современные взгляды на возникновение жизни кратко

Современные взгляды на происхождение жизни

Для того чтобы знать пути зарождения жизни, необходимо сначала изучить признаки и свойства живых организмов. Знание химического состава, строения и различных процессов, протекающих в организме, дает возможность понять происхождение жизни. Для этого познакомимся с особенностями образования первых неорганических веществ в космическом пространстве и появления планетарной системы.

Рис. 9. Приблизительно 3,8 млрд. лет назад путем химических реакций образовались первые сложные соединения

Образование органических соединений абиогенным путем. Знание условий окружающей среды на начальных этапах развития Земли имело огромное значение для науки. Особое место в этой области занимают работы русского ученого А. И. Опарина (1894—1980). В 1924 г. он высказал предположение о возможности прохождения химической эволюции в начальные этапы развития Земли. Теория А. И. Опарина основывается на постепенном длительном усложнении химических соединений.
Американские ученые С. Миллер и Г. Юри в 1953 г. согласно теории А. И. Опарина поставили опыты. Пропуская электрический разряд через смесь метана, аммиака и воды, они получили различные органические соединения (мочевина, молочная кислота, различные аминокислоты). Позднее такие опыты повторили многие ученые. Полученные результаты опытов доказали правильность гипотезы А. И. Опарина.
Благодаря выводам названных выше опытов, было доказано, что в результате химической эволюции первобытной Земли образовались биологические мономеры.

Образование и эволюция биополимеров. Совокупность и состав органических соединений, образованных в различных водных пространствах первичной Земли, были разного уровня. Образование таких соединений абиогенным путем доказано экспериментально.
Американский ученый С. Фокс в 1957 г. высказал мнение о том, что аминокислоты могут образовывать, соединяясь между собой, пептидные связи без участия воды. Он заметил, что при нагревании, а затем охлаждении сухих смесей аминокислот их белковоподобные молекулы образуют связи. С. Фокс пришел к выводу, что на месте бывших водных пространств под действием тепла потоков лавы и солнечных излучений произошли самостоятельные соединения аминокислот, которые дали начало первичным полипептидам.

Роль ДНК и РНК в эволюции жизни. Главное отличие нуклеиновых кислот от белков — способность удваиваться и воспроизводить точные копии первоначальных молекул. В 1982 г. американский ученый Томас Чек открыл ферментативную (каталитическую) активность молекул РНК. В итоге он заключил, что молекулы РНК — самые первые полимеры на Земле. Молекулы ДНК по сравнению с РНК более устойчивы в процессах распада в слабощелочных водных растворах. А среда с такими растворами была в водах первичной Земли. В настоящее время это условие сохранено только в составе клетки. Молекулы ДНК и белки взаимосвязаны. Например, белки защищают молекулы ДНК от вредного воздействия ультрафиолетовых лучей. Мы не можем назвать белки и молекулы ДНК живыми организмами, хотя им присущи некоторые признаки живых тел, потому что у них полностью не сформированы биологические мембраны.

Эволюция и образование биологических мембран. Параллельное существование белков и нуклеиновых кислот в пространстве, возможно, открыло путь для возникновения живых организмов. Это могло произойти только при наличии биологических мембран. Благодаря биологическим мембранам образуется связь между окружающей средой и белками, нуклеиновыми кислотами. Только через биологические мембраны идет процесс обмена веществ и энергии. На протяжении миллионов лет первичные биологические мембраны, постепенно усложняясь, присоединяли в состав различные белковые молекулы. Таким образом, путем постепенного усложнения появились первые живые организмы (протобионты). У протобионтов постепенно формировались системы саморегуляции, самовоспроизведения. Первые живые организмы приспособились к жизни в бескислородной среде. Все это соответствует мнению, высказанному А. И. Опариным. Гипотеза А. И. Опарина в науке называется коацерватной теорией. Эту теорию в 1929 г. поддержал английский ученый Д. Холдейн. Многомолекулярные комплексы с тонкой водной оболочкой снаружи называются коацерватами или коацерватной каплей. Некоторые белки в составе коацерватов выполняли роль ферментов, а нуклеиновые кислоты приобрели возможность передачи информации по наследству (рис. 11).

Постепенно у нуклеиновых кислот сформировалась способность к удвоению. Связь коацерватной капли с окружающей средой привела к осуществлению самого первого простого обмена веществ и энергии на Земле.
Таким образом, основные положения теории возникновения жизни по А. И. Опарину таковы:

Первичная атмосфера. Биологическая мембрана. Коацерват. Протобионт. Теория биопоэза.

* Проверь знания!
Вопросы для повторения. Глава 1. Происхождение и начальные этапы развития жизни на Земле

Источник

Происхождение жизни на Земле: доказанная теория или нераскрытая тайна

современные взгляды на возникновение жизни кратко

современные взгляды на возникновение жизни кратко

Валерий Спиридонов, первый кандидат на пересадку головы, для РИА Новости

Человечество на протяжении многих лет пытается разгадать истинную причину и историю появления жизни на нашей планете. Еще чуть более ста лет назад практически во всех странах люди даже не думали подвергать сомнению теорию божественного вмешательства и сотворения мира высшим духовным существом.

Ситуация изменилась после выхода в ноябре 1859 года величайшего труда Чарльза Дарвина, и сейчас вокруг этой темы существует немало споров. Число сторонников дарвиновской теории эволюции в Европе и Азии насчитывает больше 60-70%, приблизительно 20% в США и около 19% в России по данным конца прошлого десятилетия.

Во многих странах сегодня призывают исключить труд Дарвина из школьной программы или хотя бы изучать его наравне с другими вероятными теориями. Если не говорить о религиозной версии, к которой склоняется большая часть населения планеты, сегодня существует несколько основных теорий происхождения и эволюции жизни, описывающих ее развитие на самых разных этапах.

Панспермия

Сторонники идеи панспермии убеждены, что на Землю первые микроорганизмы были принесены из космоса. Так считал известный немецкий ученый-энциклопедист Герман Гельмгольц, английский физик Кельвин, российский ученый Владимир Вернадский и шведский химик Сванте Аррениус, считающийся сегодня родоначальником этой теории.

Научно подтвержден факт, что на Земле неоднократно были обнаружены метеориты с Марса и других планет, возможно с комет, которые могли прибыть даже из чужих звездных систем. В этом сегодня никто не сомневается, однако пока не понятно как жизнь могла возникнуть на других мирах. По сути, апологеты панспермии переносят «ответственность» за происходящее на инопланетные цивилизации.

Теория о первичном бульоне

Рождению этой гипотезы поспособствовали эксперименты Гарольда Юри и Стэнли Миллера, проведенные в 1950-е годы. Они смогли воссоздать почти те же условия, которые существовали на поверхности нашей планеты до зарождения жизни. Через смесь молекулярного водорода, угарного газа и метана пропустили небольшие электрические разряды и ультрафиолет.

Источник

Доклад на тему “Современные взгляды на происхождение жизни”

на тему “Современные взгляды на происхождение жизни”

Расулов Хайрула Рамазанович

Атмосфера древней Земли. По последним данным ученых, исследователей космоса, небесные тела образовались 4,5—5 млрд. лет назад. На первых этапах формирования Земли в ее состав входили оксиды, карбонаты, карбиды металлов и газы, извергавшиеся из глубин вулканов. В результате уплотнения земной коры и действия гравитационных сил стало выделяться большое количество тепла. На повышение температуры Земли оказали влияние распад радиоактивных соединений и ультрафиолетовые излучения Солнца. В это время вода на Земле существовала в виде пара. В верхних слоях воздуха водяные пары собирались в облака, которые выпадали на поверхность горячих камней в виде ливневых дождей, затем вновь, испаряясь, поднимались в атмосферу. На Земле сверкали молнии, гремели раскаты грома. Это продолжалось долго. Постепенно поверхностные слои Земли стали остывать. Из-за ливневых дождей образовались небольшие водоемы. Потоки раскаленной лавы, которые текли с вулканов, и зола попадали в первичные водоемы и непрерывно изменяли условия окружающей среды. Такие непрерывные изменения окружающей среды способствовали возникновению реакций образования органических соединений.

N2 + 3H2 –> 2NH3
азот + водород –> аммиак

Условия среды на древней Земле

Образование органических соединений абиогенным путем. Знание условий окружающей среды на начальных этапах развития Земли имело огромное значение для науки. Особое место в этой области занимают работы русского ученого А. И. Опарина (1894—1980). В 1924 г. он высказал предположение о возможности прохождения химической эволюции в начальные этапы развития Земли. Теория А. И. Опарина основывается на постепенном длительном усложнении химических соединений.

Американские ученые С. Миллер и Г. Юри в 1953 г. согласно теории А. И. Опарина поставили опыты. Пропуская электрический разряд через смесь метана, аммиака и воды, они получили различные органические соединения (мочевина, молочная кислота, различные аминокислоты). Позднее такие опыты повторили многие ученые. Полученные результаты опытов доказали правильность гипотезы А. И. Опарина.

Благодаря выводам названных выше опытов, было доказано, что в результате химической эволюции первобытной Земли образовались биологические мономеры.

Образование и эволюция биополимеров. Совокупность и состав органических соединений, образованных в различных водных пространствах первичной Земли, были разного уровня. Образование таких соединений абиогенным путем доказано экспериментально.

Американский ученый С. Фокс в 1957 г. высказал мнение о том, что аминокислоты могут образовывать, соединяясь между собой, пептидные связи без участия воды. Он заметил, что при нагревании, а затем охлаждении сухих смесей аминокислот их белковоподобные молекулы образуют связи. С. Фокс пришел к выводу, что на месте бывших водных пространств под действием тепла потоков лавы и солнечных излучений произошли самостоятельные соединения аминокислот, которые дали начало первичным полипептидам.

Роль ДНК и РНК в эволюции жизни. Главное отличие нуклеиновых кислот от белков — способность удваиваться и воспроизводить точные копии первоначальных молекул. В 1982 г. американский ученый Томас Чек открыл ферментативную (каталитическую) активность молекул РНК. В итоге он заключил, что молекулы РНК — самые первые полимеры на Земле. Молекулы ДНК по сравнению с РНК более устойчивы в процессах распада в слабощелочных водных растворах. А среда с такими растворами была в водах первичной Земли. В настоящее время это условие сохранено только в составе клетки. Молекулы ДНК и белки взаимосвязаны. Например, белки защищают молекулы ДНК от вредного воздействия ультрафиолетовых лучей. Мы не можем назвать белки и молекулы ДНК живыми организмами, хотя им присущи некоторые признаки живых тел, потому что у них полностью не сформированы биологические мембраны.

Эволюция и образование биологических мембран. Параллельное существование белков и нуклеиновых кислот в пространстве, возможно, открыло путь для возникновения живых организмов. Это могло произойти только при наличии биологических мембран. Благодаря биологическим мембранам образуется связь между окружающей средой и белками, нуклеиновыми кислотами. Только через биологические мембраны идет процесс обмена веществ и энергии. На протяжении миллионов лет первичные биологические мембраны, постепенно усложняясь, присоединяли в состав различные белковые молекулы. Таким образом, путем постепенного усложнения появились первые живые организмы (протобионты). У протобионтов постепенно формировались системы саморегуляции, самовоспроизведения. Первые живые организмы приспособились к жизни в бескислородной среде. Все это соответствует мнению, высказанному А. И. Опариным. Гипотеза А. И. Опарина в науке называется коацерватной теорией. Эту теорию в 1929 г. поддержал английский ученый Д. Холдейн. Многомолекулярные комплексы с тонкой водной оболочкой снаружи называются коацерватами или коацерватной каплей. Некоторые белки в составе коацерватов выполняли роль ферментов, а нуклеиновые кислоты приобрели возможность передачи информации по наследству.

Образование коацерватов – многомолекулярных комплексов с водной оболочкой

Постепенно у нуклеиновых кислот сформировалась способность к удвоению. Связь коацерватной капли с окружающей средой привела к осуществлению самого первого простого обмена веществ и энергии на Земле.

Таким образом, основные положения теории возникновения жизни по А. И. Опарину таковы:

в результате непосредственного влияния факторов окружающей среды из неорганических веществ образовались органические;

образованные органические вещества оказали влияние на образование сложных органических соединений (ферментов) и свободных самовоспроизводящих генов;

образованные свободные гены соединились с другими высокомолекулярными органическими веществами;

у высокомолекулярных веществ снаружи постепенно появились белково-липидные мембраны;

в результате названных процессов появились клетки.

Современный взгляд на возникновение жизни на Земле называется

теорией биопоэза (органические соединения образуются из живых организмов). В настоящее время она носит название биохимической эволюционной теории появления жизни на Земле. Эту теорию предложил в 1947 г. английский ученый Д. Бернал. Он различал три этапа биогенеза. Первый этап—это возникновение биологических мономеров абиогенным путем. Второй этап — образование биологических полимеров. Третий этап — возникновение мембранных структур и первых организмов (протобионтов). Группировка сложных органических соединений в составе коацерватов и их активное взаимодействие между собой создают условия для образования саморегулирующих простейших гетеротрофных организмов.

В процессе возникновения жизни произошли сложные эволюционные изменения — образование органических веществ из неорганических соединений. Сначала появились хемосинтезирующие, затем постепенно – фотосинтезирующие организмы. В появлении большего количества свободного кислорода в атмосфере Земли огромную роль сыграли фотосинтезирующие организмы.

Химическая эволюция и эволюция первых организмов (протобионтов) на Земле продлилась до 1—1,5 млрд. лет.

Первичная атмосфера. Биологическая мембрана. Коацерват. Протобионт. Теория биопоэза.

Небесные тела, в том числе земной шар, появились 4,5—5 млрд. лет назад.

В период возникновения Земли было достаточно много водорода и его соединений, а свободного кислорода не было.

На начальном этапе развития Земли единственным источником энергии были ультрафиолетовые излучения Солнца.

А. И. Опарин высказал мнение, что в начальный период на Земле происходит только химическая эволюция.

На Земле впервые появились биологические мономеры, из которых постепенно образовались белки и нуклеиновые кислоты (РНК, ДНК).

Первые организмы, появившиеся на Земле, — протобионты.

Многомолекулярные комплексы, окруженные тонкой водной оболочкой, называются коацерватами.

Источник

Современные гипотезы происхождении жизни

Наибольшее признание и распространение в XX столетии получила гипотеза происхождения жизни на Земле, предложенная известным отечественным биохимиком академиком А. И. Опариным (1894-1980) и английским биохимиком Дж. Холдёйном (1892-1964). Суть их гипотезы, сформулированной ими независимо друг от друга в 1924-1928 гг. и развиваемой в последующее время, сводится к существованию на Земле продолжительного периода абиогенного образования большого числа органических соединений. Данные органические вещества насыщали воды древнейших океанов, сформировав (по представлениям Дж. Холдейна) так называемый «первичный бульон». Впоследствии в силу многочисленных процессов локальных обмелений и иссушений океанов концентрация «первичного бульона» могла возрастать в десятки и сотни раз. Эти процессы происходили на фоне интенсивной вулканической активности, частых грозовых разрядов в атмосфере и мощного космического излучения. В этих условиях могло происходить постепенное усложнение молекул органических веществ, появление простых белков, полисахаридов, липидов, нуклеиновых кислот. На протяжении многих сотен и тысяч лет они могли образовать сгустки органических веществ (коацерваты). В условиях восстановительной атмосферы Земли коацерваты не разрушались, происходило их постепенное усложнение, и в определенный момент развития из них могли образоваться первые примитивные организмы (пробионты). Эта гипотеза была принята и развита в дальнейшем многими учеными разных стран, ив 1947 г. английский ученый Джон Бернал сформулировал гипотезу биопоэза. Он выделил три основные стадии формирования жизни: 1) абиогенное возникновение органических мономеров; 2) формирование биологических полимеров; 3) развитие мембранных структур и первых организмов.

Рассмотрим кратко процессы и стадии биопоэза.

Первым этапом биопоэза стал ряд процессов, получивших название химической эволюции, приведшей к появлению пробионтов — первых живых существ. Продолжительность его разными учеными оценивается от 100 до 1000 млн. лет. Это предыстория жизни на нашей планете.

Абиогенный биосинтез органических соединений

Земля как планета возникла около 4,5 млрд. лет назад (по другим данным — около 13 млрд. лет назад, но они не имеют пока веских доказательств). Остывание Земли началось около 4 млрд. лет назад, а возраст земной коры оценивается примерно в 3,9 млрд. лет. К этому моменту образуются также океан и первичная атмосфера Земли. Земля в это время была достаточно разогретой за счет выделения тепла при затвердевании и кристаллизации компонентов коры и активной вулканической деятельности. Вода долгое время находилась в парообразном состоянии, испаряясь с поверхности Земли, конденсируясь в верхних слоях атмосферы и вновь выпадая на раскаленную поверхность. Все это сопровождалось почти постоянными грозами с мощными электрическими разрядами. Позже начинают формироваться водоемы и первичные океаны. Древняя атмосфера Земли не содержала свободного кислорода и была насыщена вулканическими газами, в состав которых входили окислы серы, азота, аммиак, оксиды и двуокиси углерода, пары воды и ряд других компонентов. Мощное космическое излучение и излучение Солнца (озонового слоя в атмосфере еще не было), частые и сильные электрические разряды, активная вулканическая деятельность, сопровождавшаяся выбросами больших масс радиоактивных компонентов, привели к образованию органических соединений, таких, как формальдегид, муравьиная кислота, мочевина, молочная кислота, глицерин, глицин, некоторые простые аминокислоты и т. п. Поскольку свободного кислорода в атмосфере не было, то эти соединения не окислялись и могли накапливаться в теплых и даже кипящих водоемах и постепенно усложняться по строению, формируя так называемый «первичный бульон». Продолжительность этих процессов составляла многие миллионы и десятки миллионов лет. Так осуществился первый этап биопоэза — образование и накопление органических мономеров.

Этап полимеризации органических мономеров

Значительная часть образующихся мономеров разрушалась под действием высоких температур и многочисленных химических реакций, происходивших в «первичном бульоне». Летучие соединения переходили в атмосферу и практически исчезали из водоемов. Периодическое подсыхание водоемов приводило к многократному увеличению концентрации растворенных органических соединений. На фоне высокой химической активности среды происходили процессы усложнения этих соединений, и они могли вступать в соединения друг с другом (реакции конденсации, полимеризации и т. п.). Жирные кислоты, соединяясь со спиртами, могли образовывать липиды и формировать жировые пленки на поверхности водоемов. Аминокислоты могли соединяться друг с другом, образуя все более сложные пептиды. Могли образовываться и другие типы соединений — нуклеиновые кислоты, полисахариды и др. Первыми нуклеиновыми кислотами, как полагают современные биохимики, были небольшие цепи РНК, так как они, как и олигопептиды, могли синтезироваться в среде с высоким содержанием минеральных компонентов спонтанно, без участия ферментов. Реакции полимеризации могли заметно активироваться при значительном увеличении концентрации раствора (пересыхание водоема) и даже во влажном песке или при полном высыхании водоемов (возможность протекания таких реакций в сухом состоянии была показана американским биохимиком С. Фоксом). Последующие дожди растворяли молекулы, синтезированные на суше, и перемещали их с токами воды в водоемы. Такие процессы могли носить циклический характер, приводя к еще большему усложнению органических полимеров.

Формирование коацерватов

Следующим этапом в происхождении жизни стало образовывание коацерватов, то есть больших скоплений сложных органических полимеров. Причины и механизмы этого явления во многом еще не ясны. Коацерваты этого периода представляли еще механическую смесь органических соединений, лишенную каких-либо признаков жизни. В какой-то период времени между молекулами РНК и пептидами возникли связи, напоминающие реакции матричного синтеза белка. Однако до сих пор непонятно, каким образом РНК стала кодировать синтез пептидов. Позже появились молекулы ДНК, которые в силу наличия двух спиралей и возможности к более точному (по сравнению с РНК) самокопированию (репликации) стали главными носителями информации о синтезе пептидов, передавая эту информацию на РНК. Такие системы (коацерваты) уже напоминали живые организмы, однако еще не являлись таковыми, так как не имели упорядоченной внутренней структуры, присущей живым организмам, и не были способны размножаться. Ведь определенные реакции синтеза пептидов могут происходить и в неклеточных гомогенатах.

Появление биологических мембран

Упорядоченные биологические структуры невозможны без биологических мембран. Поэтому следующим этапом в образовании жизни стало формирование именно этих структур, изолирующих и защищающих коацерваты от окружающей среды, превращающих их в автономные образования. Мембраны могли образоваться из липидных пленок, появлявшихся на поверхности водоемов. К молекулам липидов могли присоединяться пептиды, приносимые дождевыми потоками в водоемы или образовавшиеся в этих водоемах. При волнении водоемов или выпадении на их поверхность осадков могли возникать пузырьки, окруженные мембраноподобными соединениями. Для возникновения и эволюции жизни важны были те пузырьки, которые окружали коацерваты с белково-нуклеидными комплексами. Но и такие образования еще не были живыми организмами.

Возникновение пробионтов — первых самовоспроизводящихся организмов

В живые организмы могли превратиться только те коацерваты, которые были способны к саморегуляции и самовоспроизводству. Каким образом эти способности возникли — также пока неясно. Биологические мембраны обеспечили автономность и защиту коацерватам, что способствовало появлению существенной упорядоченности биохимических реакций, протекающих в этих телах. Следующим шагом стало появление самовоспроизводства, когда нуклеиновые кислоты (ДНК и/или РНК) стали не только обеспечивать синтез пептидов, но и с его помощью регулировать процессы самовоспроизводства и обмена веществ. Так возникла клеточная структура, обладающая обменом веществ и способностью к самовоспроизводству. Именно эти формы и смогли сохраниться в процессе естественного отбора. Так коацерваты превратились в первые живые организмы — пробионты.

Закончился этап химической эволюции, и наступил этап биологической эволюции уже живой материи. Произошло это 3,5-3,8 млрд. лет назад. Появление живой клетки — это первый крупнейший ароморфоз в эволюции органического мира.

Первые живые организмы были близки по строению к прокариотам, не имели еще прочной клеточной стенки и каких-то внутриклеточных структур (были покрыты биологической мембраной, внутренние изгибы которой выполняли функции клеточных структур). Возможно, первые пробионты имели наследственный материал, представленный РНК, а геномы с ДНК появились позже в процессе эволюции. Существует мнение, что дальнейшая эволюция жизни пошла от общего предка, от которого произошли первые прокариоты. Именно это обеспечило большое сходство строения всех прокариот, а впоследствии и эукариот.

Невозможность самозарождения жизни в современных условиях

Часто задают вопрос: почему не происходит самозарождение живых существ в настоящее время? Ведь если живые организмы не появляются сейчас, то на каком основании мы можем создавать гипотезы о происхождении жизни в далеком прошлом? Где критерий вероятности этой гипотезы? Ответы на данные вопросы могут быть следующими: 1) приведенная выше гипотеза биопоэза является во многом лишь логическим построением, она еще не доказана, содержит много противоречий и неясных моментов (хотя имеется очень много данных и палеонтологических, и экспериментальных, позволяющих предположить именно такое развитие биопоэза); 2) данная гипотеза при всей своей незавершенности тем не менее пытается объяснить возникновение жизни, исходя из конкретных земных условий, именно в этом и состоит ее ценность; 3) самообразование новых живых существ на современном этапе развития жизни невозможно по следующим причинам: а) органические соединения долгое время должны существовать в виде скоплений, постепенно усложняясь и преобразуясь; в условиях окислительной атмосферы современной Земли это невозможно, они будут быстро разрушены; б) в современных условиях существует множество организмов, способных очень быстро использовать даже незначительные скопления органических веществ для своего питания.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *