роль тепловых явлений в жизни живых организмов

Роль тепловых явлений в жизни живых организмов

роль тепловых явлений в жизни живых организмов

роль тепловых явлений в жизни живых организмов

роль тепловых явлений в жизни живых организмов

роль тепловых явлений в жизни живых организмов

роль тепловых явлений в жизни живых организмов

ТЕПЛОВЫЕ ЯВЛЕНИЯ В ЖИЗНИ РАСТЕНИЙ И ЖИВОТНЫХ

роль тепловых явлений в жизни живых организмов

Автор работы награжден дипломом победителя III степени

Но как часто мы задаем себе вопросы: Как сохранить тепло животным зимой? Что спасает морских зверей от переохлаждения? Как спасаются животные в жаркую погоду? Чтобы ответить на эти и другие вопросы мы решили познакомиться с тепловыми явлениями в живой природе.

Объектом нашей исследовательской работы является теплота.

Предмет исследования: способы передачи теплоты.

Цель нашей работы: изучить значение разных способов передачи теплоты в жизни животных и растений.

Для достижения данной цели были поставлены следующие задачи:

1. познакомиться с литературой по данной теме;

2. провести опыты, демонстрирующие разные виды теплопередачи;

3. сделать выводы по результатам опытов.

Гипотеза: можно предположить, что в природе существуют различные способы передачи теплоты.

Методы исследования:

теоретические (мы анализировали факты из литературных источников);

экспериментальные (проводили эксперименты).

В природе наблюдаются различные способы передачи теплоты: теплопроводность, конвекция и излучение.

Рассмотрим их более подробно.

Теплопроводность

Звери и птицы используют воздух как своеобразную одежду. Например, у белок, зайцев, лис и других животных к зиме вырастает плотная «шуба». Густая шерсть, особенно подшерсток, хорошо сохраняют воздух. Этот воздух нагревается теплом животного и спасает его в сильные морозы.

Для изучения теплопроводности воздуха мы провели следующий опыт: взяли три одинаковые стеклянные банки с крышками. Первую банку обернули шерстяным шарфом, вторую поставили в коробку и со всех сторон плотно обложили мятой газетной бумагой, третью банку оставили открытой.

Наполнили банки горячей водой, температура которой была 62′ С и закрыли их крышками. Все три банки вынесли в коридор на 30 минут. Температура в коридоре +15′ С. Снова измерили термометром температуру воды в каждой банке. Из данных опыта видно, что быстрее всего остыла вода в третьей банке; в первой и второй банках она остыла меньше. Шерстяной шарф и мятая газета удерживают много воздуха [Приложение 1].

Опыт доказывает, что воздух плохой проводник тепла, поэтому вода остывала в этих банках медленнее.

Рассмотрим на конкретных примерах, как некоторые животные сохраняют тепло и приспосабливаются к суровым природным условиям.

Некоторые животные при похолодании пользуются своеобразными одеялами. Например, белки в сильные морозы ложатся в дупло и накрываются пушистым хвостом.

Кошки тоже подобным образом реагируют на похолодание. Люди заметили: если кошка ложится клубком и закрывает хвостом мордочку, жди морозов.

Подобным образом сберегают тепло водоплавающие птицы. У них есть особая железа на хвосте, которая вырабатывает жировую смазку. Их перья обильно смазаны жиром, и поэтому не промокают. Это позволяет птицам легко плавать и сохранять температуру тела.

Как сохранить тепло животному, если у него нет волосяного покрова, например, морским зверям, живущим в Арктике?

Такие животные обладают толстым слоем подкожного жира. Слой жира, как тёплая шуба окутывает тело и способствует сохранению тепла, так как жир обладает маленькой теплопроводностью. Например, моржи совсем лишены волосяного покрова, но у них очень толстый слой жира под кожей; у кашалота слой подкожного жира достигает почти полуметровой толщины. Толстенный слой подкожного жира у китов приспосабливает их к жизни в воде: он предохраняет от охлаждения, поэтому кит удерживает высокую температуру тела, находясь в ледяной воде Арктики. Так же жир помогает ему держаться на воде.

Толстый слой жира под кожей имеет белый медведь, поэтому он может плавать в ледяной воде.

Из литературных источников, мы узнали, что сотрудники агрометеорологической обсерватории измеряли температуру в разных слоях почвы, покрытой и не покрытой снегом. Измерения показала, что почва, покрытая снегом, промёрзла всего на 2 см, а не защищенная слоем снега на 30 см.

Значит, снег действительно плохо проводит тепло. Этим свойством снега пользуются некоторые животные. Они спасаются от мороза под снегом, и даже некоторые птицы. Например, тетерева спят зимой, зарывшись с головой в снег. Тепло и уютно.

Конвекция

Над лесом летали орлы. Они тяжело махали крыльями, но когда они поравнялись с просторной поляной, то неподвижно раскинули крылья в парящем полёте. Это объясняется тем, что на открытой поляне земля была больше согрета солнцем, чем там, где ее покрывали деревья, и над лужайкой поднимался сильный поток тёплого воздуха. Этим потоком и воспользовались орлы, чтобы набрать высоту [Приложение 3].

Для подтверждения этого примера мы провели опыт. Взяли небольшую бумажную вертушку и поставили над электрической лампочкой. Лампочку включили и через некоторое время вертушка начала вращаться. Это объясняется тем, что от нагретой лампочки нагревается воздух. Нагретый воздух начинает подниматься вверх, а холодный воздух опускается вниз и под действием поднимающегося нагретого воздуха начинает вращаться вертушка.

Но порой животным необходимо не только накапливать теплоту, но и избавляться от неё.

После проведения опроса в начальной школе, мы определили, что только 7% учащихся, известно о том, что животным необходимо избавляться от тепла.

Результаты опроса

Собака избавляется от лишней теплоты с помощью высунутого языка.

Так же собаки, как и кошки, во время жары растягиваются, чтобы увеличить площадь соприкосновения воздуха с телом. При этом увеличивается поток нагретого воздуха, который уходит от них вверх и уносит излишки тепла.

Ужи, как и многие рептилии, размножаются яйцами, которые откладывают в навоз или кучи перегноя. При гниении навоза и перегноя выделяется много тепла, которое необходимо для развивающегося зародыша и которое создает конвекционный поток воздуха. Уносящий вверх тёплый воздух вызывает поток свежего воздуха снизу и с боков, что обеспечивает вентиляцию, снабжение яиц кислородом и предохранение их мягких плёночных оболочек от высыхания благодаря повышенной влажности перегноя.

Хвост мартышки является регулятором её температуры. В жаркую погоду она пользуется им для охлаждения своего тела, отдавая через него окружающему воздуху лишнее тепло.

Терморегулятор имеет не только южноафриканская мартышка. Плавники китов, заячьи уши, хвосты драгоценных бобров тоже умеют регулировать температуру своих обладателей на основе явления конвекции.

Африканский слон имеет огромные уши, и это не случайно: они являются как бы холодильником для животного. Уши слона пронизаны густой сетью кровеносных сосудов, в них конвекционный поток воздуха нагретой крови, поступает из организма слона, отдает свое тепло воздуху; кровь возвращается в систему кровообращения холоднее на несколько градусов. А чтоб уши быстрее охлаждались, слоны, увеличивая конвекционный поток воздуха, отходящего от ушей, всё время ими обмахиваются [Приложение 2].

Излучение

Помимо теплопроводности и конвекции в природе наблюдается ещё один способ передачи теплоты, который называется излучением. Излучают энергию все тела. Чем выше температура тела, тем больше энергии передаёт оно путём излучения. При поглощении энергии тела нагреваются по-разному, в зависимости от состояния поверхности.

Свойство светлых тел отражать лучи широко используют садоводы. Например, деревья для защиты от заморозков белят известью, чтобы предотвратить их от сильного нагревания и раннего пробуждения. Уменьшив нагрев стволов, можно задержать цветение деревьев.

Проделаем опыт, который наглядно покажет, что чёрная поверхность сильнее излучает тепловые лучи. Обернём два одинаковых стакана двумя полосками белой бумаги и заклеим их по швам. Бумагу одного из стаканов закрасим снаружи чёрной тушью. Прогреем стаканы водой (осторожно, чтобы не замочить бумагу). Поставим их на столе на некотором расстоянии друг от друга и нальём в них из чайника до самых краёв очень горячую воду. Стаканы, наполненные горячей водой, находятся в одинаковых условиях, разница только в цвете их обёрток. Через пятнадцать минут измерив температуру, мы заметили, что в черном стакане вода остыла больше. Температура в белом стакане достигала 48’С, а в чёрном 47’С. Хотя разница и небольшая, всего на градус, но и этого достаточно, чтобы убедиться: быстрее остывает вода в чёрном стакане.

Термометр мы всегда держим на одном определенном уровне. Переставляя термометр из одного стакана в другой, мы заметили, как его ртутный столбик то поднимается, то опускается на тот самый градус разницы в температурах.

Таким образом, данный опыт доказывает, что черная поверхность сильнее излучает тепловые лучи, чем светлая.

Заключение

В природе наблюдаются различные способы передачи теплоты: теплопроводность, конвекция и излучение.

Ещё один способ передачи теплоты называется излучением. Мы выяснили, что излучают энергию все тела. Чем выше температура тела, тем больше энергии передаёт оно путём излучения. Так же мы определили, что при поглощении энергии тела нагреваются по-разному, в зависимости от состояния поверхности. Опыт, проведенный в результате исследования наглядно показал, что черная поверхность сильнее излучает тепловые лучи.

Таким образом, цель и задачи, поставленные в ходе исследования, были

выполнены. Гипотеза подтвердилась.

Практическая значимость заключается в том, что данные могут быть использованы на внеклассных мероприятиях с целью расширения кругозора обучающихся. А демонстрация представленных доступных опытов поможет познакомиться учащимся начальных классов с некоторыми тепловыми явлениями.

Список используемой литературы

1. Большая книга экспериментов для школьников. /Под ред. Антонеллы Меймни; Пер. с ит. И.Э. Мотылёвой. М. ООО Росмэн-Издат. 2001г./

2. Перельман М.И. Занимательная физика. кн. 1- Уфа. Слово. 1993.

3. Хилькевич С.С. Физика вокруг нас. М. Наука. 1985г.

4. Хомутовский В.Д. Тепловые явления (методические рекомендации по физике). Челябинск, 1991г.

5. Энциклопедия для детей т.16. Физика. Электричество и магнетизм. М. Аванта, 2011г.

теплопроводности воздуха (личные наблюдения).

Температура воды до охлаждения

Температура воды после охлаждения

Банка, обернутая шерстяным шарфом

Банка, поставленная в коробку с газетами

Источник

Презентация 8 класс «Роль тепловых явлений в жизни живых организмов»

роль тепловых явлений в жизни живых организмов

Описание презентации по отдельным слайдам:

Описание слайда:

Тема урока:
Роль тепловых явлений в жизни живых организмов

Описание слайда:

Цель обучения:
8.3.2.4 приводить примеры приспособления живых организмов к различной температуре

Описание слайда:

Предположите, какой из зайцев обитает в холодном климате, а какой – в теплом.
1 2 3

Описание слайда:

Значения температур, встречающихся в природе и технике

Описание слайда:

Приспособление животных к различной температуре
Из-за свойств цитоплазмы клеток все живые существа способны жить при температуре между 0 и 50˚С. Большинство местообитаний на поверхности нашей планеты имеет температуру именно в этих пределах. Для каждого вида выход за эти пределы означает гибель либо от холода, либо от жары. Однако имеются виды, которые могут приспосабливаться в экстремальным температурам и выдерживать их длительное время. Полярные воды с температурой 0˚С населены богатой и разнообразной фауной.

Описание слайда:

Для того чтобы сохранить температуру тела постоянной, животное должно либо уменьшить потери тепла эффективной защитой, либо увеличить производство тепла.
Защитная роль покровов животных (шерсть, перья, жировой слой) заключается в том, что они задерживают конвекционные потоки, замедляют испарение, ослабляют или совсем прекращают излучение.
Кончики лап и кончик носа не могут быть покрыты шерстью, перьями или жиром, так как иначе они не выполняли бы своих функций.
Уши, лапы, хвост тем короче, чем холоднее климат.
Хорошо известный прием защиты от холода – зимняя спячка.

Описание слайда:
Описание слайда:
Описание слайда:
Описание слайда:
Описание слайда:
Описание слайда:
Описание слайда:
Описание слайда:

С изменением температуры воздуха изменяется и температура почвы. Различные почвы в зависимости от цвета, структуры, увлажнения, экспозиции прогреваются по-разному. Нагреванию, как и охлаждению поверхности почвы, препятствует растительный покров. Днем температура воздуха под пологом леса всегда ниже, чем на открытых пространствах, а ночью в лесу теплее, чем в поле. Это сказывается на видовом составе животных: даже в одной местности они нередко бывают различны.

Описание слайда:

Список использованных ресурсов
Абиотические факторы среды и их влияние на организмы http://www.myshared.ru/slide/1218029/
https://infourok.ru/prezentaciya-po-fizike-teplovie-yavleniya-v-prirode-1126188.html
http://www.myshared.ru/slide/1311703/

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

роль тепловых явлений в жизни живых организмов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

роль тепловых явлений в жизни живых организмов

Курс профессиональной переподготовки

Физика: теория и методика преподавания в образовательной организации

роль тепловых явлений в жизни живых организмов

Курс повышения квалификации

Современные педтехнологии в деятельности учителя

Онлайн-конференция для учителей, репетиторов и родителей

Формирование математических способностей у детей с разными образовательными потребностями с помощью ментальной арифметики и других современных методик

Международная дистанционная олимпиада Осень 2021

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

также Вы можете выбрать тип материала:

Общая информация

Похожие материалы

Задачи для самостоятельного решения по теме «Механические колебания»

Контрольная работа по теме «Физика атома» 11 класс

Презентация по физике на тему «Получение и передача переменного электрического тока» (9 класс)

Практическая работа по физике на тему «Импульс тела» (СПО 1 курс)

Презентация по физике на тему «Колебательный контур» (9 класс)

Презентация по физике на тему «Электромагнитное поле» (9 класс)

Презентация по физике на тему «Явление самоиндукции» (9 класс)

Презентация по физике на тему «Явление электромагнитной индукции» (9 класс)

Не нашли то что искали?

Воспользуйтесь поиском по нашей базе из
5169438 материалов.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

роль тепловых явлений в жизни живых организмов

Российские студенты стали чемпионами мира по программированию

Время чтения: 1 минута

роль тепловых явлений в жизни живых организмов

На «Госуслугах» пройдет эксперимент по размещению документов об образовании

Время чтения: 2 минуты

роль тепловых явлений в жизни живых организмов

В пяти регионах России протестируют новую систему оплаты труда педагогов

Время чтения: 2 минуты

роль тепловых явлений в жизни живых организмов

Минпросвещения создаст цифровую платформу для колледжей по конструированию программ

Время чтения: 2 минуты

роль тепловых явлений в жизни живых организмов

Екатерина Костылева из Тюменской области стала учителем года России – 2021

Время чтения: 1 минута

роль тепловых явлений в жизни живых организмов

Понятие «образовательные услуги» будет исключено из закона об образовании

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Сообщение на тему: Роль тепловых явлений в жизни живых существ? Пожалуйста

Изменение температуры играет большую роль в природе. Привычный облик нашей планеты существует и может существовать только в узком интервале температур. Изменение температуры на 20-30 0С при смене времен года меняет весь облик Земли.
С наступлением весны начинается пробуждение природы. Лес одевается листвой, начинают зеленеть луга. Зимой же жизнь растений замирает. Еще более узкие интервалы температур необходимы для поддержания жизни теплокровных животных. Температура животных и человека поддерживается внутренними механизмами терморегуляции на строго определенном уровне. Изменение температуры на несколько градусов ведет к гибели организмов.

Температура тела живых существ по-разному зависит от температуры окружающей среды. Баланс тепла в организме складывается из его прихода и расхода. Источники поступления тепловой энергии делятся на внешние и внутренние. Внешнее, или экзогенное, тепло организм получает от более нагретых воды, воздуха, окружающих предметов, прямой солнечной радиации. При этом большую роль играют площадь покровов и их теплопроводность. Внутреннее, или эндогенное, тепло вырабатывается как обязательный атрибут обмена веществ. Любой организм выделяет в окружающую среду тепло в результате своей жизнедеятельности.
Для всего живого играет большую роль умение обеспечить себе условия для выживания, когда температура окружающей среды выше или ниже температуры, необходимой для жизнедеятельности организма. Для человека одним из важных атрибутов, является одежда. Основное назначение одежды — защита нашего организма от неблагоприятных воздействий внешней среды (низкая температура, ветер, туман, дождь, снег и др.). При помощи одежды мы создаём себе искусственно регулируемый микроклимат («желаемый климат»), независимый от погодных условий. Надевая ту или иную одежду, мы мысленно определяем её соответствие погодным условиям в данный момент. «Одевайся теплее» — приходится часто слышать в холодный день. В чём же заключается «теплота» одежды?

Теплоизоляционные свойства любого материала — ткани, меха и так далее, применяемого в одежде, зависят только от слоя инертного воздуха, заключённого в нём. Меховая подкладка, так же как и меховая одежда, обладает наилучшими теплоизоляционными свойствами, так как создаёт большой изоляционный слой воздуха. Поэтому чем более ткань насыщена воздухом, тем меньшей теплопроводностью она обладает, тем она «теплее». Если теплопроводность воздуха, например, принять за 1, то теплопроводность шерсти равна 6,1, шёлка — 19,2, хлопчатобумажной ткани и льняной — 29,9.
Исходя из этого лучшим средством для защиты от холода является шерстяная или меховая одежда. Не менее ценными теплозащитными свойствами обладает и пух. Но широкое применение хороших сортов шерсти, меха или пуха ограничено их дефицитом и дороговизной.

Источник

Урок физики Теплопередача в природе и технике. Роль конвекции в теплообмене. Роль тепловых явлений в жизни живых организмов. Человек в условиях холода.

Предмет: Физика и астрономия 8 Дата: ___________________________ Тақырып:

Урок: Теплопередача в природе и технике. Роль конвекции в теплообмене. Роль тепловых явлений в жизни живых организмов. Человек в условиях холода.

Оқыту мен тәрбиелеудiң мiндеттерi: Учебно – воспитательные цели:

1. Образовательная : разъяснить процесс теплопередачи с точки зрения физики, ознакомить учащихся с видами теплопередачи, ее значением в технике и в быту;

2. Воспитательная: воспитание уверенности в познаваемости физических явлений и процессов, понимания взаимосвязи между явлениями и процессами;

3. Развивающая: развитие умения мыслить, всех видов памяти, умение выделять главное, развитие видения логических связей внутри предмета, умение использовать полученные знания на практике.

Кұрал – жабдықтар, көрнектi құралдар: Оборудование, наглядные пособия:

учебник «Физика и астрономия 8», рабочие тетради, термометр, градусник

Сабақ түрi: Тип урока:

_______________________________________ изучение нового материала

Әдiс – тәсiлдер: Методы:

Сабақ барысы. Ход урока:

II . Опрос домашнего задания: проводится по вопросам к § учебника.

Изучение нового материала:

Мы можем привести множество примеров, когда внутренняя энергия тела увеличивается при контакте с более нагретым телом. Так, можно нагреть воздух в колбе, обливая колбу горячей водой или поднося к ней пламя спиртовки. Можно нагреть воду в сосуде, поставив его на горячую плиту. Нагревается ложка, опущенная в горячий чай. Остывает со временем горячая вода в комнате. Такой способ изменения внутренней энергии, называемый теплопередачей, имеет следующий механизм передачи энергии. Частицы более нагретого тела, имея большую кинетическую энергию, при контакте с менее нагретым телом передают энергию непосредственно частицам второго. Существуют три вида теплопередачи: теплопроводность, конвекция и излучение. Эти виды теплопередачи имеют свои особенности, однако передача теплоты при каждом из них всегда идет в одном направлении: от более нагретого тела к менее нагретому. При этом внутренняя энергия более нагретого тела уменьшается, а более холодного — увеличивается.. Внутренняя энергия может передаваться не только непосредственно от одного тела к другому, как, например, от горячей воды к опущенной в нее холодной ложке, но и через промежуточные тела. Так, через стенку чайника часть внутренней энергии от горячей электроплиты передается воде; через металлические трубы отопительной системы тепло передается воздуху, находящемуся в помещении и т.д. Внутренняя энергия может передаваться и от более нагретой части одного и того же тела к другой его части, менее нагретой. Явление передачи энергии от более нагретой части тела к менее нагретой или от более нагретого тела к менее нагретому через непосредственный контакт или промежуточные тела называется теплопроводностью. Теплопроводность можно наблюдать на следующем опыте. Нагреем на пламени спиртовки свободный конец медного стержня, укрепленного вторым концом в штативе (рис. 20). Предварительно к стержню с помощью пластилина или носка прикрепим на равных расстояниях друг от друга кнопки. Мы увидим, что, начиная от места нагревания, кнопки будут постепенно отделяться от стержня и падать. В чем же состоит процесс передачи внутренней энергии при теплопроводности? Для объяснения этого явления надо вспомнить внутреннее строение твердых, жидких и газообразных веществ. В твердом теле частицы постоянно находятся в колебательном движении, но не изменяют своего равновесного состояния. По мере роста температуры тела при его нагревании молекулы начинают колебаться интенсивнее, так как увеличивается их потенциальная и кинетическая энергия. Часть этой увеличившейся энергии постепенно передается от одной частицы к другой, т.е. от одной части тела к соседним частям тела. Но не все твердые тела одинаково передают энергию. Среди них имеются так называемые изоляторы, у которых механизм теплопроводности происходит достаточно медленно, К ним относятся асбест, картон, бумага, войлок, гранит, дерево, стекло и ряд других твердых тел. Теплопроводность изоляторов в сотни и тысячи раз меньше по сравнению с теплопроводностью металлов. Объяснить это можно следующим образом. В металлах находится большое число свободных электронов. Они перемещаются в пространстве между узлами кристаллической решетки, из которых состоят все металлы. Эти электроны с большой скоростью переносят свою энергию от более нагретой части металла к его менее нагретой. Поэтому в опыте с нагреванием медного стержня сначала отпадали те кнопки, которые располагались ближе к пламени, а затем по очереди все остальные. Металлы имеют большую теплопроводность, особенно медь, серебро. Они являются хорошими проводниками тепла. В жидкостях внутренняя энергия переносится из более нагретой области в менее нагретую при соударениях молекул и частично за счет диффузии: более быстрые молекулы проникают в менее нагретую область. У жидкостей, за исключением расплавленных металлов, например ртути, теплопроводность невелика. В газах, особенно разреженных, молекулы находятся на достаточно больших расстояниях друг от друга, поэтому их Теплопроводность еще меньше, чем у жидкостей. Явление диффузии при теплопередаче в газах проявляется больше, чем в жидкостях. Совершенным изолятором является вакуум, потому что в нем отсутствуют частицы для передачи внутренней энергии. В зависимости от внутреннего строения теплопроводность разных веществ (твердых, жидких, газообразных) различна. Теплопроводность зависит от характера переноса энергии в веществе и не связана с перемещением самого вещества в теле. Различную теплопроводность веществ вы знаете из жизненного опыта. Так, алюминиевая или серебряная ложка нагревается быстрее по сравнению со стальной. Если вы потрогаете кусок ткани и металлический прут руками в холодный день, то металл покажется вам гораздо холоднее, чем ткань, хотя они имеют одинаковую температуру. Так почему же металл кажется холоднее? Дело в том, что металл проводит тепло от руки быстрее, чем ткань. Существует много простых экспериментов, с помощью которых можно показать различную теплопроводность материалов. Если пламенем спиртовки нагревать концы медного и железного стержней, на которые носком насажены кнопки, то можно легко обнаружить, что быстрее отпадут кнопки с медного стержня, чем с железного (рис. 21). Стеклянный стержень нагревается еще медленнее, чем медный (рис. 22). Почему так происходит? Дело в том, что медь имеет значительно большую теплопроводность, чем железо, а теплопроводность железа больше, чем у стекла. Примером хорошего проводника тепла в домашних условиях является горячий водяной радиатор. Он сделан из металла, чтобы горячая вода внутри его передавала тепло как можно быстрее в комнату и согревала воздух, соприкасающийся с ним. Жидкости плохие проводники теплоты. Если подогревать воду вверху пробирки, вода там быстро закипает. Однако для того чтобы растаял лед на дне пробирки (рис. 23), требуется длительное время. Это говорит о том, что и вода, и стекло — плохие проводники тепла, так как имеют малую теплопроводность. Следует помнить, что плохие проводники тепла и охлаждаются дольше, чем металлические. Вещества с малой теплопроводностью применяют там, где необходимо сохранить энергию. Так, посуда из закаленного стекла длительное время сохраняет горячей пищу, находящуюся внутри. Кирпичные стены хорошо предохраняют воздух в комнате от охлаждения. В морозное утро зимой вы можете увидеть птиц с распушенными перьями. В таком положении между перьями помещается больше воздуха, и птица лучше изолируется от холода.

Теплопроводность воздуха и хлопка приблизительно одинакова, потому что хлопок содержит в себе большое количество воздуха. Плохая теплопроводность газов позволяет взять в руку кусок сухого льда, температура которого —78°С, и даже держать на ладони каплю жидкого азота, имеющего температуру —1 96°С. Это объясняется тем, что при очень энергичном кипении капля жидкости или твердого тела покрывается рубашкой” и образовавшийся слой газа служит теплоизолятором. Такое состояние жидкости образуется и в том случае, когда вода попадает на очень горячую сковороду. Очень важным является создание учеными новых материалов с хорошей теплоизоляцией. Один из таких материалов использован при облицовке корпуса космического корабля. Это плитки на керамической основе толщиной 10 мм. С одной стороны плитки нагреты до температуры 1000°С, с другой стороны не нагреты совсем.

Известно, что теплопроводность воды мала, и при нагревании верхнего слоя воды нижний ее слой остается холодным (см. рис. 23). Однако воду в чайниках, кастрюле, котлах довольно быстро доводят до кипения. Как же нагревается вода? Воздух еще хуже, чем вода, проводит тепло. Почему же зимой во всех частях комнаты устанавливается одинаковая температура? Для того чтобы ответить на эти вопросы, проделаем следующий опыт. Расположим стеклянную трубку с водой над пламенем горелки так, как показано на рис. 25. В обоих концах трубки помещены одинаковые термометры. При нагревании показания одного термометра (на рисунке — слева) остаются почти без изменений, а другого (на рисунке справа) начнут быстро увеличиваться. Слева термометр показывает низкую температуру, так как теплопроводность воды ничтожно мала. Термометр справа показывает большую температуру вследствие того, что вода при нагревании расширяется. Ее плотность при этом уменьшается, и поэтому под действием архимедовой силы более легкие нагретые слои воды поднимаются вверх. Вода в чайнике быстро закипает по этой же причине. Нижние слои воды, нагреваясь, расширяются, становятся легче и поднимаются кверху, а на их место поступает холодная вода. Почему батареи центрального отопления помещаются у пола, а форточки делаются в верхней части окна? Если было бы наоборот, мы быстро бы обнаружили, что комната не прогревается батареей и не проветривается при открытой форточке. При соприкосновении с горячей батареей воздух в нижних слоях комнаты начинает нагреваться. Он расширяется, становится легче и под действием архимедовой силы поднимается вверх, к потолку. На его место приходят более тяжелые слои холодного воздуха. Нагреваясь, они также уходят к потолку. Возникает непрерывное течение воздуха: теплого — снизу вверх и холодного — сверху вниз (рис.26). Открывая форточку, мы впускаем в комнату поток холодного воздуха. Он тяжелее комнатного и идет вниз, вытесняя теплый воздух. Теплый же воздух поднимается вверх и уходит в форточку. В рассмотренных нами случаях мы наблюдаем вид теплопередачи, который называется конвекцией (от лат. слова «смешивание»). Конвекция — это процесс теплопередачи, при котором энергия переносится самими струями жидкости или газа. Итак, в жидкостях и газах, кроме вакуума, теплопередача часто осуществляется конвекцией, т.е. механическим перемещением нагретых частей жидкости или газа. Конвекция отсутствует в твердых телах и не имеет места в вакууме. Почти всегда в жидкостях (или газах) при их соприкосновении с твердыми стенками, имеющими более высокую или более низкую температуру, возникают конвекционные течения. При этом нагревшаяся жидкость (или газ) поднимается вверх, а охладившаяся — опускается вниз. Теплопередачу с помощью конвекции легко можно наблюдать на следующем опыте (рис. 27). Стеклянную колбу с водой, на дне которой теплопроводности, помещен кристаллик марганцевокислого калия, нагревают с помощью пламени спиртовки или свечи. При этом можно наблюдать, как нижние слои окрашенной воды поднимаются вверх, перенося с собой энергию. Более холодные верхние слои воды опускаются вниз и выталкивают нагретую окрашенную воду. Благодаря такому движению вся вода равномерно прогревается. Именно поэтому жидкости и газы нагревают, как правило, снизу: чайник с водой ставят на плиту или на огонь, батареи центрального отопления помещают у пола. В очень узких слоях, например, в слое воздуха между двумя близко расположенными оконными стеклами, конвекционные течения слабы. Познакомившись с явлением конвекции, можно легко объяснить, почему форточки делают в верхней части окна, а керосиновая лампа хорошо разгорается, если на нее надето высокое стекло; почему заводские трубы делают высокими. Конвекционные течения в атмосфере не только играют большую роль для теплопередачи, но и обусловливают ветры. Они вызывают постоянное перемешивание воздуха; благодаря этому воздух в разных местах поверхности земли имеет практически один и тот же состав. Конвекционные течения в атмосфере поддерживают процесс горения, обеспечивая приток кислорода к пламени и удаляя продукты сгорания. Простейший опыт, схематично имитирующий этот процесс, изображен на рис. 28. Рассмотренная нами конвекция является естественной, или свободной. Широко используясь в быту и технике, естественная конвекция часто оказывается недостаточной. В таких случаях прибегают к вынужденной конвенции, когда для равномерного и быстрого прогревания жидкостей или газов их перемешивают насосом или мешалкой. В условиях невесомости естественная конвекция невозможна. Поэтому при космических полетах без принудительной конвекции не будет охлаждаться корпус спутника или корабля, гореть свеча. Мы не сможем пользоваться спичками, газовыми горелками, так как продукты горения не удаляются от пламени и оно гаснет из-за недостатка кислорода.

Стоя у раскаленной печи, мы ощущаем тепло. Энергия Солнца передается к нам на Землю. Поднося руку к нагретому утюгу или к пламени костра, мы даже снизу (т.е. там, где подтекает холодный воздух) чувствуем тепло. Как же во всех перечисленных случаях передается тепло? Явно не путем теплопроводности, так как воздух плохой проводник тепла, И не путем конвекции, потому что конвекционные потоки поднимаются всегда вверх. Чтобы ответить на эти вопросы, проделаем опыт, используя теплоприемник (рис. 30). Теплоприемник — это прибор, представляющий собой плоскую круглую коробочку, одна сторона которой черная, а другая блестящая. Внутри него имеется воздух, который при нагревании может расширяться и выходить наружу через отверстие. Соединим теплоприемник с жидкостным манометром и расположим его около сильно нагретой гири или плитки (рис.31). Мы заметим перемещение столбика жидкости в манометре, что указывает на нагревание и расширение воздуха в теплоприемнике при передаче ему тепла от гири. Если поместить между нагретой гирей и приемником тепла экран, например лист бумаги, то нагревание прекращается. В данном случае теплота передается от нагретого тела к теплоприемнику с помощью невидимых глазом тепловых лучей. Этот вид теплопередачи называют излучением, или лучистым теплообменом. В 9 классе вы узнаете, что этими лучами являются электромагнитные волны: радиоволны, инфракрасные, ультрафиолетовые, рентгеновские, световые. В приведенном опыте сильно нагретая гиря излучает, т.е. передает, свою внутреннюю энергию. Наоборот, теплоприемник нагревается, так как получает или поглощает энергию, излучаемую от нагретой гири. Поглощением называется процесс превращения энергии излучения во внутреннюю энергию тела. Излучением (или лучистым теплообменом) называется процесс передачи энергии от одного тела к другому с помощью электромагнитных волн.

От чего зависит интенсивность излучения? Поднесем теплоприемник на одинаковое расстояние поочередно к стакану с горячей водой (40°С), к пламени спиртовки (50 0 — 100°С) и к лампе накаливания (1500°С). Смещение жидкости в теплоприемнике будет наибольшим в последнем случае. Отсюда можно сделать вывод: интенсивность излучения тем выше, чем больше температура тела. Передача энергии излучением не нуждается в среде: тепловые лучи могут распространяться и через вакуум. Путем излучения передается высвобождаемая Солнцем энергия на Землю. Ежесекундно Земля получает при этом энергию около 10 14 кДж. Когда часть поступающей от Солнца энергии поглощается Землей, то наблюдается увеличение внутренней энергии Земли и соответствующее повышение температуры. Излучение, идущее от Солнца, прогревает не только поверхность Земли, но и ее атмосферу, моря и океаны. В жаркую солнечную погоду, желая защититься от солнечного излучения, мы надеваем на голову шляпу. Вспомним, что солнечное излучение особенно сильно нагревает те места нашего тела, которые закрыты темной одеждой. Это означает, что излучение неодинаково протекает в тела, неодинаково нагревает их в зависимости от состояния поверхности. Чтобы убедиться в этом на опыте, теплоприемник поворачивают к нагретому телу сначала черной, а затем блестящей стороной. При этом столбик жидкости в манометре в первом случае перемещается на большее расстояние, чем во втором. Следовательно, белая поверхность хуже поглощает энергию, чем черная. Тела с белой поверхностью и излучают меньше энергия, чем черные, при равной температуре. Доказать это можно на следующем опыте. В два одинаковых сосуда, но выкрашенных один — белой, а другой — черной краской, наливают кипяток и вставляют термометры. Через некоторое время по термометрам можно определить, что вода в черном сосуде остывает быстрее, а в белом — медленнее. Черная поверхность — лучший излучатель и лучший поглотитель, а затем следуют грубая, белая и полированная поверхности. Хорошие поглотители энергии — хорошие излучатели, а плохие поглотители — плохие излучатели энергии. Солнце, с точки зрения физики, — большой самоуправляемый источник огромной энергии. Выделение энергии происходит в центральной части, простирающейся до 1/З его радиуса. На протяжении второй трети радиуса находятся слои, которые передают энергию только путем поглощения и переизлучения энергии. Этот процесс сопутствует уменьшению температуры снаружи. На протяжении последней трети радиуса вещество подобно кипящей жидкости. В нем происходит конвекция, перемешивание вещества, способствующее более быстрому переносу энергии наружу (конвективная зона). Внешние слои Солнца, излучение которых может наблюдаться, называются атмосферой. Свойства атмосферы и происходящие в ней явления во многом определяются конвективной зоной:

отдельные массы поднимающихся в ней горячих газов заставляют колебаться нижние слои атмосферы. В результате этих колебаний порождаются волны, которые распространяются вверх. Эти волны отдают газу наружных слоев свою энергию и нагревают его. По этой причине температура в солнечной атмосфере с некоторого уровня перестает снижаться и начинает повышаться. Для того, чтобы был понятен механизм тепловых процессов, мы рассмотрели теплопроводность, конвекцию и излучение раздельно. Однако часто на практике все они происходят одновременно. Вследствие этого, создавая тот или иной прибор или машину, нужно учитывать все три вида теплопередачи, чтобы действие машин было эффективным. В одних случаях необходимо обогревать и сохранять тепло. В других — очень важно охлаждение. Для обогрева жилища используют домашний радиатор. Металл, из которого изготовлен радиатор, хороший проводник, и поэтому благодаря теплопроводности тепло быстро передается от металла в окружающий воздух. Передача энергии от теплой воды в радиаторе к воздуху в комнате осуществляется за счет теплопроводности, а распределение энергии и прогревание воздуха в помещении — за счет конвенции. Явление конвекции учитывается в системе центрального водяного отопления помещений. Горячая вода с теплоэлектроцентрали подается в расширительный бак, расположенный на чердаке здания. Из бака по системе труб вода поступает в отопительные радиаторы. Здесь вода отдает свою энергию воздуху в помещении и опускается вниз, где она поступает в котел, нагревается в нем и снова поднимается вверх (рис. 32). В последнее время большое внимание уделяется тепловой изоляции домов в целях экономии топлива. В качестве изоляционного материала используют пористые стенки. Стены заполняются таким веществом, как пластмассовая пена, в которой имеются маленькие пузырьки воздуха. В этом случае отсутствует конвекция и улучшается изоляция. Двойные рамы в окне также улучшают изоляцию. Между двумя стеклами содержится слой воздуха, который является хорошим изолятором. На крышах домов размещается изолирующий материал в виде гранул или волокон для предотвращения потерь тепловой энергии путем теплопроводности. Охлаждающие устройства помещаются так, чтобы осуществлялась естественная конвекция. Морозильная камера в холодильнике помещена сверху. В этом случае холодный воздух опускается ко дну, а теплый воздух наверху постоянно охлаждается. Аналогично располагают кондиционеры, вентиляторы, форточки. В сельском хозяйстве виды теплопередачи учитываются и используются в устройстве теплиц, погребов, в защите посадок с помощью снежного покрова. Температура нижнего слоя воздуха, прилегающего к земле, и поверхностного слоя почвы влияет на развитие растений. Днем почва поглощает энергию и нагревается, ночью, наоборот, охлаждается. Причем темная, вспаханная почва сильней нагревается излучением, но быстрее и охлаждается, чем почва, покрытая растительностью. На теплообмен между почвой и воздухом влияет также погода. Большое изменение в тепловой баланс Земли вносят облака. Они задерживают лучи, поэтому в пасмурный день прохладнее, чем в ясный. Зато в ясную ночь холоднее, чем в пасмурную. Заморозки могут наступить только в ясную, безоблачную ночь, когда тепловое излучение почвы больше, чем тепловое излучение атмосферы, и оно не задерживается облаками. Полному использованию излучения Солнца в целях повышения температуры почвы и прилегающего к ней воздуха способствуют теплицы. Участок почвы покрывают стеклянными рамами или прозрачными пленками, которые хорошо пропускают внутрь видимое солнечное излучение. Попадая на темную почву, эти лучи нагревают ее. Тепловая энергия, излучаемая нагретой поверхностью земли, плохо проходит через стекло или пленку. Кроме того, такая поверхность препятствует осуществлению конвекция и действует как энергии. Внутри теплиц температура выше, чем на открытом грунте, примерно на 10°С. Солнечное излучение сильнее нагревает поверхность Земли и атмосферу в низких широтах, чем в высоких, северных. Однако перенос тепла в атмосфере не подобен конвекции в комнате — переносу тепла от горячей печи к холодному окну. Движения воздуха в атмосфере носят очень сложный, беспорядочный характер. Основная причина этого — большая скорость вращения Земли вокруг своей оси. Примером возникновения конвективного течения в атмосфере является образование ветров с больших водоемов к суше и наоборот — морских и береговых бризов. В течение дня температура земли становится выше, чем моря. Теплый воздух расширяется, становится менее плотным. Этот воздух поднимается вверх, а более холодный воздух над морем замещает его. Возникает циркулирующее течение (рис. 33, а). Ночью происходит обратный процесс. Земля быстрее охлаждается до температуры ниже температуры моря. Поэтому воздух над морем теплее воздуха над землей. Возникает циркуляционный конвективный поток в обратном направлении. Днем ветер дует с моря на сушу — морской бриз, ночью — с суши на море — береговой бриз (рис. 33,6). Явления теплопередачи в природе характеризуются огромными масштабами: ветер может достичь скорости 280 км/ч. Самый сильный ветер — торнадо, — способный скрутить металлические столбы, поднять и перенести на другое место автомашину, достигает скорости 300 м/с. В Казахстане на западе между Аралом и Каспием и на юго-востоке имеются области, где постоянно дуют сильные ветры. Одним из таких известных мест являются Жонгарские ворота, находящиеся на юго-востоке республики. Воздушные массы попадают с севера в расщелину Жонгарских горных хребтов, начинающихся на границе между Тянь-Шанем и Жонгарским Алатау. Здесь формируется область высокого атмосферного давления и при этом происходит перемещение более плотных холодных воздушных масс в область менее плотного воздуха. Дуя с юго-востока в течение всего года, эти ветры особенно усиливаются зимой. Прорываясь через Жонгарские ворота на запад, они обусловливают резкое понижение температуры на всем пути следования воздушных масс. Эти ветры холодные и как следствие — сухие. Зимой они формируют очень холодную и малоснежную погоду. Древние казахи и монголы назвали их ветрами Эби”. Позже это явление обнаружил и исследовал русский естествоиспытатель А.И. Воейков и поэтому в его честь воздушная трасса от Жонгарских ворот в Центральной Азии до Европы названа “осью Воейкова”. Для предотвращения таяния льда, мороженого, сохранения горячей пищи и воды пользуются термосом. Колба термоса — очень полезное изобретение, почти полностью исключающее теплопроводность, конвекцию и излучение

(рис. 34). Она состоит из стеклянного сосуда с двойными стенками и пробкой. Из пространства между стенками выкачивается воздух и создается вакуум. Внутренние поверхности стенок, между которыми создан вакуум, посеребрены для уменьшения потерь тепловой энергии через излучение. Причем внутренняя стенка — плохой излучатель, а внешняя стенка — плохой поглотитель энергии. Лишенное воздуха пространство между стенками не может передавать тепловую энергию ни путем теплопроводности, ни путем конвекции. Важна роль пробки. Она предотвращает потери тепла, устанавливающегося над поверхностью жидкости, помещенной в колбу термоса. Чтобы защитить хрупкое стекло от повреждений, термос помещают в картонный или металлический футляр. Сверху футляра навинчивают колпачок. Передача тепловой энергии — это двусторонний процесс, и колба термоса используется Для сохранения как холодных, так и горячих веществ.

1. На севере меховые шапки носят, защищаясь от холода, а на юге (в Туркмении) — от жары. Объясните, почему.

2. В алюминиевую и стеклянную кастрюлю одинаковой вместимости наливают горячую воду. Какая из кастрюль быстрее нагреется до температуры налитой в нее воды?

3. Какой из кирпичей — обыкновенный или пористый обеспечит лучшую теплоизоляцию здания? Почему?

4. На каком из участков поля — покрытом снегом или льдом лучше сохранятся озимые посевы? Почему?

5. Почему каменный пол кажется более холодным, чем деревянный, в одном и том же помещении?

6. В каком случае нагретая деталь быстрее охладится: если положить ее на деревянную подставку или на стальную плиту? Почему?

7. Мука из-под жерновов выходит горячей. Хлеб из печи также вынимают горячим. Чем вызывается в каждом из этих случаев увеличение внутренней энергии тела (муки, хлеба)? 8. В одном стакане находится холодная вода массой 200 г, в другом горячая той же массы. В каком из стаканов вода имеет большую внутреннюю энергию?

1. Почему в то время, когда начинает топиться печь, в комнате наблюдается понижение температуры воздуха?

2. В какой трубе лучше образуется тяга: кирпичной или металлической, если они имеют одинаковый диаметр и одинаковую высоту?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *