Полагают по определению что n

0! = 1? или почему факториал нуля равен единице

Давным давно, еще в классе 10-ом (лет 8 назад) я случайно обнаружил довольно нехитрое объяснение того, почему факториал нуля равен единице.

Я рассказывал про это многим учителям, но никого не торкнуло. Поэтому я просто выложу это знание здесь, а то вдруг кому-то пригодится или наведет на определенные мысли. Сразу скажу я не математик, наткнулся на это случайно, когда игрался с числами. Я тогда даже не знал что такое факториал 🙂

Для начала вспомним общую теорию:

Факториа́л числа n — произведение всех натуральных чисел до n включительно:

Полагают по определению что n

По определению полагают 0! = 1. Факториал определён только для целых неотрицательных чисел.

На самом же деле факториал нуля вполне вычислим!
Для этого нам нужно проделать простую последовательность обычных математических операций.

Попробуем в действии на примере факториала n = 4 (4! = 1 * 2 * 3 * 4 = 24)

На выходе получаем ряд чисел количество которых меньше на 1:

50 110 194
(110 — 50) (194 — 110)

В результате мы получаем факториал числа четыре.

Попробуем вычислить этим способом факториал 3 (3! = 1 * 2 * 3 = 6)

Берем четыре числа в степени 3 и вычисляем «пирамидальную разность» (сам придумал)

1 3 2 3 3 3 4 3
1 8 27 64
(8 — 1) (27 — 8) (64 — 27)

7 19 37
(19 — 7) (37 — 19)

Ну и для 1 попробуем (1! = 1)

Все очень просто и для нуля:

Берем n + 1 чисел в степени 0, тоесть достаточно и одного

Вуaля! Любое число в степени 0 равно 1. В этом, кстати, слабость моего способа, он использует определение.

Но тем не менее, я считаю, что это здорово 🙂

Источник

Полагают по определению что n

`|x_n-a| oo) x_n=a` (читается: предел `x_n` при `n`, стремящемся к бесконечности, равен `a`). Последовательность, называется сходящейся, если существует число `a`, являющееся её пределом. Если такого числа `a` не существует, то последовательность называется расходящейся.

Часто в определении предела полагают число `k` натуральным. Однако, как нетрудно понять, получится эквивалентное определение.

Полагают по определению что n

Пусть выбрано произвольное `epsilon>0`. Нам нужно найти такое число `k`, что при всех `n>k` выполнялось бы неравенство `|x_n-c| k` имеет место неравенство `|x_n-c| oo)x_n=c`.

В разобранном примере число `k` удалось выбрать так, чтобы оно годилось сразу для всех `epsilon`. Такой случай не типичен.

Доказать, что `lim_(n->oo)1/n=0`.

Могут ли два разных числа быть пределами одной и той же последовательности?

Пусть `lim_(n->oo)x_n=a`. Имеет ли предел последовательность `(x_(n+1))`?

Пусть `lim_(n->oo)x_n=a`, `epsilon>o`. Можно ли утверждать, что найдётся такое число `k`, что `|x_n-a| k`?

Да. Поскольку `lim_(n->oo)x_n=a`, то по определению предела для любого положительного числа `alpha`, а следовательно, и для `alpha=epsilon//2`, найдётся число `k`, такое что `|x_n-a|k`.

Сформулируем необходимое условие существования предела.

Если последовательность имеет предел, то она ограничена.

Доказать, что последовательность `x_n=(-1)^n` не имеет предела.

Предположим противное, т. е. какое-то число `a` является пределом этой последовательности. Тогда для `epsilon=1` найдётся такое число `k`, что `|x_n-a| k`. Пусть номер `N>k`, тогда `|x_N-a| oo)y_n!=0`). При этом

Ограничимся доказательством пункта 2. Фиксируем произвольное `epsilon>0`. Нам нужно показать, что существует такое число `k`, что `|x_ny_n-ab| k`. По теореме 2.1 последовательности `(x_n)` и `(y_n)` ограничены; тем самым найдётся такое `C>0`, что `|x_n| k_1`, а также число `k_2` такое, что `|y_n-b| k_2`. Если положить `k=max`, то при `n>k` имеем:

`|x_ny_n-ab| oo)cx_n=clim_(n->oo)x_n` для любого `cinR`.

В самом деле, рассмотрим последовательность `y_n=c`. Поскольку `lim_(n->oo)y_n=c` (пример 2.1), то по пункту 2 теоремы 2.2

Показать, что `lim_(n->oo) 1/(n^2)=0`.

Поскольку `lim_(n->oo) 1/n=0`, то по пункту 2 теоремы 2.2

`lim_(n->oo) 1/(n^2)=lim_(n->oo) 1/n*lim_(n->oo) 1/n=0`.

Теорему 2.2 можно обобщить на произвольное (конечное) число слагаемых (сомножителей). В частности, `lim_(n->oo)1/n^m=0` для любого `m inN`.

Обозначим дробь, стоящую под знаком предела, через `x_n`. В числителе и знаменателе `x_n` стоят последовательности, не являющиеся ограниченными (доказывается аналогично примеру 1.6). По теореме 2.1 они не имеют предела и теорема о пределе частного (теорема 2.2 3)) «напрямую» здесь неприменима. Поступим следующим образом: поделим числитель и знаменатель на наибольшую степень `n`. По формулам сокращённого умножения `(n+2)^3-n(n-1)^2=8n^2+11n+8`, так что `x_n` можно переписать в виде:

Теперь в числителе и знаменателе `x_n` стоят сходящиеся последовательности:

По пункту 3 теоремы 2.2

Следующее полезное свойство пределов известно под названием теоремы о «зажатой» последовательности.

Для данного `epsilon>0` существует такое число `k_1`, что члены `x_n` лежат в интервале `(a-epsilon, a+epsilon)` при всех `n>k_1`, и существует такое число `k_2`, что члены `z_n` лежат в интервале `a-epsilon;a+epsilon)` при всех `n>k_2`. Положим `k=max`. Тогда при `n>k` одновременно `x_n in(a-epsilon;a+epsilon)` и `z_n in(a-epsilon;a+epsilon)` и, следовательно, `a-epsilon oo)x_n=1`.

Попробуем «зажать» `x_n` между членами последовательностей, сходящихся к одному и тому же числу, и применим теорему 2.3.

`sqrt(n^2+n) 1/(n+1) iff n/(sqrt(n^2+n))>n/(n+1)`.

Учитывая `n/(sqrt(n^2+1)) oo)n/(n+1)=1` и `lim_(n->oo)1=1`, по теореме 2.3 `lim_(n->oo)x_n=1`.

Если для любого `n inN`, `n>=n_0` выполняется неравенство `a_n oo)a_n=a`, `lim_(n->oo)b_n=b`, то `a b`. По определению предела для `epsilon=(a-b)/2` найдутся такие `k_1`, `k_2`, что для `n>k_1` выполняется `|a_n-a| k_2` выполняется `|b_n-b| k` имеем `b_n oo)1/n=0`.

В теории пределов важную роль играет следующий факт.

Всякая монотонная ограниченная последовательность имеет предел.

Эта теорема эквивалентна свойству полноты множества действительных чисел. Образно говоря, свойство полноты означает, что числовая ось является «сплошным» множеством, множеством без «дырок».

Источник

Поятие степени с рациональным показателем

См. также Свойства степеней

См. также Таблица степеней

Основные свойства степеней

Свойства степеней (кратко)

Свойства степеней (с примерами)

1-е свойство степени
Любое число отличное от нуля в нулевой степени равно единице.
a0=1, если a≠0
Например: 1120=1, (−4)0=1, (0,15)0=1

2-е свойство степени
Любое число в первой степени равно самому числу.
a1=a
Например: 231=23, (−9,3)1=−9,3

11-е свойство степени
При возведении степени в степень степени перемножаются.
(an)m=an⋅m
Например: (23)2=23⋅2=26=64

Аблица степеней до 10

Мало кому удается запомнить всю таблицу степеней, да и кому это нужно когда ее так легко найти? Наша таблица степеней включает в себя как популярные таблицы квадратов и кубов (от 1 до 10), так и таблицы других степеней, которые встречаются реже. В столбцах таблицы степеней указываются основания степени (число, которое нужно возвести в степень), в строках – показатели степени (степень, в которую нужно возвести число), на пересечении нужного столбца и нужной строки находится результат возведения нужного числа в заданную степень. Существуют несколько типов задач, решаемых с помощью таблицы степеней. Прямая задача – это вычислитьn-ю степень числа. Обратная задача, которая так же может быть решена с помощью таблицы степеней, может звучать так: «в какую степень нужно возвести число a, чтобы получить число b?» или «Какое число в степени n дает число b?».

Источник

Врач объяснил, как расшифровать свои анализы на антитела к COVID-19

С результатами подобных анализов корреспондент «Российской газеты» обратилась к сертифицированному специалисту по физической реабилитации, члену Европейской ассоциации амбулаторной реабилитации Леониду Дьякову.

Антитела: иммунный ответ

Полагают по определению что n

Леонид Леонидович, в лаборатории люди получают результаты исследования, естественно, безо всяких комментариев. Их отправляют к врачам. Но к ним сейчас пробиться нелегко, да и не каждый рискует сидеть в очередях. В итоге человек мучительно вглядывается в непонятные обозначения, думает, плохо это или хорошо. Расскажите, что значит: «Антитела обнаружены».

Тест на антитела может показать, сталкивался ли человек с коронавирусом, даже если симптомов COVID-19 у него не было. Если антитела обнаружены, значит, организм среагировал на встреченный вирус. Они могут сохраняться, даже если самого вируса в организме уже нет. Этот тест говорит только о том, что произошел некий иммунный ответ.

Полагают по определению что n

Полагают по определению что n

Таким образом, выявление антител в крови является информативным свидетельством текущего или прошлого инфекционного процесса и помогает выявить стадию развития инфекции.

Обнаружение IgM указывает на недавнее инфицирование SARS-CoV-2. Они появляются непосредственно после контакта с носителем вируса, на третий-четвертый день. Через семь-десять дней они уже точно присутствуют в крови.

Потом они «стареют»?

Леонид Дьяков: Общий период вероятного выявления антител класса M не превышает двух месяцев. В течение этого времени IgM антитела постепенно полностью сменяются на IgG. Последние начинают формироваться в среднем на 21-й день.

Если еще есть IgM, и уже появились иммуноглобулины класса G, то это означает позднюю инфекцию. Просто IgM еще не сошли на нет.

Получается, наличие IgM не обязательно говорит об активной инфекции?

Леонид Дьяков: Да. Эти антитела могут выявляться и на стадии выздоровления.

Полагают по определению что n

Полагают по определению что n

Когда в крови выявляются только IgG, это говорит о том, что пациент выздоровел, и у него сформировался иммунитет к SARS-CoV-2. Если уровень IgG достаточно высок, то можно стать донором иммунокомпетентной плазмы. Например, IgG больше 40, а IgM больше 1,5, либо IgG больше 80, а IgM равно нулю.

То есть, если в крови выявлены обе группы антител, это означает, что человек уже выздоравливает?

Леонид Дьяков: Совершенно верно. Еще раз повторю: иммуноглобулины М говорят о том, что человек в данный момент болеет коронавирусом. Это не обязательно тяжелые формы, состояние может быть и бессимптомным. А иммуноглобулины G говорят о том, перенес ли он коронавирусную инфекцию в прошлом.

Далее, в графе «Дополнительная информация», вообще непонятная шифровка. А чем непонятнее, тем ведь страшнее. К примеру, вот передо мной результаты, переданные одним пациентом: «ОПсыв 0,0338; КП 1,45». Что кроется за этим?

От чего зависит количество антител в организме?

Лучше не болеть

Заразен ли человек, чей анализ мы расшифровываем?

Леонид Дьяков: По данному тесту нельзя определить, заразен ли еще человек. В принципе, с такими показателями, которые вы предоставили, пациент не заразен.

Полагают по определению что n

Полагают по определению что n

Но чтобы достоверно знать это, следует все же сдать еще мазок. Именно он покажет, выделяется ли вирус во внешнюю среду. Если он будет отрицательный, то человек стопроцентно не заразен. Без этой уверенности я бы рекомендовал соблюдение мер социальной дистанции и индивидуальной защиты даже в случае обнаружения только антител класса IgG.

А вы верите в то, что все должны переболеть, и тогда с эпидемией будет покончено?

Леонид Дьяков: В этом, конечно, есть логика. Но проблема в том, что вирус дает достаточно серьезные осложнения. И не все болеют в легкой или бессимптомной форме.

Люди, узнавшие что у них обнаружены антитела, начинают думать, когда же, где подхватили заразу. Вспоминают, когда болели. Может ли данный тест показывать антитела не только на COVID-19, но и на перенесенные другие ОРЗ или ОРВИ?

Леонид Дьяков: Исключено. Это специфичный тест именно на антитела к коронавирусной инфекции.

Человек припомнил, что сильно болел в феврале, ему было очень плохо. Мог тогда быть коронавирус?

Леонид Дьяков: Иммуноглобулин G с тех пор не сохранился бы.

То есть, носители антител могут, в принципе, радоваться, что переболели коронавирусом, практически не заметив этого?

Леонид Дьяков: Те, кто переболел легко или бессимптомно, вырабатывают низкий уровень иммуноглобулина G и могут заболеть повторно.

Чем тяжелее протекает заболевание, тем больше антител произведет иммунная система, и тем дольше они проживут в крови после болезни.

Полагают по определению что n

Полагают по определению что n

Однако есть информация, что сохраняются так называемые клетки памяти. Организм запоминает, как вырабатывать эти антитела, при каких условиях и в каком количестве. И в случае повторного контакта с вирусом организм начинает синтезировать IgG-антитела значительно быстрее, не за 21 день, а за три. И они способны «смягчать» течение заболевания, препятствовать развитию тяжелых осложнений.

Дышите глубже

Получается, что в принципе сдавать тест на антитела и не совсем нужно. Какая разница, болел человек или нет, если этого особо и не заметил, а никаких таких преимуществ наличие антител не дает. Все так же нужно предохраняться от заражения…

Леонид Дьяков: Мое личное мнение, если человек чувствует себя хорошо, особой надобности в тестировании нет. Ведь с тем же успехом можно поискать у себя вирус герпеса и другие.

Однако тестирование поможет решить проблему в более глобальном масштабе, выработать стратегию борьбы с коронавирусом, поскольку по количеству иммунных людей можно спрогнозировать, когда случится спад эпидемии.

Что делать тем, у кого обнаружены антитела класса IgM?

Леонид Дьяков: Если нет явных признаков заболевания, нужно побольше двигаться, гулять на свежем воздухе, дышать полной грудью, чтобы работали легкие, а кислород циркулировал в крови.

Все материалы сюжета «COVID-19. Мы справимся!» читайте здесь.

Источник

Предел последовательности. Свойства сходящихся последовательностей

Содержание:

Полагают по определению что n

Полагают по определению что n

Полагают по определению что n

Полагают по определению что n

Полагают по определению что n

Полагают по определению что n

Полагают по определению что n

Полагают по определению что n

Полагают по определению что n

Полагают по определению что n

Полагают по определению что n

По этой ссылке вы найдёте полный курс лекций по математике:

Отсюда следует, что добавление к последовательности конечного числа элементов или исключение из нее конечного числа элементов не влияет на ее сходимость и значение ее предела, изменяется лишь номер, начиная с которого все элементы последовательности попадают в выбранную ^-окрестность точки ft.

Пример 6.3. а:

Убедимся, что для (6.5) В силу очевидного неравенства 2+ (-!)» 3 п п примем N = [3/е]. Тогда при произвольном е > 0 для п > [3/е] будет выполнено условие в (6.7). в.

Предел последовательности

Свойства сходящихся последовательностей. В самом деле, при любом е > 0. Поэтому в (6.7) в качестве N можно выбрать любое натуральное число. Пример в.4. Проверим, что при а > 1 При предположим, что По определению логарифма, loga ап = п.

Отсюда Следствие 6.1. Сходящаяся последовательность, элементы которой знакопостоянны, не может иметь предел другого знака. В самом деле, если бы предел последовательности имел иной знак, то, согласно теореме 6.3, начиная с некоторого номера ее элементы приняли бы знак предела, что противоречит исходному условию. Пусть даны две последовательности <х„>и <уп>. Их суммой, произведением и частным называют последовательности <хп + Уп>, <х„у„>и <хп/у„>, а обратной к <у„>— последовательность <1>, причем последовательности <хп/уп>и <1 >определены лишь при условии уп ф 0 Vn € N. Ясно, что Теорема 6.4.

Если последовательности <хп>и <у„>сходятся соответственно к пределам а и 6, то Обозначим и выберем произвольное € > 0. Тогда: 1) для сходящихся последовательностей, по определению 6.3, что, согласно определению 6.3 предела последовательности, доказывает (6.10); 2) воспользуемся тождеством и с учетом (1.4) запишем по теореме 6.2 об ограниченности сходящейся последовательности и определению 6.2 ограниченной последовательности, для сходящихся последовательностей, согласно определению 6.3.

Ясно, что (6.10) и (6.11) нетрудно обобщить на любое конечное число слагаемых или сомножителей, если в их качестве •взять сходящиеся последовательности. Следствие в.2. При вычислении предела сходящейся последовательности один и тот же постоянный сомножитель в ее элементах можно выносить за символ предела.

Возможно вам будут полезны данные страницы:

В случае а = 1 результат очевиден, поскольку

Выполним предварительно тождественные преобразования а из (6.19) искомый предел равен 1/5. Пример 6.8. Введенные при доказательстве теоремы 6.4 величины Дяп = |а-яп| и Луп = |6-у„| можно рассматривать как абсолютные погрешности приближенных значений хп и уп соответственно величин а и Ь. Тогда полученные в ходе доказательства теоремы соотношения, приближенно заменяя в них а на |хп| и |6| на |уп|, можно использовать для оценки погрешностей, возникающих при суммировании, умножении, обращении и делении приближенных значений, а именно:

Наибольшая возможная (максимальная) погрешность алгебраической суммы равна сумме погрешностей слагаемых, т.е. Бели в качестве погрешностей слагаемых рассматривать ошибки округления, то значение Дтах(яп + Уп) наиболее чувствительно к погрешности наименее точного слагаемого. Поэтому, чтобы избежать лцшних вычислений, не следует сохранять в более точном слагаемом лишние значащие цифры.

Присылайте задания в любое время дня и ночи в ➔ Полагают по определению что nПолагают по определению что n

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *