современные взгляды на возникновение жизни на земле

Современные взгляды на происхождение жизни

Для того чтобы знать пути зарождения жизни, необходимо сначала изучить признаки и свойства живых организмов. Знание химического состава, строения и различных процессов, протекающих в организме, дает возможность понять происхождение жизни. Для этого познакомимся с особенностями образования первых неорганических веществ в космическом пространстве и появления планетарной системы.

Рис. 9. Приблизительно 3,8 млрд. лет назад путем химических реакций образовались первые сложные соединения

Образование органических соединений абиогенным путем. Знание условий окружающей среды на начальных этапах развития Земли имело огромное значение для науки. Особое место в этой области занимают работы русского ученого А. И. Опарина (1894—1980). В 1924 г. он высказал предположение о возможности прохождения химической эволюции в начальные этапы развития Земли. Теория А. И. Опарина основывается на постепенном длительном усложнении химических соединений.
Американские ученые С. Миллер и Г. Юри в 1953 г. согласно теории А. И. Опарина поставили опыты. Пропуская электрический разряд через смесь метана, аммиака и воды, они получили различные органические соединения (мочевина, молочная кислота, различные аминокислоты). Позднее такие опыты повторили многие ученые. Полученные результаты опытов доказали правильность гипотезы А. И. Опарина.
Благодаря выводам названных выше опытов, было доказано, что в результате химической эволюции первобытной Земли образовались биологические мономеры.

Образование и эволюция биополимеров. Совокупность и состав органических соединений, образованных в различных водных пространствах первичной Земли, были разного уровня. Образование таких соединений абиогенным путем доказано экспериментально.
Американский ученый С. Фокс в 1957 г. высказал мнение о том, что аминокислоты могут образовывать, соединяясь между собой, пептидные связи без участия воды. Он заметил, что при нагревании, а затем охлаждении сухих смесей аминокислот их белковоподобные молекулы образуют связи. С. Фокс пришел к выводу, что на месте бывших водных пространств под действием тепла потоков лавы и солнечных излучений произошли самостоятельные соединения аминокислот, которые дали начало первичным полипептидам.

Роль ДНК и РНК в эволюции жизни. Главное отличие нуклеиновых кислот от белков — способность удваиваться и воспроизводить точные копии первоначальных молекул. В 1982 г. американский ученый Томас Чек открыл ферментативную (каталитическую) активность молекул РНК. В итоге он заключил, что молекулы РНК — самые первые полимеры на Земле. Молекулы ДНК по сравнению с РНК более устойчивы в процессах распада в слабощелочных водных растворах. А среда с такими растворами была в водах первичной Земли. В настоящее время это условие сохранено только в составе клетки. Молекулы ДНК и белки взаимосвязаны. Например, белки защищают молекулы ДНК от вредного воздействия ультрафиолетовых лучей. Мы не можем назвать белки и молекулы ДНК живыми организмами, хотя им присущи некоторые признаки живых тел, потому что у них полностью не сформированы биологические мембраны.

Эволюция и образование биологических мембран. Параллельное существование белков и нуклеиновых кислот в пространстве, возможно, открыло путь для возникновения живых организмов. Это могло произойти только при наличии биологических мембран. Благодаря биологическим мембранам образуется связь между окружающей средой и белками, нуклеиновыми кислотами. Только через биологические мембраны идет процесс обмена веществ и энергии. На протяжении миллионов лет первичные биологические мембраны, постепенно усложняясь, присоединяли в состав различные белковые молекулы. Таким образом, путем постепенного усложнения появились первые живые организмы (протобионты). У протобионтов постепенно формировались системы саморегуляции, самовоспроизведения. Первые живые организмы приспособились к жизни в бескислородной среде. Все это соответствует мнению, высказанному А. И. Опариным. Гипотеза А. И. Опарина в науке называется коацерватной теорией. Эту теорию в 1929 г. поддержал английский ученый Д. Холдейн. Многомолекулярные комплексы с тонкой водной оболочкой снаружи называются коацерватами или коацерватной каплей. Некоторые белки в составе коацерватов выполняли роль ферментов, а нуклеиновые кислоты приобрели возможность передачи информации по наследству (рис. 11).

Постепенно у нуклеиновых кислот сформировалась способность к удвоению. Связь коацерватной капли с окружающей средой привела к осуществлению самого первого простого обмена веществ и энергии на Земле.
Таким образом, основные положения теории возникновения жизни по А. И. Опарину таковы:

Первичная атмосфера. Биологическая мембрана. Коацерват. Протобионт. Теория биопоэза.

* Проверь знания!
Вопросы для повторения. Глава 1. Происхождение и начальные этапы развития жизни на Земле

Источник

§ 54. Современные взгляды на возникновение жизни

Гипотеза А. И. Опарина. Наиболее существенная черта гипотезы А. И. Опарина — постепенное усложнение химической структуры и морфологического облика предшественников жизни (пробионтов) на пути к живым организмам.

Большое количество данных говорит о том, что средой возникновения жизни могли быть прибрежные районы морей и океанов. Здесь, на стыке моря, суши и воздуха, создавались благоприятные условия для образования сложных органических соединений. Например, растворы некоторых органических веществ (сахаров, спиртов) обладают большой устойчивостью и могут существовать неограниченно долгое время. В концентрированных растворах белков, нуклеиновых кислот могут образовываться сгустки, подобные сгусткам желатина в водных растворах. Такие сгустки называют коацерватными каплями или коацерватами (рис. 70). Коацерваты способны адсорбировать различные вещества. Из раствора в них поступают химические соединения, которые преобразуются в результате реакций, происходящих в коацерватных каплях, и выделяются в окружающую среду.

Коацерваты — это еще не живые существа. Они проявляют лишь внешнее сходство с такими признаками живых организмов, как рост и обмен веществ с окружающей средой. Поэтому возникновение коацерватов рассматривают как стадию развития преджизни.

современные взгляды на возникновение жизни на земле

Рис. 70. Образование коацерватной капли

Коацерваты претерпели очень длительный отбор на устойчивость структуры. Устойчивость была достигнута вследствие создания ферментов, контролирующих синтез тех или иных соединений. Наиболее важным этапом в происхождении жизни было возникновение механизма воспроизведения себе подобных и наследования свойств предыдущих поколений. Это стало возможным благодаря образованию сложных комплексов нуклеиновых кислот и белков. Нуклеиновые кислоты, способные к самовоспроизведению, стали контролировать синтез белков, определяя в них порядок аминокислот. А белки-ферменты осуществляли процесс создания новых копий нуклеиновых кислот. Так возникло главное свойство, характерное для жизни, — способность к воспроизведению подобных себе молекул.

Живые существа представляют собой так называемые открытые системы, т. е. системы, в которые энергия поступает извне. Без поступления энергии жизнь существовать не может. Как вы знаете, по способам потребления энергии (см. гл. III) организмы делятся на две большие группы: автотрофные и гетеротрофные. Автотрофные организмы прямо используют солнечную энергию в процессе фотосинтеза (зеленые растения), гетеротрофные используют энергию, которая выделяется при распаде органических веществ.

Очевидно, первые организмы были гетеротрофами, получающими энергию путем бескислородного расщепления органических соединений. На заре жизни в атмосфере Земли не было свободного кислорода. Возникновение атмосферы современного химического состава теснейшим образом связано с развитием жизни. Появление организмов, способных к фотосинтезу, привело к выделению в атмосферу и воду кислорода. В его присутствии стало возможным кислородное расщепление органических веществ, при котором получается во много раз больше энергии, чем при бескислородном.

С момента своего возникновения жизнь образует единую биологическую систему — биосферу (см. главу XVI). Другими словами, жизнь возникла не в виде отдельных изолированных организмов, а сразу в форме сообществ. Для эволюции биосферы как единого целого характерно постоянное усложнение, т. е. возникновение все более и более сложных структур.

Возможно ли возникновение жизни на Земле сейчас? Из того, что мы знаем о происхождении жизни на Земли, ясно, что процесс возникновения живых организмов из простых органических соединений был крайне длительным. Чтобы на Земле зародилась жизнь, понадобился длившийся много миллионов лет эволюционный процесс, в течение которого сложные молекулярные структуры, прежде всего нуклеиновые кислоты и белки, прошли отбор на устойчивость, на способность к воспроизведению себе подобных.

Если сейчас на Земле где-нибудь в районах интенсивной вулканической деятельности и могут возникнуть достаточно сложные органические соединения, то вероятность сколько-нибудь продолжительного существования этих соединений ничтожна. Они немедленно будут окислены или использованы гетеротрофными организмами. Это прекрасно понимал еще Ч. Дарвин. В 1871 г. он писал: «Но если бы сейчас. в каком-либо теплом водоеме, содержащем все необходимые соли аммония и фосфора и доступном воздействию света, тепла, электричества и т. п., химически образовался белок, способный к дальнейшим, все более сложным превращениям, то это вещество немедленно было бы разрушено или поглощено, что было невозможно в период до возникновения живых существ».

Источник

Природа? Бог? Инопланетяне? Как учёные объясняют жизнь на Земле

Как произошла жизнь на Земле? Чем больше человек узнавал об окружающем мире, тем больше разных объяснений феномену жизни он предлагал. До сих пор ученые со всего мира исследуют предпосылки и моделируют сам процесс возникновения жизни, и чем больше идут исследования, тем больше деталей мы узнаем. Исследования процесса возникновения жизни будут идти еще очень долго хотя бы по той причине, что сам процесс длился десятки, если не сотни миллионов лет, а первая жизнь, по предположениям ученых, появилась и вовсе несколько миллиардов лет назад. В этой статье мы рассмотрим несколько научных теорий, которые пытаются ответить этот вопрос.

Панспермия

Смысл этой гипотезы прост: земная жизнь имеет внеземное происхождение. У теории есть несколько разновидностей, но все они сходятся в одном – биологический материал, который дал Земле толчок для развития жизни, принесли из космоса астероиды, метеориты, кометы и прочие подобные космические тела. При этом сторонники этой гипотезы до сих пор спорят о том, в каком виде жизнь была принесена на Землю: были ли то уже «готовые» микроорганизмы-экстремофилы либо же простые органические молекулы, которые уже после попадания на Землю эволюционировали в микроорганизмы. Отдельные сторонники теории идут даже дальше и объясняют происхождение новых болезней попаданием внеземного биологического материала на нашу планету уже в наши дни.

Гипотеза панспермии появилась еще в античности и впервые была сформулирована в трудах древнегреческого философа Анаксагора. В разное время ее сторонниками были такие ученые, как Сванте Аррениус, Герман фон Гельмгольц, Герман Рихтер, Якоб Берцелиус, Кельвин. В качестве доводов в пользу своей теории, сторонники панспермии приводят такие наблюдения:

Источник

Основные теории зарождения жизни

Теория самозарождения

Важно! Приверженцем этой теории был Ван-Гельмонт, ученый из Голландии. В XVII веке в научной работе описал свой эксперимент, по результатам которого он “получил” несколько мышей в закрытом шкафу, куда положил рубашку и немного зерна.

Теория стационарного состояния

Важно! Эта теория отрицает положения теории Большого Взрыва и эволюционной теории. В современных условиях этернизм стоит рассматривать скорее как философское учение.

Теория панспермии

современные взгляды на возникновение жизни на земле

Теория креационизма

Важно! Кроме Библии, есть и другие священные книги мировых религий, в каждой из которых тоже есть сведения о возникновении мира.

Важно! В соответствии с современными представлениями о науке, креационизм рассматривают только как философско-методологическую концепцию, поскольку теория возникла в рамках религиозного мировоззрения. Многие противники теории говорят о нецелесообразности преподавания креационизма в школе из-за ее антинаучности.

Теория биохимической эволюции

Важно! В 1953 г. американский ученый Стэнли Ллойд Миллер воспроизвел условия молодой Земли в своей лаборатории. Смесь из воды, аммиака, метана и водорода он подвергал мощным электрическим разрядам. Спустя некоторое время ученому удалось таким образом синтезировать аминокислоты, сахара и даже простые белки. Этот опыт доказал, что органические соединения образуются не только в результате биогенеза, но и посредством абиогенного синтеза.

Важно! В теории Опарина существует много “белых” пятен. Эта гипотеза не дает в полной мере ответ на вопрос о зарождении жизни, но именно гипотеза биохимической эволюции является наиболее перспективной в плане дальнейших исследований.

Источник

Лекция. Современные взгляды на возникновение жизни.

1 Основные положения гипотезы Опарина

2 Пути эволюции клетки

3 Эволюция химических элементов в космосе

1. Гипотеза биохимической эволюции.В 1924 г. отечественным био­химиком А.И.Опариным (1894—1980), а спустя 5 лет английским биохимиком и генетиком Дж. Ходдейном (1892 — 1964) была сфор­мулирована гипотеза, рассматривающая жизнь как результат длительной эволюции углеродных соединений.

Согласно гипотезе химической эволюции, изложенной А. И. Опа­риным в монографии «Происхождение жизни», жизнь, по-види­мому, возникла на границе моря, суши и воздуха. Примерно 4— 4,5 млрд. лет назад в атмосфере молодой Земли, состоящей из ам­миака, метана и паров углекислоты, под действием мощных элект­рических разрядов могли возникнуть простейшие органические со­единения. В растворах белков и нуклеиновых кислот, в так называ­емом «первичном бульоне», могли возникнуть своеобразные сгуст­ки химических соединений, названные коацерватами (рис. 4.2). Не­смотря на то что коацерваты способны адсорбировать различные вещества, расти и обмениваться веществами с окружающей сре­дой, их еще нельзя считать живыми существами. Возникновение коацерватов рассматривают обычно как стадию преджизни. В даль­нейшем в результате длительного отбора возникли сложные ферментативные системы, контролирующие процессы синтеза, что обес­печило устойчивость всей структуры. Таким образом, сформирова­лись сложные комплексы нуклеиновых кислот и белков. Нуклеи­новые кислоты, способные к воспроизведению, стали контроли­ровать синтез белков, определяя в них порядок аминокислот. В ре­зультате сформировался механизм воспроизведения себе подоб­ных и наследования свойств. Так возникло главное свойство живо­го вещества — способность к воспроизведению подобных себе мо­лекул. Предполагается, что первые организмы были анаэробными гетеротрофами, т. е. получали энергию путем бескислородного рас­щепления органических соединений. В то время на Земле еще не было свободного кислорода.

2. Современная теория возникновения жизни на Земле, называе­мая теорией биопоэза, была сформулирована в 1947 г. английским физиком Дж. Берналом (1901 — 1971).

Процесс становления жизни условно разделяют на четыре эта­па: синтез низкомолекулярных органических соединений (биоло­гических мономеров) из газов первичной атмосферы; образование биологических полимеров; формирование систем органических веществ, отделенных от внешней среды мембранами (пробион-тов); возникновение простейших клеток, обладающих свойствами живого, в том числе репродуктивным аппаратом, обеспечиваю­щим передачу дочерним клеткам свойств клеток родительских.

Первые три этапа относят к периоду химической эволюции, а с четвертого начинается эволюция биологическая.

Согласно современным представлениям, возраст Земли состав­ляет 4,5 — 4,6 млрд лет (по некоторым данным, 7 млрд. лет). Темпе­ратура ее поверхности была очень высокой — 4000 — 8000 °С (по другим данным, 1000 °С, т.е. температура раскаленной лавы), и по мере остывания планеты и действия гравитационных сил проис- ходило образование земной коры из соединений различных эле­ментов.

В 1953 г. американский биохимик Стенли Миллер и физик Га­рольд Юри смогли экспериментально смоделировать те условия, которые существовали на Земле приблизительно 4 млрд лет назад. В специальной установке (аппарат Миллера) они подвергли смесь метана, аммиака, воды и водорода действию электрических раз­рядов (рис. 4.3). В результате блестящих опытов были получены ами­нокислоты: глицин, аланин, глутаминовая и аспаргиновая кисло­ты. Таким образом, предположение академика А. И. Опарина под­тверждалось.

Второй этап состоял в дальнейших превращениях органичес­ких веществ и образовании абиогенным путем более сложных орга­нических соединений, в том числе биологических полимеров. Аме­риканский химик С. Фокс составлял смеси аминокислот, подвер­гал их нагреву и получал протеиноподобные вещества. В неболь­ших углублениях в застывающей лаве возникали водоемы, содер­жащие растворенные в иоде аминокислоты. Когда вода испарялась или выплескивалась на горячие камни, аминокислоты вступали в реакцию, образуя протеноиды. Если некоторые из этих протенои-дов обладали каталитической активностью, то мог начаться син­тез полимеров, т.е. белковоподобных молекул. Третий этап характеризовался выделением в первичном «пита­тельном бульоне» особых коацерватных капель, представляющих собой группы полимерных соединений. Коацерватные капли обла­дают некоторыми свойствами, характерными и для живой прото­плазмы, например способностью избирательно адсорбировать ве­щества из окружающего раствора и за счет этого «расти», увеличи­вать свои размеры. Поскольку концентрация веществ в коацерватных каплях была в десятки раз больше, чем в окружающем растворе, возможность взаимодействия между отдельными молекулами зна­чительно возрастала. Гидрофильные части молекул, расположен­ные на границе между коацерватами и раствором, поворачивают­ся в сторону раствора, где содержание воды больше. Гидрофобные части ориентируются внутрь коацерватов, где концентрация воды меньше. В результате поверхность коацерватов приобретает опреде­ленную структуру и в связи с этим свойство пропускать в опреде­ленном направлении одни вещества и не пропускать другие. Бла­годаря этому свойству концентрация некоторых веществ внутри коацерватов еще больше возрастает, других уменьшается и реак­ции между компонентами коацерватов приобретают определен­ную направленность. Коацерватные капли становятся системами, обособленными от среды. Возникают протоклетки, или протоби-онты. Важным этапом химической эволюции явилось образование мембранной структуры. Параллельно с появлением мембраны шло упорядочение и усовершенствование метаболизма. Одним из ос­новных признаков живого является способность к репликации, т. е. созданию копий, не отличаемых от материнских молекул. Таким свойством обладают нуклеиновые кислоты, которые в отличие от белков способны к репликации. В коацерватах мог образовываться протеноид, способный катализировать полимеризацию нуклеоти-дов с образованием коротких цепочек РНК. Эти цепочки могли выполнять роль как примитивного гена, так и информационной РНК. Уже на стадии формирования протобионтов происходил, ве­роятно, естественный отбор. Появление структур, способных к самовоспроизведению, репликации, изменчивости, определяет, по-видимому, четвертый этап становления жизни.

Итак, в позднем архее (приблизительно 3,5 млрд лет назад) на дне небольших водоемов или мелководных, теплых и богатых пи­тательными веществами морей возникли первые примитивные живые организмы, которые по типу питания были гетеротрофами. Способом обмена веществ им служило, вероятно, брожение. Часть энергии, выделяемой в этих процессах, запасается в виде АТФ. Воз­можно, некоторые организмы для жизненных процессов исполь­зовали и энергию окислительно-восстановительных реакций, т.е. были хемосинтетиками. Со временем происходило уменьшение запасов свободной органики в окружающей среде и преимущество получили организмы, способные синтезировать органические со­единения из неорганических. Таким путем, вероятно, около 2 млрд. лет назад возникли первые фототрофные организмы типа цианобактерий. Переход к автотрофному питанию имел большое значе­ние для эволюции жизни на Земле. При этом атмосфера стала при­обретать окислительный характер. Появление озонового экрана защитило первичные организмы от губительного воздействия ультрафиолетовых лучей и положило конец абиогенному (неби­ологическому) синтезу органических веществ.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *