Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Химия, Биология, подготовка к ГИА и ЕГЭ

Деление клеток — часть процесса жизни абсолютно любого живого организма. Все новые клетки образуются из старых (материнских). Это одно из основных положений клеточной теории. Но существует несколько видов деления, которые напрямую зависят от природы этих клеток.

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Деление прокариотических клеток

Чем отличается прокариотическая клетка от эукариотической? Самое главное отличие — отсутствие ядра (собственно поэтому так и называются). Отсутствие ядра означает, что ДНК просто находится в цитоплазме.

Процесс выглядит следующим образом:

репликация (удвоение) ДНК —> клетка удлиняется —> образуется поперечная перегородка —> клетки разделяются и расходятся

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Деление эукариотических клеток

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Жизнь любой клетки состоит из 3 этапов: рост, подготовка к делению и, собственно, деление.

Как происходит подготовка к делению?

Этот период подготовки к делению называется ИНТЕРФАЗА.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Амитоз

Прямое или бинарное деление клеток

Это самый экономичный (с точки зрения энергии) метод деления клеток.

Основные особенности:

При таком «неаккуратном» делении могут возникнуть многоядерные клетки. Логично, что при таком делении главное — количество новых клеток и скорость их образования, а не их «качество». Поэтому логично, что оно характерно либо для простейших одноклеточных организмов, либо для специализированных клеток — либо тех, которые потом должны погибнуть — кора у растений, при злокачественных процессах и т.д.

Митоз

Непрямое деление клеток, не половое деление

Это основной способ деления эукариотических соматических (клеток тела) клеток.

Выделяют 4 фазы митоза:

(под каждой фазой указана формула, где n — число хромосом, С — ДНК)

Профаза
(2n4C)

Метафаза

(2n4C)

(именно в этой фазе хромосомы лучше всего видны в световой микроскоп)

Анафаза
(4n4C)

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Обратите внимание, что митотическое деление клеток характерно для соматических клеток (неполовых, клеток тела) — у них изначально двойной — ДИПЛОИДНЫЙ набор хромосом. И в результате митоза образуются 2 новые клетки, каждая с таким же диплоидным набором.

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Митоз обеспечивает:

Очень часто в заданиях ЕГЭ просят указать количество хромосом и ДНК в каждой фазе.

Об этом подробно читаем >.

Источник

Строение клеток прокариот и эукариот: сходства и различия

Общее о строении клеток прокариот и эукариот

Прокариоты и эукариоты — что это?

Организмы одноклеточных и многоклеточных делятся на две категории — эукариоты и прокариоты.

Прокариоты или доядерные — это не такая большая категория организмов, как эукариоты, но более древняя по своему происхождению. К ним относятся бактерии сине-зеленые водоросли (цианобактерии). У них нет настоящего ядра и большинства органоидов, присущих цитоплазме.

Но у эукариот и прокариот есть свои особенности. Обратимся к сравнению клеток прокариот и эукариот, в частности, рассмотрим строение прокариотической и эукариотической клеток, а также обозначим различия прокариот и эукариот.

Сравнительная характеристика прокариот и эукариот

Характеристика клеток прокариот

При сравнении прокариот и эукариот важно подробно остановиться на строении.

Прокариотическая и эукариотическая клетки имеют разное строение. Строение клеток прокариот достаточно простое. Клетка прокариот не имеет ядра, ядрышка и хромосом. Клеточное ядро в этом случае заменяет нуклеоид. Он представляет собой похожее на ядро образование, без оболочки с одной кольцевой молекулой ДНК, которая связана с небольшим количеством белка. Также можно сказать, что это скопление белков и нуклеиновых кислот: они лежат в цитоплазме и не отделены от нее мембранами.

Последний момент является ключевым для деления клеток на прокариот и эукариот (доядерные и ядерные). Далее мы посмотрим сравнение эукариотических и прокариотических клеток в таблице.

В прокариотических клетках нет внутренних мембран — за исключением вмятин плазмолеммы. Исходя из этого получается, что органеллы прокариот немногочисленны: митохондрий, эндоплазматической сети, хлоропластов, лизосом, комплекса Гольджи. Все перечисленное есть в эукариотических клетках — там они окружены мембраной. Вакуоли также отсутствуют.

В прокариотических клетках есть только одна единственная органелла — это рибосома. Но здесь рибосомы мельче, чем у клеток эукариот.

Строение клетки прокариот характеризуется тем, что у клеток есть плотная клеточная стенка, которая их покрывает, и часто слизистая капсула.

Клеточная стенка состоит из муреина. Молекула муреина, в свою очередь, включает параллельно расположенные полисахаридные цепи: они сшиты друг с другом короткими цепями пептидов.

Плазматическая мембрана характеризуется тем, что у нее есть способность прогибаться внутрь цитоплазмы и образовывать, таким образом, мезосомы. На мембранах мезосом находятся окислительно-восстановительные ферменты, а фотосминтезирующие прокариоты имеют также соответствующие пигменты: бактериохлорофилл (бактерии) и фикобилины (цианобактерии). За счет этого мембраны получают возможность осуществлять функции, свойственные митохондриям, хлоропластам и другим органеллам.

Для прокариот характерно бесполое размножение. Оно происходит в результате простого деления клетки пополам.

Сравнительная характеристика клеток, представленных в таблице, поможет различать два типа клеток без каких-либо проблем.

Сравнительная характеристика прокариот и эукариот в таблице:

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Если посмотреть на сравнение клеток прокариот и эукариот в таблице, то становится понятно, в чем заключается их похожесть и отличия. В таблице прокариоты и эукариоты — это практически две разные клетки.

Кстати, сравнение клеток прокариот и эукариот в таблице в 9 классе уже необходимо уметь делать.

Сравнительная характеристика эукариот и прокариот будет неполной без анализа первых. Так что помимо сравнительной характеристики клеток в таблице нужно знать, что собой представляют эукариоты.

Характеристика клеток эукариот

Эукариотическая и прокариотическая клетки обладают разным составом.

Несмотря на то, что клетки эукариот включают те же структурные элементы, что и прокариотические клетки, строение клетки эукариот сложнее. К таким элементам относятся цитоплазма, клеточная стенка эукариот, плазмолемма.

Строение клеток эукариот характеризуется разделением на компартменты (реакционные пространства) при помощи множества мембран. В каждом из компартментов происходят разнообразные химические реакции — одновременно и независимо друг от друга.

Ниже представлены сведения об эукариотической клетке в таблице (сравнение клеток разных царств эукариот не приводим).

Строение эукариотической клетки в таблице, а точнее, в одной картинке:

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки​​​​​​​

Из таблицы строения эукариотической клетки понятно, насколько сложным оно является.

Главные функции в клетке выполняют ядро и различные органеллы, такие как митохондрии, комплекс Гольджи, рибосомы и др. Что касается ядра, пластид и митохондрий, то они отделены от цитоплазмы при помощи двухмембранной оболочки. Генетический материал содержится в ядре клетки.

Функция хлоропластов — улавливание солнечной энергии и преобразование ее в химическую энергию углеводов при помощи фотосинтеза.

Митохондрии получают энергию в процессе расщепления белков, углеводов, жиров и других органических соединений.

Эндоплазматическая сеть и комплекс Гольджи — это мембранные системы цитоплазмы эукариотических клеток. Их наличие обеспечивает нормальное осуществление всех жизненных процессов в клетке.

Лизосомы, вакуоли и пероксисомы отвечают за выполнение специфических функций.

Немембранное происхождение имеют хромосомы, рибосомы, микротрубочки и микрофиламенты.

Основной способ размножения эукариотических клеток — митоз.

Эта основная информация по сравнению прокариотической и эукариотической клетки. Отличия прокариот от эукариот в таблице наглядно видны.

Источник

Особенности деления прокариотических клеток: способы и механизмы клеточного деления

Особенности деления прокариотических клеток

Способы деления прокариотических клеток

Деление прокариотических клеток представляет собой процесс образования дочерних клеток прокариот на основе материнской клетки.

Есть 2 наиболее важных события, происходящих на протяжении жизненного цикла клеток прокариот. Это:

Практически всегда прокариотические клетки делятся так, что в результате образуются две одинаковые по размеру дочерние клетки. В некоторых случаях такой процесс называют еще бинарным делением или делением пополам.

В большинстве случаев прокариотические клетки характеризуются наличием клеточных стенок. Поэтому в результате бинарного деления образуется септа.

Септа — это определенная система перегородок, находящихся между дочерними клетками, имеющая свойство расслаиваться посередине.

В ходе деления различных бактериальных клеток наблюдаются определенные различия. Оригинальная система деления — система деления грамотрицательный бактерий. Этот механизм был открыт в результате исследований бактерий E. coli. У этих бактерий механизм деления нарушен. Внутри этих клеток можно наблюдать мутации, затрагивающие гены, которые и формируют механизм клеточного деления.

Происходит формирование определенных фенотипов:

Механизмы клеточного деления

Один из механизмов деления, характерных для прокариотических клеток — молекулярный. В этом механизме септальное кольцо или кольцевая органелла играют ключевую роль. Кольцевая органелла находится посередине клетки и способна сокращаться — так образуются перетяжки между двумя дочерними клетками.

Зрелое септальное кольцо — это сложный белковый комплекс. В него входит большое количество разнообразных белков.

Входящие в состав септального кольца белки бывают нескольких разновидностей:

У перечисленных белков есть своя неповторимая роль в процессе перераспределения генетической информации. Также все они выступают в качестве связующих звеньев в ходе деления клеток.

Функция септального кольца для многих белков все еще остается неопределенной.

Процесс формирования зрелой формы септального кольца характеризуется определенными особенностями.

После того как происходит деление, с помощью белка формируется спираль, прилегающая ко внутренней мембране. Эта спираль закручивается вдоль клеточной оси, постоянно меняет свое расположение и относительно быстро перемещается от одного полюса клетки к другому. Почти одновременно с этим завершается процесс репликации ДНК. Происходит захлопывание спирали и формирование Z-кольца посередине клетки.

Ученые считают, что Z-кольцо представлено короткой спиралью.

Следующий этап — созревание септального кольца. Этот процесс достаточно быстрый — продолжается от 14 до 21 минут. По истечении этого времени все ключевые белки присоединяются к Z-кольцу. Всего за 1-3 минут эти белки включаются в состав септального кольца.

До момента сборки септального кольца Z-кольцо отвечает за стимулирование синтезпептидогликана в центре клетки — в результате такого стимулирования клетка удлиняется.

Молекулярные основы описанного процесса все еще в полной мере не выяснены.

Белки, отвечающие за синтез полярных пептидогликанов включаются в септальное кольцо одними из последних. Одновременно с ними также включаются белки, обеспечивающие частичный гидролиз пептидогликана на границе раздела между клетками.

Завершает процесс клеточного деления формирование перетяжки и окончательное разделение двух дочерних клеток. Образование перетяжек имеет отношение ко всем компонентам клеточной оболочки: в частности, внутренней мембране, внешней мембране и слою пептидогликана.

Есть предположения, что Z-кольцо отвечает за инвагинацию внутренней части мембраны. Однако все еще остается непонятным механизм передачи напряжения на эту мембраны.

Одновременно с инвагинацией происходит синтез и преобразование пептидогликана септы с помощью ферментов септального кольца. Как только септа сформирована, в процесс деления клетки включаются ферменты пептидогликангидролазы, благодаря которым происходит отделение будущих дочерних клеток одна от другой.

Завершает процесс деления прокариотических клеток инвагинация и обособление внешних мембран дочерних клеток.

Из описанного выше ясно, что процесс деления клеток прокариот отличается собственными оригинальными чертами. Этот процесс называют прямым делением клетки или амитозом. Однако внутри такого деления происходят сложные преобразования белковых структур и реализация ДНК клетки.

Как вариант бинарного деления выступает почкование — многие рассматривают его как неравномерное бинарное деление. В результате почкования на одном полюсе материнской клетки формируется вырост или почка — в процессе роста она увеличивается. Как только эта почка достигает размеров материнской клетки, через некоторое время она от нее отделяется.

Прямым бинарным делением делятся клетки, дочерние клетки которых потом могут иметь довольно много морфологических и физиологических различий. Дочерняя и материнская клетки могут различаться, в том числе, своими размерами, однако генетический набор информации остается одинаковым и реализуется в последствии похожими принципами.

Такое деление дает возможность отслеживать процесс старения прокариотических клеток. Образованные в результате этого варианта деления дочерние клетки более жизнеспособные и лучше приспосабливаются к внешней среде.

Источник

Прокариоты. Строение, форма клеток, размножение, питание

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Прокариоты

К царству прокариот относятся организмы, которых обычно называют бактериями. Это — наидревнейшая группа, появившаяся примерно 3,5 млрд. лет назад; к тому же это и мельчайшие организмы, обладающие клеточной структурой. Свойства прокариот суммированы в табл. 2.2. Как правило, прокариоты представлены одиночными клетками, хотя сине-зеленые водоросли (цианобактерии, Cyanobacteria) могут образовывать цепочки клеток, называемые нитями.

Некоторые бактерии прилипают друг к другу, образуя характерные скопления, напоминающие гроздья винограда (рис. 2.10), однако объединившиеся клетки остаются абсолютно независимыми друг от друга. Индивидуальную бактериальную клетку можно увидеть только с помощью микроскопа, почему их и называют микроорганизмами. Наука, изучающая бактерий — бактериология — составляет важную ветвь микробиологии.

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Бактерии различаются по своим размерам: их длина колеблется от 0,1 до 10 мкм, а диаметр в среднем составляет — 1 мкм. Таким образом, в бактериальной клетке достаточно места, чтобы поперек нее уместилось 200 молекул глобулярных белков среднего размера (5 нм в диаметре).

Поскольку такие молекулы способны диффундировать примерно на расстояние 60 мкм в секунду, никаких специальных механизмов транспорта этим организмам не нужно.

Бактерий можно обнаружить повсюду: в почве, и в пыли, в воде и в воздухе, внутри и на поверхности животных и растений. Некоторые бактерии поселяются в горячих источниках с температурой 78 °С или выше. Другие способны выжить при очень низких температурах и даже пережить определенные периоды замораживания во льду. Встречаются бактерии и в глубоких расселинах на дне океана при очень высоком давлении и температуре 360 °С. С них начинаются уникальные пищевые цепи в этих областях океана.

Число бактерий невообразимо велико; установлено, что в одном грамме плодородной почвы содержится 2,5 млрд. бактерий; в 1 см 3 свежего молока их содержание может превышать 3 млрд. Вместе с грибами бактерии имеют жизненно важное значение для всех других организмов, поскольку, разрушая в результате своей жизнедеятельности органические вещества, они обеспечивают циркуляцию биогенных элементов в природе. Кроме того, они приобретают все более важное значение в жизни человека, и не только потому, что некоторые из них являются возбудителями различных болезней, но и потому, что в силу разнообразия протекающих в них биохимических реакций они могут использоваться во многих биотехнологических процессах.

2.3.1. Строение бактерий

На рис. 2.5 показано строение обобщенной бактерии — типичной прокариотической клетки. На рис. 2.6, А–Г изображена широко известная палочковидная бактерия Escherichia coli. Обычно она совершенно безвредна. Ее наличие в воде может использоваться в качестве очень надежного показателя загрязнения воды фекалиями. Из всех бактерий E. coli изучена лучше всего. Кроме того, это одна из бактерий, генетическая карта которых установлена полностью. Обратите внимание, что у E. coli намного меньше видимых внутриклеточных структур, чем в эукариотической клетке (рис. 5.10 и 5.11). На рис. 2.7 показана другая палочковидная бактерия, у которой в отличие от E. coli имеется жгутик.

Клеточная стенка

Клеточная стенка бактерий — структура довольно прочная и позволяет клетке сохранять свою форму; это обусловлено наличием в ней муреина — молекулы, построенной из параллельных полисахаридных цепей, перекрестно связанных через регулярные интервалы короткими цепями аминокислот. Таким образом, каждая клетка окружена как бы сетчатым мешком, представляющим на деле одну огромную молекулу. Клеточная стенка предохраняет клетку от разрыва при поступлении в нее воды (например, в результате осмоса). Ионы воды и малые молекулы попадают в клетку через мельчайшие поры в клеточной стенке.

В 1884 г. датский биолог Кристиан Грам разработал метод окрашивания, с помощью которого было установлено, что бактерии подразделяются на две естественные группы, что, как теперь стало известно, обусловлено различиями в строении их клеточной стенки. Одни бактерии, окрашивающиеся по Граму, получили название грамположительных, другие, не окрашивающиеся, — грамотрицательных.

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки Почему деление прокариотической клетки более простой процесс чем деление эукариотической клеткиПочему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

У грамположительных бактерий, таких как Staphylococcus, Bacillus и Lactobacillus в муреиновую сетку встроены другие компоненты, в основном полисахариды и белки, что делает клеточную стенку сравнительно толстой. У грамотрицательных бактерий, таких как Salmonella, E.coli и Azotobacter, клеточная стенка тоньше и имеет более сложное строение (рис. 2.8). Муреиновый слой у этих бактерий снаружи покрыт гладким тонким мембраноподобным слоем липидов и полисахаридов, защищающим клетки от лизоцима — антибактериального фермента, содержащегося в слезах, слюне и других биологических жидкостях, а также в белке куриного яйца.

Лизоцим расщепляет полисахаридный каркас муреина, что приводит к продырявливанию клеточной стенки и лизису клетки, т. е. к ее осмотическому набуханию и разрыву. Липидно-полисахаридный слой обусловливает также устойчивость грамотрицательных бактерий к пенициллину. Этот антибиотик блокирует образование перекрестных сшивок в муреине растущих грамположительных бактерий, что делает их клетки более чувствительными к осмотическому шоку.

Плазматическая мембрана, мезосомы и фотосинтетические мембраны

Как и у всех других организмов, живое вещество бактериальной клетки окружено полупроницаемой мембраной. По строению и функциям плазматическая мембрана бактериальных клеток не отличается от плазматических мембран эукариотических клеток (разд. 5.9). Она служит также местом локализации дыхательных ферментов, а у некоторых бактерий она образует мезосомы и(или) фотосинтетические мембраны.

Мезосомы— складчатые структуры, представляющие собой впячивания плазматической мембраны клетки (рис. 2.5). Во время клеточного деления мезосомы, по-видимому, ассоциируются с ДНК, что обеспечивает разделение двух дочерних молекул ДНК после репликации и способствует образованию перегородки между дочерними клетками.

У фотосинтезирующих бактерий в мешковидных, трубчатых или пластинчатых впячиваниях плазматической мембраны содержатся фотосинтетические пигменты (в том числе обязательно бактериохлорофилл). Сходные мембранные образования участвуют и в фиксации азота.

Генетический материал (бактериальная «хромосома»)

Бактериальная ДНК представляет собой одиночную кольцевую молекулу длиной около 1 мм (т. е. она значительно длиннее, чем сама клетка), состоящую примерно из 5 млн. пар оснований.

Суммарное содержание ДНК (геном), а следовательно, и количество закодированной в ней информации, в бактериальной клетке значительно меньше, чем в эукариотической: в типичном случае у бактерии ДНК содержит несколько тысяч генов, что в 500 раз меньше, чем в клетке человека (см. также табл. 2.2 и рис. 2.5).

Рибосомы

Рибосомы служат местом синтеза белков (см. табл. 2.2 и рис. 5.5).

Капсулы

У некоторых бактерий слизистые или клейкие секреты образуют капсулы; капсулы хорошо видны после негативного контрастирования (когда окрашивают не препарат, а фон). Иногда эти секреты служат для формирования колоний из одиночных бактерий. С помощью секретов бактерии приобретают способность прилипать к различным поверхностям, таким как зубы, частицы ила или скалы. Кроме того, капсулы обеспечивают дополнительную защиту для бактериальной клетки. Так, например, капсулированные штаммы пневмококков свободно размножаются в организме человека, вызывая воспаление легких, тогда как некапсулированные штаммы легко атакуются и разрушаются фагоцитами и поэтому совершенно безвредны.

Споры

Некоторые бактерии, главным образом относящиеся к родам Clostridiumи Bacillus, образуют эндоспоры (т. е. споры, которые располагаются внутри клеток). Споры представляют собой толстостенные долгоживущие образования, отличающиеся очень высокой устойчивостью, особенно к нагреванию, коротковолновому облучению и высушиванию. Локализация спор в клетке бывает различной и служит важным признаком для идентификации и классификации бактерий (см. рис. 2.10).

Жгутики

Многие бактерии подвижны, что обусловлено наличием у них одного или нескольких жгутиков. Жгутик — это простой полый цилиндр, образуемый одинаковыми белковыми молекулами.

Несмотря на волнистую форму, они довольно жестки (рис. 2.7). Подвижность бактерий достигается вращением основания жгутика; получается, что жгутик как бы ввинчивается в среду, не совершая беспорядочных биений, и таким образом продвигает бактерию за собой. В качестве примеров бактерий, имеющих жгутики, приведем Rhizobium (один жгутик) и Azotobacter (много жгутиков); обе бактерии участвуют в круговороте азота в природе.

Подвижные бактерии могут передвигаться в ответ на определенные раздражители, т. е. они способны к таксису. Аэробные бактерии, например, перемещаются в направлении увеличения концентрации кислорода в среде (проявляют положительный аэротаксис), а подвижные фотосинтезирующие бактерии плывут к свету (проявляют положительный фототаксис).

Жгутики лучше всего видны в электронном микроскопе при использовании метода напыления (рис. 2.7).

Пили

На клеточной стенке некоторых грамотрицательных бактерий видны многочисленные тонкие палочковидные выросты, которые называются пили, или фимбрии (рис. 2.7). Пили короче и тоньше жгутиков и служат для прикрепления к специфическим клеткам или поверхностям. Известны различные типы пилей, но наибольший интерес вызывают F-пили, участвующие в половом размножении (разд. 2.3.3).

Плазмиды

Помимо единственной молекулы ДНК, имеющейся у всех бактерий, у некоторых из них обнаруживается еще одна или более плазмид (рис. 2.9).

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Плазмида — это небольшая кольцевая молекула дополнительной ДНК, способная к саморепликации. Плазмида несет в себе всего несколько генов, обусловливающих повышенную выживаемость клеток. Некоторые плазмиды делают клетку устойчивой к антибиотикам.

Например, в клетках некоторых стафилококков содержится плазмида, несущая ген пенициллиназы — фермента, расщепляющего пенициллин.

В результате клетка оказывается устойчивой к пенициллину. Распространение таких генов при конъюгации находит важное применение в медицине. Известны и другие плазмидные гены, в частности гены,

2.3.2. Форма клеток

Форма бактериальной клетки является одним из важнейших систематических признаков. Четыре основных типа клеток приведены на рис. 2.10. На этом же рисунке указаны как полезные, так и болезнетворные бактерии.

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

2.3.3. Размножение

Индивидуальный рост и бесполое размножение

Соотношение поверхность/объем у бактериальных клеток очень велико, что способствует быстрому поглощению питательных веществ из окружающей среды за счет диффузии и активного транспорта. Поэтому в благоприятных условиях бактерии способны расти очень быстро. Рост бактериальных клеток в большой степени зависит от таких факторов среды, как температура, наличие питательных веществ, pH среды и концентрация ионов. Кроме того, облигатным аэробам необходим кислород, а облигатным анаэробам необходимо, чтобы его не было.

Достигнув определенных размеров, диктуемых соотношением объемов ядра и цитоплазмы, бактерии переходят к бесполому размножению путем простого деления, т. е. путем деления на две идентичные дочерние клетки (рис. 2.11).

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Клеточному делению предшествует репликация ДНК, причем до тех пор, пока процесс репликации не завершится, мезосомы могут удерживать ДНК в определенном положении (рис. 2.5 и 2.6, В). Мезосомы могут прикрепляться и к новым перегородкам, образующимся между дочерними клетками, участвуя каким-то образом в синтезе материала клеточной стенки. У самых быстрорастущих бактерий деление происходит через каждые 20 мин.

Половое размножение

В 1946 г. у бактерий было обнаружено половое размножение, но в самой примитивной форме. Гамет в данном случае не образуется, однако наиважнейшее событие полового размножения, а именно обмен генетическим материалом, происходит и в этом случае. Этот процесс называется генетической рекомбинацией. Генетическая рекомбинация впервые была обнаружена при изучении E.coli. В норме при наличии в среде достаточного количества глюкозы и неорганических солей E.coli сама синтезирует все необходимые ей аминокислоты. В результате облучения этих бактерий у них иногда возникают случайные мутации. Были выделены два типа мутантов: один, не способный синтезировать биотин (витамин) и аминокислоту метионин, и другой — не способный синтезировать аминокислоты треонин и лейцин. В среду, не содержавшую всех четырех факторов роста, помещали по 10 8 клеток каждого мутантного штамма. Теоретически клетки не должны были расти на этой среде. Однако все же было получено несколько сотен колоний (каждая колония возникает из одной исходной клетки), причем оказалось, что в таких клетках имеются все гены, необходимые для образования этих четырех факторов роста. Следовательно, в клетках каким-то образом произошел обмен генетической информацией, но выделить вещество, ответственное за этот процесс, в то время не удалось. В конце концов было установлено (при помощи электронного микроскопа), что клетки E.coli могут непосредственно контактировать друг с другом, т. е. у них может происходит конъюгация (рис. 2.12).

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Таким образом, при конъюгации происходит перенос ДНК между клетками в результате прямого контакта. Одна клетка в этом случае служит донором («мужская» клетка), другая — реципиентом («женская» клетка). Способность клетки служить донором определяется генами, содержащимися в особой плазмиде, называемой половым фактором или F-фактором (F от англ. fertility — плодовитость). В этих генах закодирован белок специфических пилей, называемых F-пилями или половыми пилями. F-пили участвуют в межклеточном контакте при конъюгации. Пили — структуры полые и предполагается, что именно по этим пилям осуществляется перенос ДНК от донора (F + ) к реципиенту (F – ).

Процесс этот показан на рис. 2.13.

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Hfr-штаммами (от англ. H — High — высокая, f — frequency — частота, r — recombination — рекомбинация), потому что донорная ДНК таких штаммов рекомбинирует с ДНК реципиента.

2.3.4. Питание

Питание — это процесс приобретения энергии и веществ. Основываясь на природе необходимого источника энергии или источника углерода — наиважнейшего элемента для роста, — живые организмы можно подразделить на несколько групп. Для синтеза органических соединений живые организмы способны использовать только два вида энергии: энергию света и энергию химических связей. Организмы, использующие световую энергию, называются фототрофами, а организмы, использующие только химическую энергию — хемотрофами. Фототрофы осуществляют фотосинтез.

Как уже говорилось, организмы разделяют также на автотрофные и гетеротрофные — в зависимости от того, какой источник углерода они используют: неорганическое соединение (диоксид углерода) или разнообразные органические вещества. Таким образом, можно выделить четыре типа питания (табл. 2.3). Среди бактерий встречаются представители всех четырех типов. Наибольшую группу образуют хемогетеротрофные бактерии.

Хемогетеротрофные бактерии

Бактерии этого типа получают энергию из поступающих с пищей химических соединений.

Они способны использовать огромное множество различных веществ. Среди хемогетеротрофных бактерий можно выделить три основные группы, а именно сапротрофы, мутуалисты и паразиты.

Сапротрофы представлены организмами, извлекающими питательные вещества из мертвого разлагающегося материала. Для разложения органического материала сапротрофы выделяют на него ферменты. Таким образом, переваривание пищи у них происходит вне организма. Образующиеся при этом растворимые продукты поступают в тело сапротрофа и там ассимилируются.

Мутуализмом (или симбиозом) называют любую форму тесной взаимосвязи между двумя живыми организмами, выгодной для обоих партнеров. Примером бактериального мутуализма может служить Rhizobium — бактерия, способная фиксировать азот и живущая в корневых клубеньках бобовых растений, например гороха и клевера, или Escherichia coli, обитающая в кишечнике человека и, вероятно, поставляющая человеку витамины группы B и K.

Паразитом называют любой организм, живущий внутри тела или на теле другого организма (хозяина), от которого он получает пищу и, как правило, убежище. Хозяевами могут служить представители самых различных видов, причем паразиты наносят ощутимый вред своим хозяевам. Паразиты, вызывающие болезни, называют патогенами. Некоторые из них приведены на рис. 2.10. Одни паразиты, называемые облигатными, могут жить и расти только в живых клетках. Другие, называемые факультативными, заражают хозяина, вызывают его гибель и затем живут на его остатках как сапротрофы. Паразиты отличаются чрезвычайной разборчивостью в пище, поскольку они нуждаются во «вспомогательных факторах роста», которые не способны синтезировать сами, но могут получать только от своих хозяев.

Фотоавтотрофные бактерии

Примерами фотоавтотрофных бактерий могут служить цианобактерии, называемые также сине-зелеными бактериями. Водоросли и растения также являются фотоавтотрофами. Все они осуществляют фотосинтез и используют углекислый газ (CO2) в качестве единственного источника углерода (табл. 2.3).

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Процесс фотосинтеза впервые появился у бактерий, возможно именно у цианобактерий. Как мы увидим далее, хлоропласты водорослей и наземных растений представляют собой, по-видимому, потомков некогда свободноживущих фотосинтезирующих бактерий, поселившихся в свое время в гетеротрофных клетках.

Цианобактерии широко распространены в поверхностных водах морей и пресных водоемов. Кроме того, они обнаружены в слизистых подушковидных образованиях на затененных почвах, на скалах, в иле, на древесине и в некоторых живых организмах. Большинство цианобактерий представлены одиночными клетками, хотя некоторые из них объединяются, образуя покрытые слизью нити, например Anabaena и Spirulina. В отличие от большинства бактерий они, подобно водорослям и растениям, способны к фотосинтезу, а, следовательно, и к выделению кислорода из воды. На рис. 2.14 показано строение типичной цианобактерии Anabaena.

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Как видно из рисунка, толщу цитоплазмы характерным образом пронизывают фотосинтетические мембраны, на которых располагаются фотосинтетические пигменты. Пигменты представлены хлорофиллом а, похожим на пигмент растений и водорослей, и специфическим сине-зеленым пигментом фикоцианином. Клетки цианобактерий, как правило, крупнее клеток других бактерий. Способность цианобактерий выделять кислород в процессе фотосинтеза, наличие у них фотосинтетических мембран, и хлорофилл а свидетельствуют о том, что цианобактерии вполне могут быть эволюционным звеном между остальными бактериями и эукариотами.

Некоторые цианобактерии, такие как Anabaena, способны фиксировать азот. Иными словами, они способны превращать содержащийся в воздухе газообразный азот в аммиак, который затем может быть использован для синтеза аминокислот, белков и других азотсодержащих органических соединений. Этот процесс происходит в специализированных клетках, называемых гетероцистами, которые образуются при недостатке азота. Гетероцисты экспортируют содержащиеся в них азотистые вещества в соседние клетки в обмен на другие питательные вещества, например углеводы.

Хемоавтотрофные бактерии

Эти организмы чаще называют хемосинтезирующими бактериями. В качестве источника углерода они используют CO 2 (диоксид углерода), но энергию получают в результате химических реакций. Высвобождение необходимой энергии происходит при окислении таких неорганических веществ, как аммиак и нитриты. Некоторые хемоавтотрофные бактерии играют важную роль в круговороте азота, участвуя в процессе, называемом нитрификацией. Процесс нитрификации протекает в две стадии. На первом этапе аммиак окисляется до нитрита, что сопровождается выделением энергии. Этот этап осуществляется такими, например, бактериями, как Nitrosomonas. На втором этапе образовавшийся нитрит окисляется до нитрата с высвобождением дополнительной энергии. Этот этап осуществляется, например, Nitrobacter

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

2.3.5. Рост популяции бактерий

2.1. Рассмотрим ситуацию, когда одиночная бактериальная клетка помещена в питательную среду и находится в условиях, оптимальных для роста.

Перепишите табл. 2.4 и заполните ее, исходя из предположения, что эта клетка и все ее потомки делятся каждые 20 мин.

На основе данных заполненной вами таблицы постройте графики.

По вертикальной оси отложите число бактерий (кривая А) и десятичный логарифм этого числа (кривая Б), а по горизонтальной оси — время.

Что можно сказать о форме этих кривых?

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Когда число клеток увеличивается, как видно из заполненной вами табл. 2.4, говорят о логарифмическом, экспоненциальном или геометрическом росте. В этом случае мы получим экспоненциальный ряд чисел. Это гораздо легче понять, если посмотреть на строку В в табл. 2.4, где число бактерий выражено в виде числа 2, возведенного в соответствующую степень. Показатель степени можно назвать логарифмом или экспонентной числа 2.

Логарифмы, или экспоненты, образуют линейный ряд 0, 1, 2, 3 и т. д., соответствующий числу генераций.

Вернемся к табл. 2.4; вместо чисел, расположенных в строке А, можно записать их логарифмы по основанию 2 следующим образом:

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

Почему деление прокариотической клетки более простой процесс чем деление эукариотической клетки

1. Во время лаг-фазы бактерии адаптируются к новой среде обитания, и поэтому рост пока еще не достигает максимальной скорости. В этот период у бактерий могут, например, синтезироваться новые ферменты, необходимые для усвоения тех питательных веществ, которые содержатся в новой среде.

2. Логарифмическая фаза — это фаза, когда бактерии растут с максимальной скоростью, число клеток увеличивается почти экспоненциально, а кривая роста представляет собой практически прямую.

3. В конце концов рост колонии начинает замедляться, и культура входит в стационарную фазу, когда скорость роста равна нулю и когда резко возрастает конкуренция за пищевые ресурсы. Образование новых клеток замедляется, а затем совсем прекращается. Увеличение числа клеток компенсируется одновременной гибелью других клеток, поэтому число жизнеспособных клеток остается постоянным (табл. 2.5). Переход к этой фазе обусловлен действием нескольких факторов: снижением концентрации питательных веществ в среде, накоплением токсичных продуктов метаболизма, а в случае аэробных бактерий и уменьшением содержания кислорода в среде.

4. Во время последней фазы — фазы замедления роста — ускоряется гибель клеток и прекращается их размножение.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *