаря каким сигналам и механизмам поддерживается работа хлоропластов и синтез фотосинтетических пигментов.

Гуляя в парке или по лесу, можно встретить листья, которые большей частью пожелтели, но на них остались зеленые пятна (рис. 14).

Пожелтение листьев осенью это химическое явление потому что

Рисунок 14. Лист клена платановидного (Acer platanoides), пораженного грибом ритисма кленовая (Rhytisma acerinum), выделяющим цитокинины

фото автора статьи

Чтобы понять, как синтезированные грибами цитокинины действуют на хлоропласты (ведь именно они придают растению их зеленый цвет), попробуем проследить за жизнью пластид в лаборатории.

Все пластиды растений, в том числе виновники исследований — хлоропласты, берут свое начало из недифференцированных пропластид. Когда растение только начинает прорастать из семени и находится под землей, пропластиды начинают дифференцироваться в особые пластиды — этиопласты. В этиопластах накапливаются липиды, чтобы, как только на такой этиопласт попадет свет, оперативно сделать тилакоиды и ламеллы. Накопленные липиды хорошо различимы под электронным микроскопом и называются проламеллярными телами (рис. 15).

Пожелтение листьев осенью это химическое явление потому что

Рисунок 15. Электронная микрофотография этиопласта гороха на ранней стадии светоиндуцированного превращения в хлоропласт. T — тилакоид; PLB — проламеллярное тело.

Когда маленький проросток показывается из земли, падающий на него свет запускает целый каскад физиологических процессов (все их объединяют словом «деэтиоляция»), в частности превращение этиопластов в хлоропласты.

Пожелтение листьев осенью это химическое явление потому что

Рисунок 16. Влияние цитокинина на ультраструктуру хлоропластов при деэтиоляции. Условные обозначения: Р — проламеллярные тела; pt — претилакоиды; th — тилакоидные мембраны; g — грана; st — крахмал. После трехдневного роста в темноте этиопласты и в контрольных растениях, и в растениях, к которым был добавлен БАП, содержат крупные проламеллярные тела (Р). На этой стадии у растений, к которым добавляли БАП, присутствуют также претилакоиды (pt). После шестичасового освещения в контроле проламеллярные тела начинают распадаться и образуются претилакоидные мембраны (pt), тогда как у растений, выращенных в присутствии БАП, к этому моменту уже не видно проламеллярного тела, а тилакоидные (th) мембраны полностью развиты. Спустя 12 часов освещения у этих растений образуется полностью функциональный хлоропласт с тилакоидными мембранами и укладкой грана (g), кроме того, начинают формироваться гранулы крахмала (st). У контрольных растений после двенадцатичасового освещения есть хорошо развитые тилакоиды, но нет явно выраженных гран и отсутствуют крахмальные гранулы.

Нетрудно заметить, как цитокинины позволяет хлоропластам добиться первенства в скорости их развития по сравнению с хлоропластами тех растений, которым цитокинин не добавляли! У растений под действием искусственного цитокинина тилакоиды начинают формироваться уже через 6 часов освещения, тогда как без них такую же картину можно увидеть только через 12 часов освещения.

Наверняка подобный эффект убедил читателей, что цитокинины участвуют в дифференцировке хлоропластов, и, сказать по правде, этот процесс гораздо сложнее, чем кажется. Так, цитокинины инициируют синтез белков, входящих в состав уже упомянутой фотосистемы II, запускают сплайсинг хлоропластной РНК, а также влияют на синтез хлорофилла (рис. 17).

Пожелтение листьев осенью это химическое явление потому что

Рисунок 17. Роль цитокинина в биосинтезе хлорофилла. Показана упрощенная схема биосинтеза хлорофилла. Он начинается с превращения глутамата в 5-аминолевулиновую кислоту и сопровождается образованием порфириновой структуры, в результате чего образуется протопорфириноген IX. Биосинтез хлорофилла продолжается с включением Mg в протопорфириноген IX, что в конечном итоге приводит к синтезу хлорофилла. Зеленым (слева) показаны гены, а синим (справа) — ферменты, катализирующие различные реакции синтеза хлорофилла. Стрелки указывают на соединения и ферментативные стадии пути биосинтеза хлорофилла, которые, как известно, находятся под влиянием цитокинина.

Кроме того, цитокинины индуцируют экспрессию генов апопластной инвертазы и гексозного транспортера. Зачем? Все предельно просто. Основной транспортной формой углеводов в растении является сахароза. Когда сахароза выходит из клетки (в апопласт), ее может разрушить имеющийся там фермент инвертаза. На что «развалится» сахароза? На фруктозу и глюкозу, а это — шестиуглеродные сахара, иными словами — гексозы. Их-то и хватает гексозный траспортер и заносит обратно в клетку. Получается, что такая система не дает продуктам фотосинтеза выходить из фотосинтезирующего органа. Подобный эффект называется аттрагирующим и препятствуют старению листа (рис. 18).

Пожелтение листьев осенью это химическое явление потому что

Рисунок 18. Модель регуляции старения за счет действия цитокинина и аттрагирующего эффекта

иллюстрация автора статьи по [5]

Как показывают исследования, осенью уровень этого гормона снижается, и его рецепция начинает падать, а значит, и количество заново синтезированных фотосинтетических пигментов, и аттрагирующий эффект постепенно сходят на нет.

Стоит отметить, что помимо цитокининов для синтеза хлорофиллов также необходим свет (для работы фермента протохлорофиллидоксидоредуктазы), а значит, с уменьшением длины светового дня хлорофилла будет синтезироваться все меньше и меньше.

Осень — это стресс

Вообще подобная смена времен года воспринимается растением как стресс. Снижение длины светового дня, понижение температуры, изменение водного обмена — все это так или иначе приводит к тому, что в листе запускаются механизмы старения и опадения (рис. 19).

Пожелтение листьев осенью это химическое явление потому что

Рисунок 19. Стареющие листья боярышника кроваво-красного (Crataegus sanguinea)

фото автора статьи

Стрессовый сигнал SOS! опять-таки связан с гормонами, прежде всего с повышением уровня абсцизовой кислоты (АБК) и этилена. Повышение уровня этих гормонов зависит в том числе от сигналов с фоторецепторов, участвующих в работе циркадных ритмов растений. Через ряд посредников (рис. 20) активируется биосинтез этих гормонов, а также повышается экспрессия генов белков, участвующих в передаче сигнала этилена (EIN3) и АБК (ABI5).

Пожелтение листьев осенью это химическое явление потому что

Рисунок 20. Молекулярная регуляторная сеть старения листьев, вызванного лишением света и уменьшением фотосинтетических функций. Соотношение красного и дальне красного света улавливается фитохромами (phy A и phy B).

иллюстрация автора статьи по [6]

Пожелтение листьев осенью это химическое явление потому что

Рисунок 21. Хлоропласты осенью превращаются в геронтопласты

Взаимодействие гормонов с рецептором приводит к каскаду реакций, запускающих распад хлорофилла, разрушение белков фотосинтеза и превращение хлоропластов в геронтопласты (рис. 21).

При этом разрушение всех пигментов зеленого листа начинается одновременно, но скорость их разрушения разная. Хлорофиллы разрушаются одними из первых, тогда как каротиноиды, придающие кроне ее золотой облик, делают это медленнее.

Пожелтение листьев осенью это химическое явление потому что

Рисунок 22. Формирования зоны отделения в черешке листа перед его опадением

учебник В.В. Полевого «Физиология растений»

Стоит отметить, что эти стрессовые гормоны также участвуют и в запуске опадения листьев. Интересно, что АБК был впервые обнаружен в качестве агента, который вызывает падение коробочек хлопчатника. Однако подобный эффект АБК чаще всего обусловлен недостатком воды. Основную роль в осеннем листопаде все же присваивают именно этилену. Для того чтобы листья опали, необходимо заложение отделительного слоя у основания черешка листа (рис. 22).

Этилен вызывает изменения в составе клеточной стенки, из-за чего происходит постепенное размягчение тканей в зоне отделения. Однако процесс закладки отделительного слоя зависит от баланса этилена с другим растительным гормоном — ауксином (рис. 23). Они в данном случае являются антагонистами.

Пожелтение листьев осенью это химическое явление потому что

Рисунок 23. Роль ауксина и этилена в опадении листьев

Plant Physiology (5th Edition), figure 22.20; рисунок адаптирован

Но в конце концов при высокой концентрации этилена черешок листа в этом месте становится настолько непрочным, что любое дуновение ветра срывает лист с дерева (рис. 24).

Пожелтение листьев осенью это химическое явление потому что

Рисунок 24. Листопад

В ответ на наступление осеннего периода синтезируются не только гормоны стресса (этилен и АБК), но и протекторные соединения — антоцианы. И наверняка большинство из вас видели красные литься клена (рис. 25) или боярышника.

Пожелтение листьев осенью это химическое явление потому что

Рисунок 25. Лист клена платановидного (Acer platanoides), содержащий антоцианы

фото автора статьи

Синтез ферментов синтеза антоцианов зависит от целого ряда транскрипционных факторов (из классов MYB, bHLH и WD40) [8], [9], которые в свою очередь регулируются самыми разнообразными сигналами, в том числе гормональными. Так, антоцианы могут вырабатываться в ответ на различные факторы внешней среды: недостаток воды, избыточное освещение, недостаток минеральных веществ (например фосфора), но при этом антоцианы порой синтезируются и без участия сигналов из окружающей среды. Этими веществами могут быть окрашены цветы, плоды и даже листья некоторых растений (вспомнить хотя бы красный лук) в отсутствие стрессовых факторов.

Считается, что антоцианы участвуют в тушении активных форм кислорода (АФК) (рис. 26), фотозащите, в проведении сигнала о стрессе и в других физиологических реакциях.

Пожелтение листьев осенью это химическое явление потому что

Рисунок 26. Предположительный механизм ослабления потока солнечной энергии (фотонов) и образования активных форм кислорода (АФК) благодаря антоцианам в красных пигментированных листьях базилика (Ocimum basilicum) сорта Red Rubin по сравнению с базиликом (Ocimum basilicum) сорта Tigullio, имеющим зеленые листья. Красный цвет антоцианов поглощает больше света, из-за чего на электрон-транспортную цепь хлоропласта (условно отмечены пигменты P680 и P700 в составе фотосистем II и I соответственно) падает меньше фотонов и вероятность образования АФК снижается.

Действительно, если присмотреться к деревьям, которые имеют красные листья (рис. 27 и 28), то можно заметить, что большинство таких листьев находится на верхушке кроны. А ведь именно там на листья падает самое большое количество света.

Пожелтение листьев осенью это химическое явление потому что

Рисунок 27. Крона клена платановидного (Acer platanoides)

фото автора статьи

Пожелтение листьев осенью это химическое явление потому что

Рисунок 28. Крона боярышника кроваво-красного (Crataegus sanguinea)

фото автора статьи

Из-за того что синтез хлорофилла нарушен, фотосинтетический аппарат не может работать в достаточном режиме, поэтому в большом количестве образуются активные формы кислорода (АФК). Антоцианы же выступают в роли антиоксидантов, снижая количество активных форм кислорода, и поглощают часть поступающего на лист света, как бы экранируя хлорофилл от него.

А вспомните ли вы, какого еще цвета бывают осенние листья? Наверняка многие в детстве собирали желуди и знают, как выглядит дуб. Осенью под этим деревом вы не найдете красных или желтых листьев, как, например, у клена: опавшие листья дуба коричневые (рис. 29).

Пожелтение листьев осенью это химическое явление потому что

Рисунок 29. Опавшие листья дуба черешчатого (Quercus robur)

фото автора статьи

Подняв голову вверх и посмотрев на крону, вы заметите, что листья у дуба не желтеют, а скорее коричневеют (рис. 30).

Пожелтение листьев осенью это химическое явление потому что

Рисунок 30. Осенняя крона дуба черешчатого (Quercus robur)

фото автора статьи

Подобная окраска листьев связана с накоплением в них совершенно других веществ — хинонов. Они образуются в листьях растения из веществ, известных многим как дубильные вещества, — танинов. Раньше дубильные вещества использовались при обработке шкур животных: дубильные вещества обладают способностью взаимодействовать с белком коллагеном в коже, что и делало изделия мягкими и долговечными.

Реакцию превращения танинов, имеющих фенольную природу, в хиноны, окрашивающие листья в коричневый цвет, катализирует фермент полифенолоксидаза (ПФО) (рис. 31).

Пожелтение листьев осенью это химическое явление потому что

Рисунок 31. Реакция, катализируемая ПФО

[11], с дополнениями автора статьи

ПФО имеется у многих растений, хотя ее физиологическая роль остается не до конца понятной. Она принимает участие в образовании некоторых вторичных метаболитов, снижении уровня АФК и защитных механизмах растений от патогенов.

Современная физиология растений лишь приоткрывает занавесу тайны игры молекул внутри разноцветных осенних листьев. Красота их, не раз вдохновившая поэтов, еще хранит много загадок, молекулярные механизмы и смыслы которых пока не раскрыты учеными. Но известное науке сейчас говорит о том, что самые привычные процессы могут быть весьма замысловаты и еще более красивы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *