Структура арм специалиста по диагностике эсуд авто

Структура арм специалиста по диагностике эсуд авто

Структура арм специалиста по диагностике эсуд авто

На сегодняшний день практически все выпускаемые двигатели внутреннего сгорания оборудованы электронной системой управления (ЭСУД). Автопроизводители уделяют особое внимание этой системе, так как добиться высокой мощности двигателя при одновременном снижении расхода топлива и выполнении жестких экологических требований возможно только с помощью очень точного и своевременного дозирования топлива и эффективного поджигания топливно-воздушной смеси на всех режимах работы двигателя.

Устройство ЭСУД усложняется с каждым годом, увеличивается число элементов, совершенствуются алгоритмы управления работой двигателя. Но в конструктивных элементах ЭСУД, как и в любой другой системе автомобиля, в процессе продолжительной эксплуатации неизбежно возникают различные отказы и неисправности. Происходит изменение электрических характеристик, нарушение регулировок, потеря работоспособности датчиков, их разъемов, предохранителей и проводов. Это приводит к существенному ухудшению работы двигателя и при несвоевременном устранении возникающих в ЭСУД неисправностей к полной потере им работоспособности.

Отсутствие в настоящее время обоснованных режимов технического обслуживания (ТО) электронных систем управления двигателем приводит к снижению эксплуатационной надежности и значительным затратам на поддержание этих систем в технически исправном состоянии.

В ходе выполненных исследований эксплуатационной надежности электронных систем управления двигателей 1.6 VTi Tiptronic (88 кВт), 1.6 THP Turbo Tiptronic (110 кВт) автомобилей марки Peugeot были выявлены элементы с наиболее часто возникающими отказами и неисправностями (рис. 1).

Как видно из рис. 1, наиболее распространенной неисправностью данной ЭСУД является отказ электронного термостата (20 %). Этот дефект связан с низким качеством материала, применяемого в качестве уплотнителя датчика температуры охлаждающей жидкости, встроенного в термостат. Неисправность устраняется заменой термостата, либо установкой отдельного датчика температуры вместо штуцера прокачки системы охлаждения.

Структура арм специалиста по диагностике эсуд авто

Рис. 1. Диаграмма распределения основных неисправностей электронных систем управления двигателей 1.6 VTi Tiptronic (88 кВт), 1.6 THP Turbo Tiptronic (110 кВт) автомобилей марки Peugeot: 1 – электронный термостат (20 %); 2 – свеча зажигания (15 %); 3 – электромагнитный клапан системы изменения фаз газораспределительного механизма (ГРМ) (10 %); 4 – катушка зажигания (8 %); 5 – форсунка (4 %); 6 – электронная дроссельная заслонка (8 %); 7 – кислородный датчик (10 %); 8 – электронасос охлаждения турбокомпрессора (5 %); 9 – электроклапан управления давлением наддува (5 %); 10 – электроклапан аварийного сброса давления наддува (2 %); 11 – каталитический нейтрализатор (5 %); 12 – датчик давления наддува (4 %); 13 – электродвигатель системы изменения подъема клапанов ГРМ (4 %). Неисправности кислородных датчиков (10 %) и каталитического нейтрализатора (5 %) вызваны низким качеством используемого топлива

На отказы свечей зажигания приходится 15 % от общего количества отказов. В большинстве случаев отказ свечей связан с использованием топлива низкого качества либо нарушением периодичности проведения ТО.

Электромагнитный клапан системы изменения фаз газораспределения (10 % отказов) предназначен для регулирования давления масла, подаваемого на фазорегулятор распределительного вала. Отказ данного элемента зачастую связан с его загрязнением металлическими частицами, содержащимися в моторном масле.

Для поддержания ЭСУД в работоспособном состоянии необходимо соблюдать определенные условия эксплуатации электронных элементов. Электронные компоненты, жгуты проводов и контакты необходимо поддерживать в технически исправном состоянии. Разъемы датчиков должны быть без следов коррозии, проводка – чистой, чтобы обеспечить передачу сигналов к электронному блоку управления (ЭБУ) без искажений и др.

Кроме рассмотренных выше неисправностей электронной части работоспособность системы управления двигателем зависит от состояния механических и гидромеханических элементов. Некоторые нарушения технического состояния двигателей или регулировок в его системах вызывают неисправности, ошибочно принимаемые за неисправности элементов системы управления двигателем. Это может быть связано с уменьшением давления в конце такта сжатия, подсосом воздуха, ограничением проходимости системы выпуска, нарушением фаз газораспределения, низким качеством используемого топлива, несоблюдением периодичности проведения технического обслуживания [1].

Электронный блок управления современным двигателем представляет собой цифровой микропроцессор с функцией самодиагностики (рис. 2). При работе двигателя ЭБУ постоянно опрашивает все датчики, исполнительные устройства и при появлении неисправности заносит в свою память код (от двузначного до пятизначного), соответствующий неисправности данного вида.

В результате выполненных исследований эксплуатационной надежности ЭСУД были выявлены основные неисправности этой системы, признаки их возникновения, а также влияние этих неисправностей на работу двигателя (таблица).

Структура арм специалиста по диагностике эсуд авто

Рис. 2. Структурная схема электронного блока управления двигателем

Источник

Структура арм специалиста по диагностике эсуд авто

© А.Пахомов (aka IS_ 18 )

Этот сакраментальный вопрос возникает перед всяким, кто решил посвятить себя авторемонту, автомобильной диагностике и чип тюнингу. Вопрос достаточно сложный. Попробуем рассказать, что для этого нужно.

Диагност

Структура арм специалиста по диагностике эсуд автоОсновные требования к кандидату в автодиагносты – желание, возможность и способность к самообучению, достаточные (в идеале – глубокие) знания теории ДВС, умение разбираться в электрооборудовании, свободно читать электросхемы, умение пользоваться компьютером, электронными базами и другой справочной литературой, диагностическими приборами, оборудованием, приборами. Приветствуются знания электроники и «умение паять».

Вы должны четко представлять себе специфику данной «отрасли»: в автомобиле, где все взаимосвязано, нельзя ограничить себя чем-то одним, подчас многие неисправности напрямую не связаны с системой впрыска. Диагност должен на «отлично» знать мотор изнутри, быть хорошим автоэлектриком, знать системы впрыска как современные, так и более ранних версий. В этой профессии, как и во многих других, знаний не бывает много. Не последнее место занимает умение аккумулировать и применять полученный опыт.

Предположим, все это у Вас есть (фантастика!), теперь нужно составить необходимый набор оборудования. Конечно, все и сразу приобрести довольно тяжело, но постепенно Вы сами придете к выводу, что без хорошего инструмента – не жизнь 🙂

Обучение

Где можно освоить профессию автодианоста? К сожалению, практически нигде. Многочисленные курсы, как правило, организуются для получения прибыли, а не для реального обучения. Результат практически такой же, как обучение вождению автомобиля в автошколе, цель – получить права, а дальше – естественный отбор. Наш сайт может предложить Вам «заочное» обучение азам автодиагностики – уникальные, не имеющие аналогов, видеокурcы для начинающих «Обучение диагностике автомобиля». Подробнее.

Оборудование

Какое оборудование необходимо на диагностическом участке? Попробуем ответить на этот вопрос.

Сразу оговорюсь, что методы диагностики на слух и на глаз не считаю приемлемыми в современных условиях. Отнюдь не умаляя роли человека в диагностическом процессе, напротив, считая специалиста ключевым звеном, без которого в принципе невозможно добиться сколько-нибудь заметного результата, я все-таки продолжаю считать качественное оснащение участка оборудованием совершенно необходимым.

Причин для этого три. Во-первых, на дворе 21 век. Век электроники, компьютеров и других умных систем. И диагностика двигателя внутреннего сгорания дедовскими методами, основанными на органах чувств и интуиции человека, выглядят сегодня попросту курьезно.
Во-вторых, разборчивость потребителей услуг автосервиса стала в последнее время значительно выше. Появляется все больше людей, готовых платить деньги за качественный профессиональный ремонт. И это справедливое требование времени и экономической ситуации. В‑третьих. Успешность работы участка диагностики не может и не должна зависеть от субъективного восприятия ситуации диагностом. Человек – одновременно самое сильное и самое слабое звено любого процесса. Он может быть утомленным или с похмелья, может болеть или попросту быть в отпуске. На место отсутствующего должен встать другой и продолжить эту же работу. И если первый чувствует состав смеси на нюх, то что делать второму, если нет газоанализатора?! Еще раз оговорюсь: я считаю специалиста с его знаниями и интуицией важнейшим звеном, но роли диагностического оборудования в производственном процессе тоже придаю должное значение.

Итак, комплектуем участок диагностики. Прежде всего следует знать, что из всех типов диагностических приборов можно выделить три основные группы. Эти группы – основа основ, это то, без чего грамотный поиск неисправности превращается в тупой процесс, основанный на методе подмены. И если на отечественных автомобилях этот метод еще прокатывает, то при работе с иномарками он невозможен по определению. На участке диагностики совершенно необходимо иметь хотя бы по одному представителю этих трех групп. Назовем их:

Рассмотрим каждую подробнее.

Сканеры

Система управления современного двигателя, отвечающего строгим нормам токсичности, в качестве главного своего элемента содержит электронный блок управления (ЭБУ). Так вот сканер предназначен именно для работы с ЭБУ, для его «сканирования». Вспомним, по какой схеме функционирует блок. Он получает информацию о текущем состоянии двигателя с установленных на последнем датчиков, обрабатывает ее в соответствии с заложенной программой и выдает управляющие сигналы на так называемые исполнительные механизмы (ИМ). Кроме того, ЭБУ наделен способностью обнаруживать сбои в работе системы управления. А так как сканер работает с блоком, то он позволяет нам:

Следует совершенно четко понимать, что показания сканера – это то, что «видит» ЭБУ.
Это отнюдь не истинные значения напряжений или других параметров. Если по какой-либо причине (например, плохая «масса») датчик врет, то на экране сканера мы увидим это самое вранье. Кстати, про массы полезно почитать здесь. Другими словами, сканер не является измерительным прибором. Он всего лишь отображает данные с ЭБУ, нужно это понимать и относиться к получаемой информации соответствующим образом. Точно так же осторожно следует относиться к считанным кодам неисправностей. Эти коды – не руководство к замене, а лишь пища для дальнейших размышлений и поиска. Пример: ошибка датчика кислорода, богатая смесь. Менять? Ни в коем разе. Надо искать причину богатой (бедной) смеси. А ошибка «Обрыв датчика детонации» на системах Бош уже вошла в легенды. Что касается разновидностей сканеров, то их по большому счету две: портативные и программные, работающие совместно с персональным компьютером. И тот и другой тип имеют как свои преимущества, так и недостатки. Выбирать Вам. Подробную информацию о конкретном приборе можно найти на сайте компании-разработчика. Для работы программного сканера вам понадобятся:

Следует добавить, что протоколы обмена между сканером и ЭБУ у разных автопроизводителей отличаются, поэтому, если Вы занимаетесь иномарками, то будете вынуждены покупать несколько сканеров либо один универсальный, но за универсальность придется платить меньшими возможностями прибора.

Мотортестеры

Это совершенно другой тип диагностического оборудования. Мотор-тестер – это как раз и есть измерительный прибор. Предоставляемая им информация снимается непосредственно с двигателя и позволяет найти неисправности, недоступные сканеру. Это формы напряжения и токов датчиков и исполнительных механизмов, это и осциллограммы высокого напряжения, и осциллограммы давления в цилиндрах, давления топлива, и возможность проверить баланс цилиндров, померить стартерный ток, УОЗ и многое другое. Рассмотрим это подробнее.

Как всем известно, в цилиндрах двигателя под воздействием искры происходит воспламенение и сгорание топливно-воздушной смеси. Наблюдать и оценивать этот процесс непосредственно (зрительно или как-то еще) невозможно. Но оценить его косвенно очень даже легко. Для этого в мотортестерах предусмотрена возможность снятия осциллограмм вторичного (высокого) напряжения. На форму этих осциллограмм влияет буквально все: состояние катушки зажигания, ВВ-проводов, свечных наконечников, свечей, компрессии, состояние клапанов, состав смеси и даже неисправность ЭБУ. Как научиться извлекать ценнейшую информацию из формы вторичного напряжения, замечательно описано на сайте производителя мотортестера «МотоDoc». Кроме того, очень интересные примеры осциллограмм, снятых на двигателях с дефектными узлами и элементами, можно посмотреть тут или тут.

Еще один очень информативный график, предоставляемый мотортестером, – давление в цилиндре при работе двигателя. Для этого свечной наконечник интересующего нас цилиндра подключается на разрядник, свеча выворачивается, а на ее место устанавливается датчик давления. Полученный в результате измерений график позволяет сделать заключение:

Согласитесь, список внушительный. Одна только правильность установки фаз чего стоит. Вручную эта операция делается долго и трудно, а с помощью мотортестера все решается без усилий в течение пяти минут.

С этой же самой помощью можно определить, не имеет ли места обрыв или межвитковое замыкание форсунок. Можно померить стартерный ток и сделать вывод о состоянии аккумулятора и стартера. Форма осциллограмм напряжения генератора позволяет сделать вывод о его «здоровье». Как это сделать – почитайте здесь.

Мотортестер позволяет проверить работоспособность датчиков. Пример. Датчик массового расхода воздуха (ДМРВ). Снимаем осциллограмму сигнала с датчика при его включении. По форме переходного процесса можно сразу же, не заводя двигатель, сделать вывод о его работоспособности.

Ну что, впечатляет? Если вы убедились в необходимости приобретения такого прибора, дело осталось за выбором конкретной модели. К сожалению, из трех вышеназванных типов мотортестер – самое дорогое удовольствие. Выбор фирм и моделей достаточно велик. По соотношению цена/качество я бы посоветовал обратить внимание на продукцию Quantex Laboratory. Там же Вы найдете обучающие ролики и форум по пользованию этим прибором.

Газоанализаторы

Здесь я скажу единственное – на современном диагностическом участке газоанализатор должен быть только четырехкомпонентный. Двухкомпонентные приборы, как и карбюраторы, – достояние истории. И еще – газоанализатор служит не для «регулировки СО», а как источник диагностической информации. Как этой информацией пользоваться, довольно доходчиво описано здесь.

Краткий итог

Все три типа описанных приборов имеют совершенно разный принцип работы, дают нам разную информацию и ни в коем случае не подменяют друг друга. Да, где-то получаемые с их помощью данные перекликаются, а где-то они у каждого уникальны. В принципе, можно обойтись без любого из этих приборов, а есть «спецы», которые вообще обходятся одной отверткой. Речь не об этом. Речь о том, что грамотный поиск дефекта основан на анализе информации. На измерениях, с коих, как известно, начинается наука.

Остальное оборудование носит в основном вспомогательный характер, хотя его наличие более чем желательно. Это:

Чип – тюнингом будем заниматься?

Тогда еще одна статья расходов:

Не забывайте и о том, что у Вас должны быть все необходимые слесарные инструменты как можно более высокого качества. Подавляющее большинство клиентов приезжает «переписать программу, а то что-то не едет», а автомобиль просто нуждается в ремонте.

И последнее, без чего не обходится диагностический участок, – это информация. Ее мастер должен получать всеми доступными способами: Интернет, книги, публикации в автомобильных журналах.

Как делается диагностика

Работа диагноста состоит из трех этапов: сбор диагностической информации, ее обработка, принятие решения. Для сбора применяется все вышеперечисленное оборудование. Собственно процесс можно описать так.

Только после всего этого можно приступать к работе с приборами.

Иногда в сомнительных случаях есть смысл подменить неисправный элемент и снять показания повторно либо совершить пробную поездку. Для этого на рабочем месте диагноста должен быть подменный фонд. Но в любом случае нужно стремиться к такой степени мастерства, когда выявление дефекта происходит только с помощью приборов и почти со стопроцентной вероятностью. Такая способность очень пригодится Вам при диагностике иномарок, на которые очень активно пересаживается население нашей страны.

Источник

Диагностика по параметрам работы ЭСУД

Структура арм специалиста по диагностике эсуд авто

Диагностика неисправностей по параметрам работы ЭСУД.
ML — Массовый расход воздуха (сигнал с ДМРВ).
Бензин без воздуха не горит. А лучше всего горит стехиометрическая смесь (1 кг бензина на 14,7 кг воздуха). Работая педалью газа, мы постоянно меняем количество всасываемого цилиндрами двигателя воздуха. Чтобы контроллеру узнать, сколько при этом надо впрыскивать топлива, ему необходимо измерить количество воздуха, т.е. нужен датчик расхода воздуха. Поэтому, ДМРВ — это основной датчик инжекторного двигателя, и ему следует уделять особое внимание. Практически все параметры управления двигателем так или иначе связаны с расходом воздуха. Пример: новый необкатанный ДВС 8кл. 1,6л. в прогретом состоянии расходует 9,5-13 кг/ч воздуха, а по мере приработки и уменьшения потерь на трение расход воздуха снижается на 1,3-2 кг/ч. Пропорционально уменьшается и расход топлива.
При завышенных показаниях ДМРВ напрашивается ряд проверок:
1. Неисправен сам датчик;
2. Не совпадают фазы газораспределения (проскочил ремень ГРМ);
3. Неисправен задающий диск (актуально, если диск не чугунный);
4. Прогорел клапан какого-нибудь цилиндра;
5. Неиправность модуля зажигания, свечи или ВВП;
При заниженных показаниях:
1. Неисправен датчик;
2. Занижены обороты ХХ;
3. Происходит подсос неучтённого воздуха во впускном тракте. Это можно отследить и по показаниям параметра нагрузки: www.2114.ru/forum/showpost.ph…7&postcount=13. ДМРВ является датчиком нагрузки, иногда и ДПДЗ.
Контроллер т.ж. рассчитывает и теоретическую величину расхода воздуха – MSNLLSS (так называемый «Желаемый расход воздуха») для конкретных условий – частота вращения коленвала, темп-ра ОЖ. Это тот поток воздуха, который должен поступить в цилиндры через канал ХХ и регулируется с помощью РХХ. В исправном ДВС расход воздуха по сигналу ДМРВ всегда немного выше MSNLLSS – на величину перетечек через зазоры дросселя (тепловой зазор ДЗ).

Угол опережения зажигания
Изменение УОЗ, наравне с изменением времени впрыска топлива, является основным инструментом, с помощью которого ЭБУ воздействует на ДВС.
Установлено, что режим работы двигателя, при котором происходит наиболее полное превращение тепловой энергии горения топливно-воздушной смеси в полезную работу, достигается тогда, когда максимальное давление сгорания-расширения соответствует примерно 100 гр. после ВМТ. Поэтому воспламенение смеси должно происходить раньше этой точки. Продолжительность периода тепловыделения остается практически неизменной при любых оборотах двигателя. Время от начала зажигания до начала тепловыделения также более или менее неизменно. Поэтому, при увеличении скорости вращения коленчатого вала двигателя необходимо увеличивать УОЗ, и наоборот. Кроме того, скорость сгорания топливно-воздушной смеси зависит от условий работы двигателя. Когда скорость сгорания снижается (например, при малой нагрузке), необходимо увеличить УОЗ, а при высокой скорости сгорания (например, при бедной смеси), наоборот, уменьшить. В реальном двигателе на величину оптимального УОЗ оказывает влияние также температура охлаждающей жидкости в двигателе, температура воздуха на впуске, состав топливно-воздушной смеси и другие факторы.
Управление УОЗ при нормальной работе двигателя:
В ПЗУ контроллера записана таблица (базовая матрица) с оптимальными значениями УОЗ, соответствующих всем возможным значениям нагрузки двигателя (сигнал с ДМРВ) и частоты вращения коленчатого вала (сигнал с ДПКВ). После получения информации о частоте вращения коленвала и нагрузке на двигатель, контроллер выбирает из записанной в ПЗУ базовой матрицы необходимое в данный момент значение угла опережения зажигания. В зависимости от величин сигналов с других датчиков (ДТОЖ, ДТВВ, ДПДЗ, ДД.) вводится дополнительная коррекция табличных значений УОЗ.
Коррекция УОЗ по температуре охлаждающей жидкости (ДТОЖ):
Коррекция вносится в соответствии с температурой охлаждающей жидкости для улучшения ездовых качеств автомобиля с непрогретым двигателем. При низкой температуре охлаждающей жидкости УОЗ увеличивается.
Коррекция УОЗ по температуре воздуха на впуске (ДТВВ):
При низкой температуре воздуха на впуске УОЗ уменьшается для предотвращения детонации в холодную погоду. При высокой температуре УОЗ также уменьшается для предотвращения детонации.
Уменьшение УОЗ при резком разгоне (ДПДЗ):
При резком разгоне сигнал с ДМРВ меняется с некоторой задержкой по отношению к поступающему в цилиндр действительному количеству воздуха. Это компенсируется по сигналу с ДПДЗ. В период разгона при скорости открытия дроссельной заслонки, превышающей заданный уровень, с целью предотвращения детонации УОЗ уменьшается. После завершения разгона после нескольких рабочих циклов постепенно восстанавливается нормальный УОЗ.
Уменьшение УОЗ при мощном старте — резком и полном открытии дроссельной заслонки (режим полной нагрузки):
Полная нагрузка требует обогащённой смеси, которая имеет высокую скорость сгорания по причине высокого давления в цилиндре. Поэтому УОЗ смещается ближе к пику давления — к ВМТ (0 гр.п.к.в.).
Уменьшение УОЗ на принудительном холостом ходу и при выходе из него (ДПДЗ, ДПКВ):
При переходе на режим ПХХ УОЗ значительно уменьшается. Когда двигатель переходит из ПХХ на работу в нормальный режим, то УОЗ увеличивается на один градус за каждый цикл искрообразования, пока не достигнет номинальной величины. Это снижает рывок при переходе двигателя с режима ПХХ на обычный режим работы.
Коррекция УОЗ для стабилизации оборотов холостого хода (ДПКВ):
На режиме ХХ для стабилизации частоты вращения коленчатого вала производится коррекция УОЗ, обеспечивающая стабильность частоты вращения коленчатого вала. При снижении заданных оборотов холостого хода УОЗ увеличивается, и наоборот. Это позволяет изменить частоту вращения коленвала двигателя практически мгновенно, что делает возможным поддерживать обороты ХХ неизменными даже при скачкообразных изменениях нагрузки (например, разная компрессия в цилиндрах, разная производительность форсунок.). Данная коррекция производится на каждый цилиндр индивидуально.
Коррекция УОЗ при возникновении детонации (ДД):
Уменьшение УОЗ происходит до тех пор, пока детонация не будет полностью устранена (максимальная величина поправки составляет 15 гр. поворота коленчатого вала). После прекращения детонации УОЗ постепенно увеличивается до исходного значения через определенные промежутки времени. В случае обрыва или короткого замыкания в цепи датчика детонации, УОЗ уменьшается на фиксированный угол (примерно 3 гр. угла поворота коленчатого вала). Это позволяет предотвратить возникновение детонации.

Для каждого условия работы двигателя контроллер подбирает оптимальный УОЗ, который можно проверить — ZWOUT, измеряется в градусах от ВМТ (до ВМТ – ранний УОЗ (т.е. УОЗ с показателем»+»), после ВМТ – поздний УОЗ (показатель»-«). Обнаружив детонацию по сигналу с ДД, контроллер уменьшает («позднит») УОЗ – величина такого «отскока» выводится на дисплей ДСТ в виде параметра WKR_X — «Величина отскока УОЗ при детонации», измеряемый в градусах. При минимальных оборотах ХХ (760-840) детонация невозможна. При резком газе должен быть отскок УОЗ по детонации (ДД работает). Отскок угла возможен и без детонации, в том случае, если двигатель перешёл в ту рабочую зону, определяемую по нагрузке и оборотам, где ранее было накоплено некоторое количество отскоков при детонации. Если при этом детонации всё же нет, то значение накопленных отскоков в этой рабочей зоне уменьшается.
Шумность двигателя раньше оценивалась на слух. Теперь существует параметр RKRN – «Нормализованный уровень сигнала от ДД», или, проще, «сигнал ДД» измеряемый в вольтах. На минимальных оборотах ХХ у исправного и прогретого (94-101гр.С) двигателя RKRN должен составлять 0,3-2,0 В. При износе, например, направляющих втулок клапанов будет выше. Т.ж. необходимо убедиться в исправности самого ДД и цепей управления, контроллера.

MOMPOS – текущее положение РХХ
[IMG][/IMG]РХХ является исполнительным механизмом. Полный ход штока РХХ – 255 шагов. Полностью выдвинутый шток (обводной канал ХХ закрыт) = 0 шагов. Двигатель не прогрет, на ХХ – 50-100 шагов. При рабочей температуре – 25-50 шагов. РХХ постоянно участвует в работе двигателя, реагируя даже на небольшие изменения режима – из-за включения осветительных приборов, обогрева стекла и т.д. РХХ помогает снизить токсичность отработавших газов на режиме ПХХ: при резком закрытии дроссельной заслонки РХХ увеличивает расход воздуха в обход ДЗ, не допуская хотя бы кратковременного переобогащения смеси. Работоспособность РХХ оценивают, задавая с помощью ДСТ перемещение штока и следя за изменением оборотов коленвала.
При возникновении кода неисправности Р1513 «РХХ, замыкание цепи управления на массу» драйвер контроллера прекращает управлять регулятором ХХ.
Пониженные, повышенные или нестабильные обороты ХХ могут быть вызваны неисправностью, которая не может быть преодолена контроллером с помощью РХХ.
Если количество шагов РХХ более 65, то обороты ХХ занижены, если менее 10 –обороты ХХ завышены.

Степень открытия клапана РХХ регулируется контроллером в зависимости от нагрузки на коленчатый вал двигателя, температуры охлаждающей жидкости, соотношения количества работающих и неработающих цилиндров, угла опережения зажигания и состава сжигаемой в работающих цилиндрах топливовоздушной смеси:
1. Нагрузка на коленчатый вал двигателя (параметр RL).
ЭБУ (контроллер) изменяет положение клапана РХХ так, чтобы частота вращения двигателя была равна заданной частоте вращения на холостом ходу. С увеличением нагрузки на коленчатый вал двигателя (включены мощные электрические потребители, неисправные генератор или помпа, механический износ деталей двигателя и др.) клапан РХХ приоткрывается, шаги РХХ увеличиваются, для поддержания заданной частоты вращения двигателя на холостом ходу. Увеличение шагов РХХ вызывает увеличение абсолютного давления во впускном коллекторе и увеличение расхода воздуха по сигналу ДМРВ, что в свою очередь приводит к увеличению количества смеси, подаваемой в цилиндр.
2. Температура охлаждающей жидкости (параметр TMOT).
Заданная частота вращения двигателя на холостом ходу зависит от температуры охлаждающей жидкости. Чем температура ниже, тем выше заданная в прошивке контроллера частота вращения коленчатого вала двигателя на ХХ, тем больше шаги РХХ. Для обеспечения повышенной частоты вращения двигателя ЭБУ приоткрывает клапан РХХ.
3. Количество работающих и неработающих цилиндров. Пропуски воспламенения.
Если один из цилиндров не работает, или работает не стабильно (пропуски воспламенения), то для обеспечения заданной частоты вращения двигателя на холостом ходу, клапан РХХ приоткрывается, увеличивая нагрузку на работающие цилиндры. Происходит перенос и распределение нагрузки с неработающего цилиндра на работающие цилиндры. Например, при отключении одного из цилиндров двигателя, нагрузка на три работающих цилиндра увеличивается примерно на 33%. В случае, если не работают два цилиндра (например, отказ катушки 1-4 или 2-3 цилиндров), то нагрузка на работающие два цилиндра оказывается увеличенной уже где-то на 100%.
4. Угол опережения зажигания — УОЗ (параметр ZWOUT).
С увеличением УОЗ эффективность работы каждого из работающих цилиндров увеличивается. За счёт этого, для поддержания заданной частоты вращения двигателя на холостом ходу при более раннем УОЗ требуется сжигание меньшего количества топливовоздушной смеси, чем при более позднем УОЗ. Поэтому, с увеличением УОЗ контроллер уменьшает количество сжигаемой топливовоздушной смеси путём снижения шагов РХХ, что обеспечивает поддержание заданной частоты оборотов ХХ. С прикрытием клапана РХХ абсолютное давление во впускном коллекторе уменьшается и как следствие уменьшается количество смеси сжигаемой в цилиндре.
5. Состав топливовоздушной смеси.
Эффективность работы двигателя также сильно зависит и от состава топливовоздушной смеси. Чем ближе состав топливовоздушной смеси к стехиометрическому, тем лучше эффективность сгорания такой смеси и, как следствие, выше эффективность двигателя. С увеличением отклонения состава топливовоздушной смеси от стехиометрического, эффективность работы двигателя ухудшается. Из-за ухудшения эффективности работы двигателя, для поддержания заданной частоты вращения двигателя на ХХ требуется сжигание уже большего количества такой смеси. Поддержание заданной частоты вращения двигателя на холостом ходу при работе на бедной или богатой топливовоздушной смеси достигается за счёт увеличения количества сжигаемой в работающих цилиндрах смеси путём увеличения шагов РХХ.
Если в процессе «выравнивания» смеси по сигналу с датчика кислорода состав её изменится до требуемых значений, то шаги РХХ должны вернуться к норме.

P.S. В заключение нужно добавить, что при значительном загрязнении клапана РХХ и каналов перетечек воздуха в дроссельном патрубке (тепловой зазор ДЗ, байпасный канал РХХ, жиклёр малой ветви вентиляции картера)www.2114.ru/forum/showpost.ph…02&postcount=7, контроллер увеличит шаги РХХ на холостом ходу. Расход воздуха по сигналу с ДМРВ при этом значительно не изменится.

Частота вращения колен. вала двигателя
ДПКВ Контроллер её определяет с некоторой дискретностью (*Дискретность (от лат. discretus — разделённый, прерывистый), прерывность; противопоставляется непрерывности. Например, дискретное изменение какой-либо величины во времени — это изменение, происходящее через определённые промежутки времени (скачками). Весь диапазон оборотов – от минимума до срабатывания ограничителя – оценивается параметр NMOT с дискретностью 40 об/мин. Для оценки состояния двигателя более высокая точность не требуется.
До 2500 об/мин может оцениваться параметр NMOTLL с дискретностью 10 об/мин.

По бортовому компьютеру (при диагностике) обороты коленвала определяются скачками в +-40 об. Это норма.

коэффициент коррекции времени впрыска топлива по сигналу ДК
FR показывает, во сколько раз изменяется длительность импульса впрыска форсунок для компенсации текущих отклонений состава смеси от стехиометрического. С отключенным лямбда-регулированием FR=1 и не влияет на формирование рабочей смеси. Когда контроллер перейдёт в режим обратной связи по ДК, FR начнёт колебаться в небольших пределах – от 0,98 до 1,02 (это норма!). Это значит, что состав смеси отклоняется от идеального на 2% и контроллер всё время немного корректирует время открытого состояния форсунок. Максимальный диапазон изменения FR для исправного двигателя – от 0,85 до 1,15. Но, допустим, FR = 1,20. Значит, рабочая смесь обеднена на 20%. Приводя её к стехиометрии ( FR=1), контроллер будет увеличивать подачу топлива на 20%. Такое значительное отклонение состава смеси от нормы указывает на серьёзную неисправность, связанную с топливной системой, подсосом воздуха после ДМРВ, нарушением характеристик ДК или ДМРВ, неверной оценкой температуры охлаждающей жидкости (ДТОЖ) и т.п.
Одного коэффициента FR недостаточно для управления подачей топлива современного двигателя. Для «самообучения» контроллера введены ещё две составляющие: FRA (Мультипликационная составляющая коррекции самообучения) и RKAT ( или, TRA) (аддитивная составляющая коррекции самообучения).
Производители автомобилей и диагностического оборудования различных марок до сих пор не договорились о единых обозначениях параметров аддитивной и мультипликативной составляющих коррекции самообучения – каждый придумывает сокращения по своему вкусу.
Текущий коэффициент коррекции FR быстро реагирует на постоянно происходящие колебания состава смеси – но этим его роль и исчерпывается. А вот коэффициенты FRA и RKAT (TRA) учитывают влияние долговременных, медленно меняющихся факторов, возникших в результате работы двигателя, – например, постепенную потерю им компрессии из-за износа, загрязнение фильтров, чувствительного элемента ДМРВ и т.д.
Пока двигатель холодный и лямбда-регулирования нет, текущий коэффициент коррекции FR = 1. Режим адаптации еще не работает. Чтобы он включился, должны быть выполнены следующие условия: двигатель прогрет до +85°С, проработал с момента пуска 10 минут, есть лямбда-регулирование, коэффициент FR меняется в положенных узких пределах, то есть 0,98–1,02.

Мультипликативная составляющая коррекции самообучением — FRA
Отвечает за работу двигателя при частичных нагрузках. Рассчитывается на базе параметра FR. Это показатель безразмерный (т.е. коэффициент), как и FR. Изменяется FRА от 0,75 до 1,25 (до 25%). Предельные значения любого из этих коэффициентов свидетельствуют о значительном отклонении состава смеси от стехиометрии. Если FRА станет меньше 0,78 или больше 1,22, система самодиагностики включит в комбинации приборов «проверь двигатель». Контроллер зафиксирует коды неисправностей РО171 или РО172 – смесь слишком бедная либо богатая. (Второй символ О в обозначении кода говорит о том, что это общий код согласно протоколу OBD – и расшифровывается одинаково для любого автомобиля).
Пример: Из-за неверных и завышенных показаний неисправного ДМРВ контроллер увеличивает подачу топлива, смесь стала богаче примерно на 10%. Воздуха не хватает, сигнал с ДК попадает в зону богатой смеси. Соответственно, параметр текущей коррекции впрыска FR немедленно реагирует на это и переходит в диапазон 0,88-0,90 (богатая смесь), время впрыска уменьшится. Самопроизвольно FR не может вернуться к значению 1, иначе смеь опять станет богатой! Поэтому, блок управления в какой-то момент времени начинает плавно уменьшать параметр адаптации FRА от 1 к 0,88. Это будет продолжаться, пока смесь не вернется к стехиометрии, то есть, пока FR не станет = 0,98-1,02 (в идеале =1). К этому моменту F

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *