р д триггер биография

Что такое триггер, для чего он нужен, их классификация и принцип работы

Триггер – элемент цифровой техники, бистабильное устройство, которое переключается в одно из состояний и может находиться в нем бесконечно долго даже при снятии внешних сигналов. Он строится из логических элементов первого уровня (И-НЕ, ИЛИ-НЕ и т.д.) и относится к логическим устройствам второго уровня.

На практике триггеры выпускаются в виде микросхем в отдельном корпусе или входят в качестве элементов в состав больших интегральных схем (БИС) или программируемых логических матриц (ПЛМ).

р д триггер биография

Классификация и типы синхронизации триггеров

Триггеры делятся на два больших класса:

Принципиальное различие между ними в том, что у первой категории устройств уровень выходного сигнала меняется одновременно с изменением сигнала на входе (входах). У синхронных триггеров изменение состояния происходит только при наличии сихронизирующего (тактового, стробирующего) сигнала на предусмотренном для этого входе. Для этого предусмотрен специальный вывод, обозначаемый буквой С (clock). По виду стробирования синхронные элементы делятся на два класса:

У первого типа уровень выхода меняется в зависимости от конфигурации входных сигналов в момент появления фронта (переднего края) или спада тактового импульса (зависит от конкретного вида триггера). Между появлением синхронизирующих фронтов (спадов) на входы можно подавать любые сигналы, состояние триггера не изменится. У второго варианта признаком тактирования является не изменение уровня, а наличие единицы или нуля на входе Clock. Также существуют сложные триггерные устройства, классифицируемые по:

Сложные элементы имеет ограниченное применение в специфических устройствах.

Типы триггеров и принцип их работы

Существует несколько основных типов триггеров. Перед тем, как разобраться в различиях, следует отметить общее свойство: при подаче питания выход любого устройства устанавливается в произвольное состояние. Если это критично для общей работы схемы, надо предусматривать цепи предустановки. В простейшем случае это RC-цепочка, которая формирует сигнал установки начального состояния.

RS-триггеры

Самый распространенный тип асинхронного бистабильного устройства – RS-триггер. Он относится к триггерам с раздельной установкой состояния 0 и 1. Для этого имеется два входа:

Имеется прямой выход Q, также может быть инверсный выход Q1. Логический уровень на нём всегда противоположен уровню на Q – это бывает удобно при разработке схем.

При подаче положительного уровня на вход S на выходе Q установится логическая единица (если есть инверсный выход, он перейдет на уровень 0). После этого на входе установки сигнал может меняться как угодно – на выходной уровень это не повлияет. До тех пор, пока единица не появится на входе R. Это установит триггер в состояние 0 (1 на инверсном выводе). Теперь изменение сигнала на входе сброса никак не повлияет на дальнейшее состояние элемента.

р д триггер биография

Важно! Вариант, когда на обоих входах присутствует логическая единица, является запретным. Триггер установится в произвольное состояние. При разработке схем такой ситуации надо избегать.

р д триггер биография

RS-триггер можно построить на основе широко распространенных двухвходовых элементов И-НЕ. Такой способ реализуем как на обычных микросхемах, так и внутри программируемых матриц.

Один или оба входа могут быть инверсными. Это означает, что по этим выводам триггер управляется появлением не высокого, а низкого уровня.

р д триггер биография

Если построить RS-триггер на двухвходовых элементах И-НЕ, то оба входа будут инверсными – управляться подачей логического нуля.

Существует стробируемый вариант RS-триггера. У него имеется дополнительный вход С. Переключение происходит при выполнении двух условий:

Такой элемент применяют в случаях, когда переключение надо задержать, например, на время окончания переходных процессов.

D-триггеры

D-триггер («прозрачный триггер», «защелка», latch) относится к категории синхронных устройств, тактируемых по входу С. Также имеется вход для данных D (Data). По функциональным возможностям устройство относится к триггерам с приёмом информации по одному входу.

Пока на входе для синхронизации присутствует логическая единица, сигнал на выходе Q повторяет сигнал на входе данных (режим прозрачности). Как только уровень строба перейдет в состояние 0, на выходе Q уровень останется тем же, что был в момент перепада (защелкнется). Так можно зафиксировать входной уровень на входе в любой момент времени. Также существуют D-триггеры с тактированием по фронту. Они защёлкивают сигнал по положительному перепаду строба.

р д триггер биография

На практике в одной микросхеме могут объединять два типа бистабильных устройств. Например, D и RS-триггер. В этом случае входы Set/Reset являются приоритетными. Если на них присутствует логический ноль, то элемент ведёт себя как обычный D-триггер. При появлении хотя бы на одном входе высокого уровня, выход устанавливается в 0 или 1 независимо от сигналов на входах С и D.

р д триггер биография

Прозрачность D-триггера не всегда является полезным свойством. Чтобы её избежать, применяются двойные элементы (flip-flop, «хлопающий» триггер), они обозначаются литерами TT. Первым триггером служит обычная защёлка, пропускающая входной сигнал на выход. Второй триггер служит элементом памяти. Тактируются оба устройства одним стробом.

р д триггер биография

T-триггеры

T-триггер относится к классу счётных бистабильных элементов. Логика его работы проста – он изменяет своё состояние каждый раз, когда на его вход приходит очередная логическая единица. Если на вход подать импульсный сигнал, выходная частота будет в два раза выше входной. На инверсном выходе сигнал будет противофазен прямому.

р д триггер биография

Так работает асинхронный Т-триггер. Также существует синхронный вариант. При подаче импульсного сигнала на тактирующий вход и при наличии логической единицы на выводе T, элемент ведёт себя так же, как и асинхронный – делит входную частоту пополам. Если на выводе Т логический ноль, то выход Q устанавливается в низкий уровень независимо от наличия стробов.

р д триггер биографияJK-триггеры

Этот бистабильный элемент относится к категории универсальных. Он может управляться раздельно по входам. Логика работы JK-триггера похожа на работу RS-элемента. Для установки выхода в единицу используется вход J (Job). Появление высокого уровня на выводе K (Keep) сбрасывает выход в ноль. Принципиальным отличием от RS-триггера является то, что одновременное появление единиц на двух управляющих входах не является запретным. В этом случае выход элемента меняет свое состояние на противоположное.

р д триггер биография

Если выходы Job и Keep соединить, то JK-триггер превращается в асинхронный счётный Т-триггер. Когда на объединённый вход подаётся меандр, на выходе будет в два раза меньшая частота. Как и у RS-элемента, существует тактируемый вариант JK-триггера. На практике применяются, в основном, именно стробируемые элементы такого типа.

Практическое использование

Свойство триггеров сохранять записанную информацию даже при снятии внешних сигналов позволяет применять их в качестве ячеек памяти ёмкостью в 1 бит. Из единичных элементов можно построить матрицу для запоминания двоичных состояний – по такому принципу строятся статические оперативные запоминающие устройства (SRAM). Особенностью такой памяти является простая схемотехника, не требующая дополнительных контроллеров. Поэтому такие SRAM применяются в контроллерах и ПЛМ. Но невысокая плотность записи препятствует использованию таких матриц в ПК и других мощных вычислительных системах.

Выше упоминалось использование триггеров в качестве делителей частоты. Бистабильные элементы можно соединять в цепочки и получать различные коэффициенты деления. Та же цепочка может быть использована в качестве счетчика импульсов. Для этого надо считывать с промежуточных элементов состояние выходов в каждый момент времени – получится двоичный код, соответствующий количеству пришедших на вход первого элемента импульсов.

В зависимости от типа примененных триггеров, счетчики могут быть синхронными и асинхронными. По такому же принципу строятся преобразователи последовательного кода в параллельный, но здесь используются только стробируемые элементы. Также на триггерах строятся цифровые линии задержки и другие элементы двоичной техники.

р д триггер биография

RS-триггеры используются в качестве фиксаторов уровня (подавителей дребезга контактов). Если в качестве источников логического уровня применяются механические коммутаторы (кнопки, переключатели), то при нажатии эффект дребезга сформирует множество сигналов место одного. RS-триггер с этим успешно борется.

Область применения бистабильных устройств широка. Круг решаемых с их помощью задач во многом зависит от фантазии конструктора, особенно в сфере нетиповых решений.

р д триггер биография

Что такое компаратор напряжения и для чего он нужен

р д триггер биография

Режимы работы, описание характеристик и назначение выводов микросхемы NE555

р д триггер биография

Что такое операционный усилитель?

р д триггер биография

Что такое термистор, их разновидности, принцип работы и способы проверки на работоспособность

р д триггер биография

Что такое диодный мост, принцип его работы и схема подключения

р д триггер биография

Что такое аттенюатор, принцип его работы и где применяется

Источник

Триггеры

Триггеры — это устройства с двумя состояниями. Они предназначены для запоминания двоичной информации. Использование триггеров позволяет реализовывать устройства оперативной памяти (то есть памяти, информация в которой хранится только на время вычислений). Однако это не единственная их область применения. Триггеры широко используются для построения цифровых устройств с памятью, таких как счётчики, преобразователи последовательного кода в параллельный, последовательные порты или цифровые линии задержки, применяемые в составе цифровых фильтров.

Следует отметить, что выпускникам ВУЗов, не знающим принципы работы триггеров, достаточно сложно найти работу. Поэтому изучению данного материала следует уделить особое внимание. Простейшая схема триггера, позволяющая запоминать двоичную информацию, может быть построена на двух логических инверторах, охваченных положительной обратной связью. Она приведена на рисунке 1.

р д триггер биография
Рисунок 1. Схема простейшего триггера, построенного на инверторах

В схеме любого триггера может быть только два состояния — на выходе Q присутствует логическая единица и на выходе Q присутствует логический ноль. Если логическая единица присутствует на выходе Q, то на инверсном выходе триггера будет присутствовать логический ноль, который после очередного инвертирования подтверждает уровень логической единицы на выходе Q. И наоборот, если на выходе триггера Q присутствует логический ноль, то на инверсном выходе будет присутствовать логическая единица.

Описанная ситуация на выводах триггера будет сохраняться до тех пор пока включено питание. Но вот вопрос — а как записывать в простейший триггер необходимую нам информацию? Для этого в схеме потребуются входы записи нуля и записи единицы.

RS-триггеры

RS-триггер получил название по названию своих входов. Вход S (Set — установить англ.) позволяет устанавливать выход Q в единичное состояние. (Устанавливать означает записывать логическую единицу). Вход R (Reset — сбросить англ.) позволяет сбрасывать выход Q (Quit — выход англ.) в нулевое состояние.

Для реализации RS-триггера воспользуемся логическими элементами «2И-НЕ». Его принципиальная схема, реализованная на логических элементах «2И-НЕ», приведена на рисунке 2.

р д триггер биография
Рисунок 2. Схема RS-триггера на логических элементах «2И-НЕ». Входы R и S инверсные (активный уровень’0′)

Рассмотрим работу изображенной на рисунке 2 схемы триггера подробнее. Пусть на входы R и S подаются единичные потенциалы. Если на выходе верхнего логического элемента «2И-НЕ» Q присутствует логический ноль, то на выходе нижнего логического элемента «2И-НЕ» появится логическая единица. Эта единица подтвердит логический ноль на выходе триггера Q. Если на выходе верхнего логического элемента «2И-НЕ» Q первоначально присутствует логическая единица, то на выходе нижнего логического элемента «2И-НЕ» появится логический ноль. Этот ноль подтвердит логическую единицу на выходе Q. То есть, при единичных уровнях на входах R и S, схема RS-триггера работает точно так же, как и схема триггера на инверторах.

Подадим на вход S триггера нулевой потенциал. Согласно таблице истинности логического элемента «2И-НЕ» на выходе Q появится единичный потенциал. Это приведёт к появлению на инверсном выходе триггера нулевого потенциала. Теперь, даже если снять нулевой потенциал с входа S, на выходе триггера останется единичный потенциал. То есть мы записали в триггер логическую единицу.

Точно так же можно записать в триггер и логический ноль. Для этого следует воспользоваться входом R. Так как активный уровень на входах триггера оказался нулевым, то эти входы — инверсные. Составим таблицу истинности RS-триггера. Входы R и S в этой таблице будем использовать прямые, то есть запись нуля, и запись единицы будут осуществляться единичными потенциалами (таблица 1).

Таблица 1. Таблица истинности RS-триггера.

RSQ(t)Q(t+1)Пояснения
0000Режим хранения информации (триггером) R=S=0
0011
0101Режим установки триггера в единичное состояние S=1
0111
1000Режим записи нуля в триггер R=1
1010
110*R=S=1 запрещенная комбинация
111*

RS-триггер можно построить и на логических элементах «2ИЛИ-НЕ». Схема RS-триггера, построенного на логических элементах «2ИЛИ-НЕ» приведена на рисунке 3. Единственное отличие в работе этой схемы триггера будет заключаться в том, что его сброс и установка будет производиться единичными логическими уровнями. Эти особенности реализации схемы триггера связаны с принципами работы инверсной логики, которые рассматривались ранее.

р д триггер биография
Рисунок 3. Схема простейшего RS триггера на логических элементах «2ИЛИ-НЕ». Входы R и S прямые (активный уровень ‘1’)

Так как RS-триггер при построении его на логических элементах «2И-НЕ» и «2ИЛИ-НЕ» работает одинаково, то его условно-графическое изображение на принципиальных схемах тоже одинаково. Условно-графическое изображение RS-триггера на принципиальных схемах приведено на рисунке 4.

р д триггер биография
Рисунок 4. Условно-графическое обозначение RS-триггера

Для измерения логических уровней на выходе триггера чаще всего применяются логические пробники, в качестве которых в простейшем случае можно использовать светодиод с токоограничивающим резистором. В качестве источника логического сигнала можно применить механические тумблеры.

Синхронные RS-триггеры

Схема RS-триггера позволяет запоминать состояние логической схемы, но так как в начальный момент времени может возникать переходный процесс (в цифровых схемах этот процесс называется «опасные гонки»), то запоминать состояния логической схемы в триггерах нужно только в определённые моменты времени, когда все переходные процессы закончены.

Это означает, что большинство цифровых схем требуют сигнала синхронизации (тактового сигнала). Все переходные процессы в комбинационной логической схеме должны закончиться за время периода синхросигнала, подаваемого на входы триггеров. Триггеры, запоминающие входные сигналы только в момент времени, определяемый сигналом синхронизации, называются синхронными триггерами. Для того чтобы отличать от них рассмотренные ранее варианты триггеров (RS-триггер и триггер Шмитта) эти триггеры получили название асинхронных.

Формировать синхронизирующие сигналы с различной частотой и скважностью при помощи генераторов и одновибраторов мы уже научились в предыдущих главах. Теперь научимся записывать в триггеры входные логические сигналы только при наличии разрешающего сигнала.

Для этого нам потребуется схема, пропускающая входные сигналы только при наличии синхронизирующего сигнала. Такую схему мы уже использовали при построении схем мультиплексоров и демультиплексоров. Это логический элемент «И». Принципиальная схема синхронного RS-триггера приведена на рисунке 5.

р д триггер биография
Рисунок 5. Схема синхронного RS-триггера, построенного на элементах «И»

В таблице 2 приведена таблица истинности синхронного RS-триггера. В этой таблице символ x означает, что значения логических уровней на данном входе не важны. Они не влияют на работу триггера.

Таблица 2. Таблица истинности синхронного RS-триггера.

СRSQ(t)Q(t+1)Пояснения
0xx00Режим хранения информации
0xx11
10000Режим хранения информации
10011
10101Режим установки единицы S=1
10111
11000Режим записи нуля R=1
11010
1110*R=S=1 запрещенная комбинация
1111*

Как мы уже показали выше, RS-триггеры могут быть реализованы на различных логических элементах. При этом принцип их работы не изменяется. В то же самое время триггеры часто выпускаются в виде готовых микросхем (или реализуются внутри БИС в виде готовых модулей), поэтому на принципиальных схемах синхронные триггеры обычно изображаются в виде условно-графических обозначений. Условно-графическое обозначение синхронного RS-триггера приведено на рисунке 6.

р д триггер биография
Рисунок 6. Условно-графическое обозначение синхронного RS-триггера

Статические D-триггеры

В RS-триггерах для записи логического нуля и логической единицы требуются разные входы, что не всегда удобно. При записи и хранении данных один бит может принимать значение, как нуля, так и единицы. Для его передачи достаточно одного провода. Как мы уже видели ранее, сигналы установки и сброса триггера не могут появляться одновременно, поэтому можно объединить эти входы при помощи инвертора, как показано на рисунке 7.

р д триггер биография
Рисунок 7. Принципиальная схема D триггера (защелки)

Такой триггер получил название D триггер. Название происходит от английского слова delay — задержка. Конкретное значение задержки определяется частотой следования импульсов синхронизации. Условно-графическое обозначение статического D триггера на принципиальных схемах приведено на рисунке 8.

р д триггер биография
Рисунок 8. Условно-графическое обозначение D триггера (защелки)

Таблица истинности D триггера достаточно проста, она приведена в таблице 3. Как видно из этой таблицы, данный триггер способен запоминать двоичный сигнал по синхросигналу и хранить один бит двоичной информации.

Таблица 3. Таблица истинности D триггера

СDQ(t)Q(t+1)Пояснения
0x00Режим хранения информации
0x11
10x0Режим записи информации
11x1

Нужно отметить, что отдельный инвертор при реализации триггера на ТТЛ элементах не нужен, так как самый распространённый логический элемент ТТЛ микросхем — это «2И-НЕ». Принципиальная схема D триггера на элементах 2И-НЕ приведена на рисунке 9.

р д триггер биография
Рисунок 9. Схема D триггера, реализованная на ТТЛ элементах

Ещё проще реализуется D триггер на КМОП логических элементах. В КМОП микросхемах вместо логических элементов «И» используются обычные транзисторные ключи. Схема D триггера приведена на рисунке 10.

р д триггер биография
Рисунок 10. Схема D триггера, реализованная на КМОП элементах

При подаче высокого уровня синхросигнала C транзистор VT1 открывается и обеспечивает передачу сигнала с входа D на инверсный выход Q через инвертор D1. Транзистор VT2 при этом закрыт и отключает второй инвертор, собранный на транзисторах VT2 и VT3. При подаче низкого потенциала на вход C включается второй инвертор, который вместе с инвертором D1 и образует триггер.

Во всех рассмотренных ранее схемах синхронных триггеров синхросигнал работает по уровню, поэтому триггеры называются триггерами, работающими по уровню, или статическими триггерами. Ещё одно название таких триггеров, пришедшее из иностранной литературы — триггеры-защёлки. Легче всего объяснить происхождение этого названия по временной диаграмме сигналов, приведенной на рисунке 11.

р д триггер биография
Рисунок 11. Временная диаграмма D триггера (защелки)

По этой временной диаграмме видно, что триггер-защелка хранит данные на выходе только при нулевом уровне на входе синхронизации. Если же на вход синхронизации подать активный высокий уровень, то напряжение на выходе триггера будет повторять напряжение, подаваемое на его вход.

Входное напряжение запоминается только в момент изменения уровня напряжения на входе синхронизации C с высокого уровня на низкий уровень. Входные данные как бы «защелкиваются» в этот момент, отсюда и название — триггер-защелка.

Принципиально в этой схеме входной переходной процесс может беспрепятственно проходить на выход триггера. Поэтому там, где это важно, необходимо сокращать длительность импульса синхронизации до минимума. Чтобы преодолеть такое ограничение были разработаны триггеры, работающие по фронту.

Явление метастабильности.

До сих пор мы предполагали, что сигнал на входе триггера может принимать только два состояния: логический ноль и логическая единица. Однако синхроимпульс может прийти в любой момент времени, в том числе и в момент смены состояния сигнала на входе триггера.

Если синхросигнал попадёт точно на момент перехода входным сигналом порогового уровня, то триггер на некоторое время может попасть в неустойчивое метастабильное состояние, при котором напряжение на его выходе будет находиться между уровнем логического нуля и логической единицы. Это может привести к нарушению правильной работы цифрового устройства.

Состояние метастабильности триггера подобно неустойчивому состоянию шарика, находящегося на вершине конического холма. Такая ситуация иллюстрируется рисунком 1. Обычно триггер не может долго находиться в состоянии метастабильности и быстро возвращается в одно из стабильных состояний. Время нахождения в метастабильном состоянии зависит от уровня шумов схемы и использованной технологии изготовления микросхем.

р д триггер биография
Рисунок 12. Иллюстрация явления метастабильности

Временные параметры триггера в момент возникновения состояния метастабильности и выхода из этого состояния приведены на рисунке 2. Время tSU (register setup time or tSU) на этом рисунке это минимальное время перед синхроимпульсом, в течение которого логический уровень сигнала должен оставаться стабильным для того, чтобы избежать метастабильности выхода триггера. Время tH (register hold time or tH) это минимально необходимое время удержания стабильного сигнала на входе триггера для того, чтобы избежать метастабильности его выхода. Время состояния метатастабильности случайно и зависит от многих параметров. На рисунке 2 оно обозначено tMET.

р д триггер биография
Рисунок 13. Временные параметры триггера при проявлении метастабильности

Вероятность того, что время метастабильности превысит заданную величину, экспоненциально уменьшается с ростом времени, в течение которого выход триггера находится в метастабильном состояние.

р д триггер биография

где t — это коэффициент обратно пропорциональный коэффициенту усиления и полосе пропускания элементов, входящих в состав триггера.

Склонность триггеров к метастабильности обычно оценивается величиной, обратной скорости отказов. Это значение выражается как интервал времени между отказами. Его можно определить по формуле:

р д триггер биография

Таблица 3. Сравнительные характеристики КМОП и Bi-КМОП триггеров

Условия измеренияSN74ACTSN74ABT
fc = 33МГц, fd = 8МГц8400 лет8.1×10 9 лет
fc = 40МГц, fd = 10МГц92 дня1400 лет
fc = 50МГц, fd = 12МГц2 часа

Метастабильное состояние не всегда приводит к неправильной работе цифрового устройства. Если время ожидания устройства после прихода импульса синхронизации достаточно велико, то триггер может успеть перейти в устойчивое состояние, и мы даже ничего не заметим. То есть если мы будем учитывать время метастабильности tmet то метастабильность никак не скажется на работе остальной цифровой схемы.

Если же это время будет неприемлемым для работы схемы, то можно поставить два триггера последовательно, как это показано на рисунке 3. Это снизит вероятность возникновения метастабильного состояния.

р д триггер биография
Рисунок 14. Схема снижения вероятности возникновения метастабильного состояния на выходе триггера

Таблица 4. Сравнительные характеристики КМОП и Bi-КМОП триггеров

Условия измеренияSN74ACTSN74ABT
fc = 33МГц, fd = 8МГц2.62×10 28 лет4.77×10 47 лет
fc = 40МГц, fd = 10МГц3,56×10 19 дня2.18×10 34 лет
fc = 50МГц, fd = 12МГц4.9×10 101×10 21 лет
fc = 67МГц, fd = 16МГц417 лет1.28×10 9 лет
fc = 80МГц, fd = 20МГц2900 лет

D триггеры, работающие по фронту.

Фронт сигнала синхронизации, в отличие от высокого (или низкого) потенциала, не может длиться продолжительное время. В идеале длительность фронта равна нулю. Поэтому в триггере, запоминающем входную информацию по фронту не нужно предъявлять требования к длительности тактового сигнала.

Триггер, запоминающий входную информацию по фронту, может быть построен из двух триггеров, работающих по потенциалу. Сигнал синхронизации будем подавать на эти триггеры в противофазе. Схема такого триггера приведена на рисунке 15.

р д триггер биография
Рисунок 15. Схема D-триггера, работающего по фронту

Рассмотрим работу схемы динамического триггера, приведенной на рисунке 15 подробнее. Для этого воспользуемся временными диаграммами, показанными на рисунке 13. На этих временных диаграммах обозначение Q΄ соответствует сигналу на выходе первого триггера. Так как на вход синхронизации второго триггера тактовый сигнал поступает через инвертор, то когда первый триггер находится в режиме хранения, второй триггер пропускает сигнал на выход схемы. И наоборот, когда первый триггер пропускает сигнал с входа схемы на свой выход, второй триггер находится в режиме хранения.

р д триггер биография
Рисунок 16. Временные диаграммы D-триггера

Обратите внимание, что сигнал на выходе всей схемы в целом не зависит от сигнала на входе «D» схемы. Если первый триггер пропускает сигнал данных со своего входа на выход, то второй триггер в это время находится в режиме хранения и поддерживает на выходе предыдущее значение сигнала, то есть сигнал на выходе схемы тоже не может измениться.

В результате проведённого анализа временных диаграмм мы определили, что сигнал в схеме, приведенной на рисунке 15 запоминается только в момент изменения сигнала на синхронизирующем входе «C» с единичного потенциала на нулевой.

Динамические D триггеры выпускаются в виде готовых микросхем или входят в виде готовых блоков в составе больших интегральных схем, таких как базовый матричный кристалл (БМК) или программируемых логических интегральных схем (ПЛИС).

Условно-графическое обозначение D триггера, запоминающего информацию по фронту тактового сигнала, приведено на рисунке 12.

р д триггер биография
Рисунок 17. Условно-графическое обозначение D-триггера

То, что триггер запоминает входной сигнал по фронту, отображается на условно-графическом обозначении треугольником, изображённым на выводе входа синхронизации. То, что внутри этого триггера находится два триггера, отображается в среднем поле условно-графического изображения двойной буквой T.

Иногда при изображении динамического входа указывают, по какому фронту триггер (или триггеры) изменяет своё состояние. В этом случае используется обозначение входа, как это показано на рисунке 18.

р д триггер биография

Рисунок 18. Обозначение динамических входов
На рисунке 18 а обозначен динамический вход, работающий по переднему (нарастающему) фронту сигнала. На рисунке 18 б обозначен динамический вход, работающий по заднему (спадающему) фронту сигнала.

Промышленностью выпускаются готовые микросхемы, содержащие динамические триггеры. В качестве примера можно назвать микросхему 1533ТМ2. В этой микросхеме содержится сразу два динамических триггера. Они изменяют своё состояние по переднему фронту сигнала синхронизации.

Дата последнего обновления файла 09.03.2020

Понравился материал? Поделись с друзьями!

Вместе со статьей «Триггеры» читают:

RS-триггер Рассмотрим принцип работы RS триггера, выполненный по изображенной на рисунке 2 схеме подробнее.
https://digteh.ru/digital/RS_trigg.php

D-триггеры, работающие по потенциалу D-триггеры предназначены для хранения двоичной информации, они используются в составе оперативных запоминающих устройств (ОЗУ).
https://digteh.ru/digital/Latch/

D триггеры, работающие по фронту Эти триггеры применяются в основном для создания счетчиков и регистров, позволяющих реализовать преобразование параллельного двоичного кода в последовательный.
https://digteh.ru/digital/D_trigg.php

T-триггеры T-триггер — это счетный триггер. У T-триггера имеется только один вход. После поступления на этот вход.
https://digteh.ru/digital/T_trigg.php

JK-триггер Этот триггер является универсальным триггером, способным работать в качестве RS-триггеров, D-триггеров или T-триггеров в зависимости от схемы включения. Для реализации JK-триггера.
https://digteh.ru/digital/JK_trigg.php

Предыдущие версии сайта:
http://neic.nsk.su/

Об авторе:
к.т.н., доц., Александр Владимирович Микушин

р д триггер биография

Кандидат технических наук, доцент кафедры САПР СибГУТИ. Выпускник факультета радиосвязи и радиовещания (1982) Новосибирского электротехнического института связи (НЭИС).

А.В.Микушин длительное время проработал ведущим инженером в научно исследовательском секторе НЭИС, конструкторско технологическом центре «Сигнал», Научно производственной фирме «Булат». В процессе этой деятельности он внёс вклад в разработку систем радионавигации, радиосвязи и транкинговой связи.

Научные исследования внедрены в аппаратуре радинавигационной системы Loran-C, комплексов мобильной и транкинговой связи «Сигнал-201», авиационной системы передачи данных «Орлан-СТД», отечественном развитии системы SmarTrunkII и радиостанций специального назначения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *