Пссс что это техническая механика

Техническая механика

Плоская система сходящихся сил

Геометрический способ определения равнодействующей плоской системы сходящихся сил

Система сил, линии действия которых лежат в одной плоскости и все пересекаются в одной точке, называется плоской системой сходящихся сил.

Теорема

Плоская система сходящихся сил в общем случае эквивалентна равнодействующей, которая равна векторной сумме этих сил; линия действия равнодействующей проходит через точку пересечения линий действия составляющих.

Пользуясь той же аксиомой параллелограмма, сложим равнодействующую R с силой F3 :

где FΣ – равнодействующая данной системы трех сил.

Если определить равнодействующую из силового многоугольника с помощью геометрии и тригонометрии, то такой способ будет называться геометрическим.

Если сделать чертеж силового многоугольника в определенном масштабе, то равнодействующая определится простым измерением замыкающей стороны с последующим умножением на масштаб. Такой способ нахождения равнодействующей называется графическим.

Порядок сложения векторов при построении силового многоугольника на величину равнодействующей не влияет, так как векторная сумма от перемены мест слагаемых не меняется.

Геометрическое условие равновесия плоской системы сходящихся сил

При построении силового многоугольника возможен случай, когда конец последнего вектора совпадает с началом первого. В этом случае замыкающей стороны не будет, и такой силовой многоугольник называется замкнутым.

Очевидно, что равнодействующая FΣ системы сходящихся сил, образующих замкнутый силовой многоугольник, равна нулю, т. е. система сил находится в равновесии. Отсюда вытекает условие, при котором плоская система сходящихся сил будет находиться в равновесии. Это условие выражается равенством:

и формулируется так: для равновесия плоской системы сходящихся сил необходимо и достаточно, чтобы силовой многоугольник был замкнут.

Условия равновесия, записанные в виде равенств, содержащих неизвестные величины, называются уравнениями равновесия.

Применяя геометрическое условие равновесия, удобно решать задачи, в которых на тело действуют три силы, так как в этом случае замкнутый силовой многоугольник представляет собой треугольник.

Решение большинства задач статики проводят в три этапа:
— выбирают тело, равновесие которого будет рассматриваться;
— отбрасывают связи, заменяя их реакциями, и устанавливают, какая система сил действует на тело;
— пользуясь условиями равновесия, находят неизвестные величины.

При решении задач статики следует строго соблюдать правило: размерности и единицы величин всех слагаемых и обеих частей равенства должны быть одинаковыми.

В сомнительных случаях целесообразно использовать это правило для проверки правильности хода решения задач, для чего следует подставить в слагаемые проверяемого равенства единицы всех входящих в них величин и, произведя возможные сокращения, сравнить полученные единицы правой и левой частей.

Пример решения задачи

Пссс что это техническая механика

Рассмотрим условие равновесия шара. Применив принцип освобождаемости, отбросим связи и заменим их реакциями. Реакция N гладкой стены перпендикулярна стене и проходит через центр шара (так как шар однородный, его геометрический центр совпадает с центром тяжести).
Реакция F веревки направлена вдоль линии натяжения веревки и тоже проходит через центр шара (согласно теореме о равновесии трех непараллельных сил). Применим к системе сил уравнение равновесия:

N = G tg α ; R = G/cos α

Из построенного параллелограмма (см. рисунок) легко определить искомые величины.
Такой метод решения задачи называют методом разложения силы.

Проекция силы на оси координат

В тех случаях, когда на тело действует более трех сил, а также когда неизвестны направления некоторых сил, удобнее при решении задач пользоваться не геометрическим, а аналитическим условием равновесия, которое основано на методе проекций сил на оси координат.

Проекцией силы на ось называют отрезок оси, заключенный между двумя перпендикулярами, опущенными на ось из начала и конца вектора силы.

Пссс что это техническая механика

Аналитический способ определения равнодействующей плоской системы сил

Зная проекции, определим модуль и направление равнодействующей:
Модуль равнодействующей:

Направляющий тангенс угла между вектором FΣ и осью x :

Линия действия равнодействующей проходит через точку пересечения линий действия составляющих сил.

Аналитические условия равновесия плоской системы сходящихся сил

Если данная плоская система сходящихся сил находится в равновесии, то равнодействующая такой системы, а значит и проекции равнодействующей на оси координат равны нулю.
Математически это выражение можно записать так:

Пссс что это техническая механика

Формулируется это условие следующим образом: для равновесия плоской системы сходящихся сил необходимо и достаточно, чтобы алгебраическая сумма проекций этих сил на каждую из двух координатных осей равнялась нулю.

С помощью уравнений равновесия можно определить два неизвестных элемента данной системы сил, например модуль и направление одной силы или модули двух сил, направления которых известны и т. п.

Выведенные условия равновесия справедливы для любой системы координат, но для упрощения расчетов рекомендуется оси координат по возможности выбирать перпендикулярными неизвестным силам, чтобы каждое уравнение равновесия содержало одно неизвестное.
Когда направление искомой силы неизвестно, ее можно разложить на две составляющие по заданным направлениям, обычно по направлениям координатных осей; по найденным двум составляющим легко определяется неизвестная сила.

Если при решении задач аналитическим способом искомая реакция получается отрицательной, то это означает, что действительное ее направление противоположно направлению, принятому при расчетах.

Источник

Плоская система сходящихся сил

Содержание:

Плоская система сходящихся сил – это система сил линии действия которых сходятся в одной точке, называются сходящимися.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Если все силы, приложенные к телу, расположенные в одной плоскости и линии их действия пересекаются в одной точке, то такая система сил носит название плоской системы сходящихся сил.

Покажем на рис. 1.6 произвольное тело, к которому приложена плоская системы сходящихся сил Пссс что это техническая механика, Пссс что это техническая механика, Пссс что это техническая механика. Пссс что это техническая механика. При этом линии действия всех сил пересекаются в точке A.

Пссс что это техническая механика

Определение равнодействующей системы сходящихся сил

Геометрический способ сложения сил:

Добавить систему сил означает определить их равнодействующую. Попробуем найти равнодействующую для плоской системы сходящихся сил, которая изображена на
рис. 1.6. Возьмем (условно) две первые силы Пссс что это техническая механикаи Пссс что это техническая механикаи на основании III аксиомы
статики найдем их равнодействующую Пссс что это техническая механика, для чего на силах Пссс что это техническая механикаи Пссс что это техническая механика, как на
сторонах, построим свой параллелограмм, диагональ которого, которая приложена в
точке A, и является их равнодействующей Пссс что это техническая механика. Далее геометрически добавим две следующие силы Пссс что это техническая механикаи Пссс что это техническая механика, и уже на этих силах как на сторонах построим свой
параллелограмм, диагональ которого будет второй равнодействующей Пссс что это техническая механика. Так же дальше продолжаем до последней силы Пссс что это техническая механика. Когда построено последний параллелограмм и проведена последняя диагональ, то она и будет равнодействующей Пссс что это техническая механикасистемы сходящихся сил, которая показана на рис. 1.6

Если внимательно присмотреться к геометрическому построению параллелограммов, то можно увидеть, что к концу вектора силы Пссс что это техническая механикабыл присоединен вектор силы Пссс что это техническая механика(то есть в конец вектора Пссс что это техническая механикаперенесено параллельно вектор Пссс что это техническая механика) и так далее до последней силы Пссс что это техническая механика.

Таким образом, геометрический способ добавления сходящихся сил сводится к построению силового многоугольника. Он строится путем параллельного переноса векторов сил в масштабе, когда начало следующей силы совпадает с концом предыдущей силы. Тогда вектор равнодействующей соединяет начало первой силы с концом последней силы. Это можно записать так:

Пссс что это техническая механика

Величина равнодействующей силы не изменится, если будет изменен порядок
присоединения (добавление) сил до многоугольника, но конфигурация силового
многоугольника будет другой.

Условие равновесия плоской системы сходящихся сил в геометрической форме

Если к свободному материальному телу приложена одна сила, то о равновесии этого тела речи не может быть. Таким образом, если рассматривать плоскую систему сходящихся сил, которая сведена к равнодействующей, то тело не может быть в равновесии.

Для равновесия тела под действием плоской системы сходящихся сил необходимо и
достаточно, чтобы равнодействующая всех сил была равна нулю.

Равнодействующая такой системы сил будет равна нулю, когда силовой многоугольник будет замкнутым, то есть когда начало вектора первой силы будет совпадать с концом вектора последней силы.

Теорема о равновесии тела под действием трех не параллельных сил

Если тело под действием системы трех плоских не параллельных сил находится в равновесии, то линии действия этих сил пересекаются в одной точке.

Представим тело (рис. 1.7), к которому в точках А, B, C приложены силы
Пссс что это техническая механика, Пссс что это техническая механика, Пссс что это техническая механика, векторы которых расположены в одной плоскости. Рассмотрим сначала две силы Пссс что это техническая механикаи Пссс что это техническая механика. На основании следствия из I и II аксиом статики указанные силы всегда можно перенести по линии их действия в одну точку, например, в точку О.

Далее, если есть в точке О две приложенные силы, то на основании III аксиомы статики их можно заменить одной силой, то есть равнодействующей Пссс что это техническая механика. Построим на рис. 1.7 на указанных векторах сил Пссс что это техническая механикаи Пссс что это техническая механикапараллелограмм и покажем равнодействующую Пссс что это техническая механика.Теперь тело находится под действием только двух сил Пссс что это техническая механикаи Пссс что это техническая механикаи оно будет в равновесии только тогда, когда векторы этих сил расположены на одной прямой, то есть на прямой CO. Тогда и вектор силы Пссс что это техническая механикапересекает точку О. Теорема доказана.

Пссс что это техническая механика

Проекция силы на ось и на плоскость

Представим силу Пссс что это техническая механика, вектор который произвольно расположен в плоскости чертежа (рис. 1.8). Выберем в этой плоскости ось, например, ось x. Необходимо спроектировать указанную силу Пссс что это техническая механикана эту ось x.

Обозначим сначала конце вектора силы Пссс что это техническая механикабуквами А и В и опустим из них на ось x перпендикуляры. Точки пересечения перпендикуляров с осью x (обозначим их соответствующими строчными буквами а и в) образовали на оси x направленный отрезок, который и будет проекцией силы Пссс что это техническая механикана ось x. По величине этот отрезок равен произведению модуля силы |Пссс что это техническая механика| на косинус угла, под которым вектор силы пересекает ось. А именно:

Пссс что это техническая механика

По знаку проекция силы на ось тогда будет положительная, когда угол α (угол пересечения направления вектора силы или линии действия силы с осью) острый. В полной мере разумеется, если этот угол равен в 90º, то проекция силы Пссс что это техническая механикана ось x равна нулю. Если угол α будет тупой, то проекция силы Пссс что это техническая механикана ось x будет иметь отрицательный знак. Значения проекции в данном случае будет

Но практически тут удобнее использовать тупой угол α2, а острый угол β между вектором силы Пссс что это техническая механикаи направлением оси x. Знак проекции легко определяется из схемы

Таким образом, проекция силы на ось — это направленный отрезок на оси, образованный между перпендикулярами, которые опущены из концов вектора силы на ось, и который по величине равен произведению модуля силы на косинус угла между направлением вектора силы и осью.

Спроектируем теперь вектор силы на плоскость и оси координат.

Пссс что это техническая механика

Возьмем силу Пссс что это техническая механика, вектор которой произвольно расположен в пространстве (рис. 1.9). Выберем в пространстве прямоугольную декартову систему координат Oxyz, начало отсчета которой (точка O) совмещенное с точкой приложения вектора силы Пссс что это техническая механика. Спроектируем вектор силы Пссс что это техническая механикана плоскость xOy. Опустим из точки А (конец вектора силы) на указанную плоскость перпендикуляр, который пересекает ее в точке а. На плоскости xOy создан вектор Пссс что это техническая механика, который и является проекцией Пссс что это техническая механикасилы на плоскость. По модулю эта проекция равна

где α — угол между вектором силы Пссс что это техническая механикаи плоскостью xOy.

Следует заметить, что проекция вектора силы на плоскость является вектором, потому что плоскость на имеет базисных векторов, ортов.

Если в плоскости xOy обозначить угол β, то есть возможность спроектировать силу Пссс что это техническая механикана оси x и y, опуская с точки a на оси перпендикуляры и по известному уже правилу получить проекции вектора Пссс что это техническая механикана указанные оси:

Пссс что это техническая механика

В данном случае через ось z и вектор силы Пссс что это техническая механикаможно провести плоскость, поэтому есть возможность спроектировать силу на эту ось по известному правилу. Эта проекция будет равняться

где ϒ — угол между вектором силы Пссс что это техническая механикаи осью z.

Определение силы за ее проекциями

Предположим, что у нас в плоскости рисунка имеем прямоугольную декартову систему координат Oxy, заданные две проекции силы — Пссс что это техническая механикаи Пссс что это техническая механика(рис. 1.10). Надо по данным проекциями вычислить модуль вектора самой силы Пссс что это техническая механика, а также его направление.

На заданных проекциях, как на сторонах, строим прямоугольник, диагональ которого, проходит через точку пересечения проекций, и является искомым вектором силы Пссс что это техническая механика. Модуль силы Пссс что это техническая механикаможно определить из следующего выражения:

Пссс что это техническая механика

Углы между вектором силы Пссс что это техническая механикаи осями x и y можно определить с помощью направляющих косинусов

Пссс что это техническая механика

Зная направляющие косинусы, через арккосинус есть возможность найти сами углы.

Пссс что это техническая механика

Аналогично для пространственной системы сил (рис. 1.9) можно построить на проекциях сила как на сторонах параллелепипед, а модуль силы Пссс что это техническая механикаопределить так:

Пссс что это техническая механика

Направление вектора этой силы также определяется через направляющие косинусы его углов с соответствующими осями координат x, y и z:

Пссс что это техническая механика

Через арккосинус определяют сами углы.

Теорема о проекции равнодействующей силы на ось

Проекция вектора равнодействующей силы на ось равна алгебраической сумме проекций векторов составляющих сил на ту же ось.

Пссс что это техническая механика

Доказательство. Имеем систему сил Пссс что это техническая механика, Пссс что это техническая механика, Пссс что это техническая механика, Пссс что это техническая механика,которая сведена к равнодействующей Пссс что это техническая механикас помощью силового многоугольника (рис. 1.11). Введем на плоскости прямоугольную декартову систему координат Ox y и спроектируем на ось x все силы. Для этого обозначим концы векторов всех сил буквами — А, В, С, D, K и проведем перпендикуляры из каждой точки на ось x. Точки пересечения перпендикуляров с осью, которые обозначены соответствующими строчными буквами — а, в, с, d, k образовали на оси x направлены отрезки, которые и являются проекциями всех сил на эту ось. Каждая проекция, соответственно, равна

Пссс что это техническая механика

Добавим алгебраически все проекции и подсчитаем, почему эта сумма равна:

Но отрезок ak и является проекцией равнодействующей силы Пссс что это техническая механикана ось x. Распространяя эту сумму на n сил, можно записать:

Пссс что это техническая механика

Аналитический способ добавления системы сходящихся сил

На основании теоремы о проекции равнодействующей силы на ось, имеем:

Пссс что это техническая механика

Аналогично проекция равнодействующей силы на ось y будет равняться

Пссс что это техническая механика

Модуль равнодействующей равен

Пссс что это техническая механика

Углы между вектором равнодействующей Пссс что это техническая механикаи осями координат x и y определим через направляющие косинусы углов между соответствующей осью и равнодействующей:

Пссс что это техническая механика

Зная направляющие косинусы, через арккосинус есть возможность найти сами углы.

Условия равновесия тела под действием плоской системы сходящихся сил в аналитической форме

Плоскую систему сходящихся сил можно заменить одной силой, которая носит название равнодействующей.

Для равновесия плоской системы сходящихся сил необходимо и достаточно, чтобы равнодействующая была равна нулю. А если равнодействующая равна нулю, то и ее проекции на оси x и y тоже должны равняться нулю. Поскольку проекции
равнодействующей равны алгебраическим суммам проекций составляющих сил, то,
окончательно, иметь условия равновесия тела под действием плоской системы
сходящихся сил

Пссс что это техническая механика

Для равновесия тела, находящегося под действием плоской системы сходящихся
сил, необходимо и достаточно, чтобы алгебраические суммы проекций всех сил на оси
координат были равны нулю.

Услуги по теоретической механике:

Учебные лекции:

Присылайте задания в любое время дня и ночи в ➔ Пссс что это техническая механика Пссс что это техническая механика

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *