Полуавтономные органоиды это что
Классификация двумембранных органоидов: описание, сходные признаки
Органоиды, расположенные внутри любой клетки, обеспечивают ее жизнедеятельность, служат механизмом для реализации возложенных функций. Каждый органоид имеет определенное строение и четкий набор структурных единиц. Исходя из этого органеллы живой клетки бывают одно-, двумембранные и не имеющие мембран. Несмотря на микроскопические размеры любой тканевой единицы – клетки, особенности ее строения постоянны, поскольку обеспечивают исполнение общеорганизменной нагрузки.
Что такое двумембранные органоиды
Самостоятельность клетки поддерживают двумембранные органеллы, процесс образования которых обусловлен делением существующих клеточных элементов. В двумембранных присутствует собственный геном, который характеризуется кольцевой формой и напоминает геном клетки бактерий.
Существует теория, что двумембранные органоиды имеют происхождение общее с прокариотами. Вступив в симбиоз с клетками-эукариотами, они «нашли себя» внутри последних. Это объясняет сходство внешней мембраны органелл двумембранной природы с таковой у эукариот, а внутренней – у прокариот. Факт также не противоречит гипотезе, утверждающей, что органоидная мембрана – не что иное, как оболочка пищеварительной вакуоли, имеющей специфическое название – фагосома.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Двумембранные органеллы существуют полуавтономно. Способность к делению – их вторая характерная особенность.
Клеточная система предусматривает существование немембранных органоидов. К ним относятся:
Типы органоидов
Участки цитоплазмы, отделенные от гиалоплазмы мембранами, которые могут располагаться одиночно или быть связанными друг с другом, именуются органоидами.
По наличию и количеству мембран они делятся на:
Как мембранные, так и немембранные органеллы, характеризуются определенным составом, имеют конкретные свойства и исполняют функции. Такие объемные зоны имеют иное название – компартменты. Их расположение внутри гиалоплазмы имеет определенные закономерности.
Комплекс Гольджи, лизомомы, пероксисомы, митохондрии, эндоплазматическая сеть – перечень органелл, отграниченных от гиалоплазмы мембраной, строение которой похоже на цитолеммы. Их жизнедеятельность связана с разделением либо слипанием (слиянием) мембран. Такие процессы характеризуются объединением исключительно идентичных слоев мембраны.
Наружный слой, расположенный на стыке с гиалоплазмой, идентичен цитолемме с внутренней стороны. Внутренний, граничащий с содержимым органеллы, аналогичен цитолемме с наружной стороны.
Виды двумембранных органоидов
Такие органеллы, как митохондрии, пластиды и ядро (у эукариот) имеют две мембраны. Митохондрии являются энергетическим источником для всей клетки, а пластиды играют главную роль в фотосинтезе. При этом, если хлоропласты, содержащие хлорофилл, являются непосредственным участником выработки кислорода на свету, то от хромопластов зависит окраска органов растений. Лейкопласты же накапливают крахмал.
Митохондрии интересны и тем, что содержат «личные» рибосомы и ДНК. С помощью них образовываются белки внутри органелл.
Для части микроорганизмов (к примеру, амебы) характерно наличие одной митохондрии. Вырабатываемой нею энергии хватает для жизнедеятельности простейшего. В то же время жировая ткань подкожной клетчатки не имеет их вообще, поскольку в ней не происходит энергетических процессов. Половые клетки (сперматозоиды) имеют несколько митохондрий, что обеспечивает их высокую подвижность. Большое количество этих органелл содержится в миофибрильном волокне. В таком случае говорят о митохондриальном ретикулуме – слившихся двумембранных органоидах.
Ядро внутри клетки – критерий деления их на прокариоты и эукариоты. Не содержащие ядра прокариоты хранят передающуюся по наследству генетическую информацию в определенном участке цитоплазмы, который имеет более плотную структуру. Выглядит это кольцеобразной плазмидой.
Эукариоты имеют органоид ядро, отграниченное от гиалоплазмы двумембранной оболочкой. Внутри ядра – генносодержащие структуры, которые при делении равномерно «раздают» наследственную информацию молодым клеткам.
Строение
Для описываемых органелл характерно наличие кольцевой нити ДНК, в которой содержатся гены. В них закодирована часть белков органоида. Вторая часть генной информации находится в ядре. Ее источником является цитоплазма, что объясняет причину невозможности существования митохондрий и пластид отдельно от клетки.
Слои мембраны органелл различаются по строению. Так, внешняя похожа на мембрану клеток, а внутренняя сходна с бактериальной мембраной, особенно с учетом ее липидного и белкового состава. За счет большого количества белков (в них велико содержание ферментов) в органеллах с помощью кислорода происходят интенсивные окислительные процессы и соответствующий синтез АТФ.
Чтобы ускорить эти процессы и сделать выработку АТФ интенсивной, природа предусмотрела увеличение площади внутренней мембраны за счет расположения ее волнами (кристами).
Мембраны в двухмембранных органеллах отделены одна от другой межмембранным пространством. Относительно митохондрий это – матрикс, в котором расщепляются аминокислоты, остатки углеводов, жирные кислоты.
Пластиды содержат не только наружную и внутреннюю оболочки, но и мембранные мешочки. Это не что иное, как впяченная внутрь внутренняя мембрана (научное название: тилакоиды и ламеллы). Источником образования пластид являются пропластиды, для которых свойственны взаимные превращения друг в друга.
Оболочка ядра как бы вытекает из эндоплазматической сети. Она характеризуется сложным составом и имеет много отверстий, называемых порами. Посредством пор обе оболочки мембраны сообщаются друг с другом. В то же время здесь содержатся особые пептиды, функцией которых является определение веществ, которые проникают внутрь из внутритканевой жидкости и выводятся наружу.
Функции
Кристы на внутренней оболочке митохондрий содержат дыхательные ферменты, а также ферменты, обеспечивающие синтез АТФ. Это – гарантия эффективного клеточного дыхания.
В сердечной мышце в несколько раз больше митохондрий, чем в ткани печени. Названные органеллы, находящиеся в клетках скелетных мышц, содержат во много раз больше крист, нежели митохондрии в тканях новорожденного ребенка.
Функции митохондрий в организме строго определены. Это:
Функции пластид обеспечиваются их строением. Хлоропласты, имея ровную наружную оболочку и массу крист на внутренней, локализуют в себе пигментные вещества. Важнейшее из них – хлорофилл. Он зеленого цвета в отличие от оранжевого ксантофилла и каротина.
Внутри хлоропласта находится строма, которая необходима для темновых реакций: синтеза глюкозы. Для этого используется воды и СО2. Строма содержит молекулы ДНК кольцевой формы, РНК, рибосомы и ферменты.
Пластиды также отнесены к полуавтономным органоидам, которые могут синтезировать белок. Способны делиться.
Исходя из вышеописанных особенностей строения ядра, схематически сформулировать его функции можно следующим образом:
Полуавтономные двумембранные органоиды
Органоиды, в которых содержатся «личные» ДНК, а также РНК и рибосомы, которые могут образовывать белок, относятся к полуавтономным. В их компетенции превращать Е в АТФ. Митохондрии и пластиды – непосредственные представители полуавтономных двумембранных органелл.
Все эукариотические клетки «укомплектованы» митохондриями. Они – незаменимые участники клеточного дыхания, способны накапливать энергию в виде АТФ-молекул, содержащих макроэргические связи. Все протекающие в клетке процессы происходят с затратой энергии, содержащейся в АТФ.
Митохондрии в состоянии менять форму, а также выбирать для своего расположения активные участки цитоплазмы. Это способствует концентрации органелл там, где энергетическая потребность в них выше.
Двумембранная оболочка имеет межмембранное пространство шириной 6-10 нм. Внутренняя часть располагается кристами, на которых протекают процессы клеточного дыхания. Это – неотъемлемая часть синтеза АТФ.
В митохондриях имеются и собственные белки, ферменты, РНК и кольцевые ДНК. Они располагаются в матриксе.
Пластиды имеются в растительных клетках. Внутреннее содержимое (строма) отделено от гиалоплазмы двумембранной оболочкой. В их характеристике важно то, что в пластидах содержится аппарат, синтезирующий белок. Поэтому органелла в состоянии запасать его для себя в достаточном количестве.
Современная классификация пластид следующая:
Сложная структура хлоропласта позволяет справиться с возложенной на органеллу серьезной функцией – фотосинтезом. Тилакоиды – развитая пузырьковая сеть мембран – собраны в граны. Строма содержит кольцевые ДНК, РНК, рибосомы, капли липидов и белки. Запасные полисахариды (крахмал) накапливаются здесь же, крахмальными зернами. Хлоропласты имеют размер 4-5 мкм, выглядят в виде дисков и содержат каротиноиды и хлорофилл. Клетка мезофилла может содержать 40-50 таких органелл.
Основной признак хромопластов – наличие пигмента. В них нет хлорофилла, но есть каротиноиды красного, желтого или оранжевого цвета. Для их образования расходуются хлоропласты, в которых разрушается хлорофилл, а содержащиеся структурные элементы приступают к синтезу каротиноидов. Такой процесс характерен для периода плодосозревания.
Третья разновидность пластид – лейкопласты – способны накапливать крахмал, в частности, амилопласты. Отдельные из них в состоянии образовывать белки и липиды, а также накапливать их внутри себя.
Присутствие света инициирует превращение лейкопластов в хлорополасты.
Клубень картофеля, в котором много лейкопластов, содержит много крахмала. Картофель, вынесенный на дневной свет, со временем зеленеет.
Органоиды клетки
Клеточная мембрана (оболочка)
Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную, жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз 🙂 У клеток животных имеется только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.
Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее. «Заякоренные» молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует в избирательном транспорте веществ через мембрану.
Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к ним рецепторы. Так, вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако, если рецепторов нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.
Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые по мере необходимости открываются и закрываются 🙂 Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой: через мембрану вещества поступают в клетку и удаляются из нее.
Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O, CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.
Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.
Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.
В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное пищеварение.
Клеточная стенка
Цитоплазма
Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.
Прокариоты и эукариоты
Немембранные органоиды
Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа. Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая в ядрышке.
Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек. Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.
Одномембранные органоиды
ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части (компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу, что нарушит процессы жизнедеятельности.
Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).
Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.
В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.
В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.
Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2 (пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы к серьезным повреждениям клетки.
Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление, придают клетке форму.
Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные органоиды на периферию.
Двумембранные органоиды
Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала дочерним клеткам.
Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы ДНК, связанные с белками.
Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.
В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.
Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК (находится в нуклеоиде), рибосомы.
Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.
Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал, в них активируется биосинтез каротиноидов.
Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать процесс фотосинтеза.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Полуавтономные органоиды: строение и функции. Теория симбиогенеза.
Полуавтономные органоиды- органоиды, содержащие собственные ДНК, все типы РНК, рибосомы, способные синтезировать белки, а также преобразовывать Е в ЕАТФ (синтез АТФ).
К таким органоидам относятся двумембранные органоиды: митохондрии и пластиды.
Митохондрии и пластиды способны к самовоспроизведению и никогда не образуются из других компонентов клетки. Вне клеток они существовать не могут.
Хлоропласты имеют зеленый цвет, обусловленный присутствием основного пигмента — хлорофилла.
Возможные пути деления митохондрий: при образовании перегородок или перетяжек
Функции:
согласно этой теории, митохондрии и хлоропласты произошли от симбиотических прокариотических организмов, захваченных протоэукариотом в результате фагоцитоза. Этот протоэукариот, о видимому, представлял собой амебоидный гетеротрофный, анаэробный организм с уже развитыми эукариотическими признаками.
Симбиоз большой анаэробной клетки (вероятно, относящейся к архебактериям и сохранившей ферменты гликолитического окисления) с аэробными бактериями оказался взаимовыгодным, причем бактерии со временем утратили самостоятельность и превратились в митохондрии
Потеря самостоятельности связана с утратой части генов, которые перешли в хромосомный аппарат клетки-хозяина. Но все же митохондрии сохранили собственный белоксинтезирующий аппарат и способность к размножению.
В пользу симбиотического происхождения митохондрий и хлоропластов говорят многие факты. Во-первых, их генетический материал представлен одной кольцевой молекулой ДНК (как и у прокариот), во-вторых, их рибосомы по массе, по строению рРНК и рибосомальных белков близки к таковым у аэробных бактерий и синезеленых. В-третьих, они размножаются как прокариоты и наконец, механизмы белкового синтеза в митохондриях и бактериях чувствительны к одним антибиотикам (стрептомицину), а циклогексимид блокирует синтез белка в цитоплазме. Кроме того, известен один вид амеб, которые не имеют митохондрий и живут в симбиозе с аэробными бактериями, а в клетках некоторых растений обнаружены цианобактерии (синезеленые), сходные по строению с хлоропластами.
15. Ядро: строение и функции. Организация генетического материала эукариотической клетки.
1. Хранение наследственной информации
2. Реализация наследственной информации
3. Воспроизведение молекулы днк
4. Передача информации дочерним клеткам при клеточном делении
Геном (совокупность наследственного материала, заключенного в клетке)каждой клетки несет информацию:
О первичной структуре всех белков всех клеток всего организма (последовательность аминокислот)
О первичной структуре примерно (последовательность нуклеотидов) 60 видов тРНК и различных рРНК (у эукариотов 4 вида)
О программе использования данной информации в разных клетках и разных моментах онтогенеза (онтогенез-индивидуальное развитие организма)
Хроматин или хромосомы (хроматин в неделящемся ядре, хромосомы-в митотическом)
Размер: от 1 мкм (простейшие) до 1 мм (в яйцеклетках рыб и земноводных)
Оболочка: внутренняя и наружная
Кариоплазма – желеобразный раствор, заполняет пространство между структурами ядра (хроматином и ядрышками)
Ядрышко не окружено мембраной, содержит фибриллярные белковые нити и РНК, исчезают в начале деления клетки и восстанавливаются после его окончания. В ядрышках происходит формирование рибосом, синтез ядерных белков. Образуются на участках перетяжек хромосом. участки хромосом, на которых происходит синтез рибосомных рибонуклеиновых кислот (рРНК
Хроматин- деспирализованная форма существования хромосом
ГЕТЕРОХРОМАТИН – участки хромосом, находящиеся в конденсированном (упакованном) состоянии в течение всего клеточного цикла. Таким образом, гетерохроматиновые участки в генетическом отношении являются практически неактивными.
ЭУХРОМАТИН – основная часть митотических хромосом, в которой локализована большая часть функциональных генов. Эухроматин претерпевает обычный цикл компактизации-декомпактизации во время митоза.
Хромосомы- органоиды ядра, являются носителями генов и определяют наследственные свойства клеток и организма.
Кариотип- совокупность полного набора хромосом, присущего клеткам данного биологического вида (понятие ввел Левитский в 1924)
Кариограмма – систематизированное изображение хромосом, расположенных в ряд по мере убывания их длины.
Организация генетического материала эукариотической клетки
Длина ДНК диплоидного набора хромосом человека составляет примерно 174 см., средняя длина ДНК одной хромосомы – 5 см. В ядре длина одной хромосомы составляет 0,5 – 1 микрон. Такая упаковка двойной спирали ДНК объясняется ее дальнейшей последовательной компактизацией.
Белковый кор (сердцевина) содержит набор из 4 пар гистоновых белковН2А, Н2В, Н3, Н4. Это самые консервативные белки в любом геноме. Они практически одинаковы у гороха и у человека.
Нуклеосомы связываются участками ДНК (линкерная ДНК) свободными от контакта с белковым кором.
Укладка линкерного участка ДНК (60-80 п.н.) и соединение нуклеосом друг с другом идут с помощью гистона Н1. Молекула этого белка имеет центральную (глобулярную) часть и вытянутые «плечи». Центральная часть прикрепляется к специфическому участку на поверхности кора, вытянутые «плечи» соединяют соседние нуклеосомы. При этом ДНК наматывается на соседние коры каждый paз в противоположном направлении
Выделить нуклеосомы можно непродолжительной обработкой хромосом ферментами дезоксирибонуклеазами. При этом расщепляются участки состыковки нуклеосом. В геноме человека содержатся 1,5 х 107 нуклеосом.
Нуклеосомный уровень повышает плотность упаковки ДНК в 7-10 раз.
2. Нуклеомерный уровень. Дальнейшая компактизация ДНК в составе хроматина связана с образованием нуклеосомных комплексов Образуется компактная хроматиновая фибрилла построенная либо по типу соленоида (спиральный тип укладки), либо по нуклеомерному типу (4-12 нуклеосом образуют глобулу).
Нуклеомерная укладка хроматина способствует укорочению нити ДНК примерно в 6 раз, а оба уровня приводят к компактизации ДНК в среднем в 50 раз (42-60).
3. Хромомерный уровень.
Следующий этап компактизации ДНК связан с образованием петлеобразных структур, которые называются хромомерами. При этом возможны два пути упаковки ДНК с помощью негистоновых белков:
Укорочение фибриллы на этом уровне происходит в среднем 25 раз, а на всех 3 уровнях в 1000-1500 раз.
5.Хромосомный уровень. Дальнейшая компактизация хромосом обеспечивается петельной укладкой хромонемной нити, что сокращает их длину примерно в 10 раз.