Процессор урезанный что это
Ответы на основные вопросы о процессорах
Q: Что такое FPU
A: FPU, это Floating Point Unit. А проще говоря, блок операций с плавающей точкой или математический сопроцессор. Применён был впервые в процессоре Intel 80486 (1989 год).
Q: Что такое системная шина?
A: Системная шина (FSB) служит для связи процессора с остальными компонентами системы. Процессор имеет две частоты: внутреннюю и внешнюю. Внутренняя, это та самая, которая является его основной характеристикой. Внешняя же частота, это частота работы системной шины. Для Pentium 3 характерны были частоты системной шины в 100 и 133Mhz. У первых Pentium 4 реальная частота составляет 100Mhz, но зато передаётся четыре пакета данных за такт, т. е. скорость передачи данных получилась как при 400Mhz. У Athlon`ов все очень похоже, только передаётся 2 пакета за такт.
Q: Для чего нужна кэш память процессора?
A: Процессоры всегда работали быстрее, чем память, причем со временем разрыв между этими скоростями все увеличивается. Чем медленнее память, тем больше процессору приходится ждать. В кэш памяти находятся машинные слова (можно их назвать данными), которые чаще всего используются процессором. Если ему требуется какое-нибудь слово, то он сначала обращается к кэш памяти. Только если его там нет, он обращается к основной памяти. Существует принцип локализации, по которому в кэш вместе с требуемым в данный момент словом загружаются также и соседние с ним слова, т.к. велика вероятность того, что они в ближайшее время тоже понадобятся. У обыкновенных процессоров существует кэш память двух уровней. Кэш первого уровня (L1) обычно разделён пополам, половина выделена для данных, а другая половина под инструкции. Кэш второго уровня (L2) предназначается только для данных. Пропускная способность оперативной памяти конечно высока, но кэш память всегда работает в несколько раз быстрее. У старых процессоров (Pentium, K6 и др.) плата с кэшем L2 находилась на материнской плате. Скорость работы кэша при этом была довольно низкой, но её хватало. У Athlon K7, P2 и первых P3 кэш был помещён на специальную плату и работал на 1/2, 1/3 или 2/3 скорости ядра. У последних процессоров, в целях увеличения быстродействия, кэш L2 интегрирован в ядро и работает на его полной частоте. Стандартным и достаточным на данный момент считается объём кэша L2 в 256Kb. Многие процессоры имеют 512Kb L2. В ряде случаев большой кэш весьма полезен. С одной стороны, чем больше кэш, тем лучше, но с другой стороны, при увеличении кэша увеличивается время доступа к нему.
Q: Что такое ядро?
A: Ядро, это как бы версия (вариант) процессора. Процессоры с разными ядрами, это можно сказать разные процессоры. Разные ядра отличаются по размеру кэш памяти, частоте шины, технологии изготовления и т. п. Чем новее ядро, тем лучше процессор разгоняется. В качестве примера можно привести P4, который имеет (на данный момент) два ядра Willamette и Northwood. Первое ядро производилось по 0.18мкм технологии и работало исключительно на 400Mhz шине. Самые младшие модели имели частоту 1.3Ghz, максимальные частоты для ядра находились немного выше 2Ghz. Своими разгонными качествами эти процессоры особо не славились. Позже был выпущен Northwood. Он уже был выполнен по 0.13мкм технологии и поддерживал шину в 400 и 533Mhz, а также имел увеличенный объём кэш памяти. Переход на новое ядро позволил значительно увеличить производительность и максимальную частоту. Младшие процессоры Northwood с частотой 1.6Ghz прекрасно разгоняются. Из данного примера можно делать для себя вывод, что это разные процессоры.
Q: Что такое степпинг (stepping) процессора?
A: Степпинг означает внутреннюю версию процессора. При исправлении мелких недочетов или ошибок в микрокоде выпускается модификация процессора, имеющая новый номер версии. По логике, чем больше степпинг, тем стабильнее себя ведет и лучше разгоняется процессор.
Q: Отличаются ли чем-то процессоры разной частоты?
A: Нет, если это одинаковые процессоры, то конструктивных отличий у них быть не может. Следует знать, что процессоры могут иметь разные ядра, поэтому и из-за разной номинальной частоты они могут лучше / хуже разгоняться и меньше / больше греться. Процессор на одном ядре часто имеет несколько вариантов (степпингов).
Q: Что такое MMX, 3DNow!, SSE?
A: Это так называемые дополнительные наборы инструкций. Они применяются в современных процессорах и способны значительно ускорить их работу. Естественно только при условии поддержки данных наборов со стороны приложения. К сожалению процессора, поддерживающего все возможные (употребляемые) наборы инструкций не существует. Intel является законодателем мод в данном случае. Все современные процессоры поддерживают набор инструкций MMX, который был самым первым (разработан еще в 1997 году). P3 поддерживают SSE, а P4 еще и SSE2. Современные процессоры AMD Athlon (Duron) поддерживают наборы инструкций 3DNow!+ и MMX+, в Athlon XP была добавлена поддержка SSE.
Q: Что такое коэффициент умножения и заблокированный коэффициент?
A: Коффициент умножения, это та цифра, на которую умножается частота системной шины, в результате чего получается рабочая частота процессора. Заблокированный коэффициент означает, что процессор будет умножать системную шину всегда на одну и ту же цифру. Т. е. разгон без увеличения частоты шины для такого процессора невозможен. У процессоров Athlon коэффициент можно разблокировать соединением мостиков на процессоре, а в некоторых случаях он изначально не заблокирован. Но у всех процессоров Intel, которые сейчас есть в продаже, коэффициент заблокирован и разблокировке не поддается.
Q: Что такое “мостики” на процессоре?
A: Мостики – это маленькие группы контактов на процессоре. Они могут быть соединены или разомкнуты. Путём изменения мостиков на процессорах AMD можно регулировать частоту их шины, коэффициент умножения, напряжение питания и т. п. Мостики бывают полезны когда вы, например не можете поставить нужное значение коэффициента на материнской плате или хотите заставить обычный процессор работать на двухпроцессорной плате. Мостики можно соединять обычным карандашом (это не всегда работает и ненадёжно), проведя линию оловом или специальным токопроводящим клеем и другими способами. Посмотреть справочник по мостикам процессоров AMD можно на сайте http://www.amdnow.ru/.
Q: Я хочу знать точные характеристики моего процессора, как их можно выяснить?
A: Можно разобрать компьютер, снять кулер и посмотреть на маркировку процессора. Но легче и разумней выяснить всё при помощи какой-либо программы. Наиболее популярна и информативна программа WCPUID. Так же можно воспользоваться программой SiSoft Sandra, которая отображает достаточно подробную информацию обо всех компонентах компьютера.
Q: Как узнать поддерживает ли моя плата какой-то конкретный процессор?
Q: Разные процессоры имеют разные разъёмы, почему это так и совместимы ли они между собой?
Q: Отличаются ли OEM и Retail-варианты процессора? Вроде Retail лучше гонится?
A: В OEM-варианте комплект содержит лишь процессор в пластиковой упаковке (или без неё), и, соответственно, дешевле. Retail (boxed) поставляется в красочной коробке, в которой находятся инструкция по установке и кулер (довольно неплохой). Нельзя сказать, что сами чипы чем-то отличаются. В деле оверклокинга немаловажную роль играет кулер. К боксовым процессорам прилагается довольно приличные кулеры, которые обеспечивает лучшее охлаждение, чем NoName, который вам, скорее всего, предложат при покупке OEM-варианта.
Q: Чем отличаются процессоры Pentium и Celeron, Athlon и Duron?
A: У процессоров Celeron в два или четыре раза меньше кэш памяти второго уровня (первые Celeron`ы вообще не имели кэша второго уровня). У них по сравнению с Pentium понижена системная шина. У процессоров Duron по сравнению с Athlon тоже меньше кэш памяти в 4 раза и тоже ниже системная шина. Основные характеристики процессоров можно посмотреть в таблице в конце статьи. Есть задачи, в которых между обычными и урезанными процессорами почти нет разницы, а в некоторых случаях отставание довольно серьёзное. Но в среднем, при сравнении с неурезанным процессором той же частоты, отставание это равно 10-30%. Зато урезанные процессоры имеют тенденцию лучше гнаться из-за меньшего объёма кэш памяти. Короче говоря, если разница в цене между нормальным и урезанным процессором значительная, то стоит брать урезанный. Хотя здесь необходимо отметить, что последние P4 Celeron Northwood работают весьма плохо по сравнению с полноценными P4 на том же ядре, отставание в некоторых ситуациях достигает 50%.
Q: Какой процессор сейчас наиболее выгоден по соотношению цена / качество?
A: На данный момент это младшие модели Athlon XP. Они стоят уже совсем недорого (в 2 с лишним раза дешевле аналогичных по скорости Pentium 4) и работают примерно так же. Процессоры Duron, хоть и стоят еще дешевле, но и по скорости они значительно проигрывают Athlon XP. Если вы хотите проапгрейдить старую систему на Socket 370, то вполне можно брать Celeron Tualatin 1000-1200Mhz. Эти процессоры имеют приличный разгонный потенциал и кэш 256 килобайт.
Q: Если Athlon XP такой дешевый, значит у него есть недостатки, какие?
Q: Почему Pentium 4 в некоторых программах / тестах отстает по скорости от аналогичного по частоте / рейтингу Athlon и даже Pentium 3?
A: Все дело в том, что у P4 очень длинный конвейер выполнения инструкций. Чем длиннее конвейер, тем легче наращивать тактовую частоту, но тем меньше производительности получается на каждый полученный мегагерц. И наоборот. Чем на большее количество стадий рассчитан конвейер, тем меньше работы приходится на каждый отдельный такт и тем быстрее этот такт выполняется. Допустим, у нас имеется простейший блок из нескольких, связанных друг с другом операций:
Q: Насколько хороши процессоры VIA C3?
A: Единственным их достоинством являются низкое тепловыделение. Рассеиваемая мощность у них 5—20 Ватт против 40-60 у AXP и P4. C3 совместимы с устаревшим Socket 370, хотя не со всеми платами, например для нового ядра Nehemiah требуется поддержка Tualatin`а со стороны платы. По скорости они очень сильно уступают (до 50%, иногда даже больше) аналогичным по частоте процессорам Intel и AMD из-за маленького размера кэша (64Кб L1 и L2) и еще по ряду причин. Даже некоторые усовершенствования вроде поддержки SSE им ничего особо не дали. В продаже данных процессоров почти нет и я ничуть об этом не сожалею :). В случае если вам нужна тихая машина (такому процессору часто достаточно только радиатора), а скорость не важна, то можно взять. Теоретически они должны бы разгонятся неплохо (технология изготовления достаточно прогрессивная), но на практике этого не наблюдается.
Q: Имеет ли смысл использовать двухпроцессорную систему?
A: Для игр нет, они просто чаще всего не будут использовать второй процессор. Для других задач это может быть полезным. Но обязательно при этом использование операционную системы с поддержкой нескольких процессоров, например Windows 2000. Самая большая проблема в материнской плате. Таких плат пока мало в продаже, они дороги и почти не имеют возможностей разгона :(.
Q: Отличаются ли чем-то процессоры для двухпроцессорных конфигураций от обычных?
A: Обычно отличий по производительности нет (при одинаковых основных характеристиках). Есть отличия по цене, конструкции и названию. Для работы в двухпроцессорных конфигурациях предназначены процессоры Intel Xeon, Pentium 3-S, AMD Athlon MP. Обычные процессоры AMD Athlon можно заставить работать в двухпроцессорной конфигурации замыканием последнего мостика группы L5 (подробнее о мостиках смотрите дальше).
Q: Что такое Hyper Threading?
A: Данная технология предназначена для увеличения эффективности работы процессора. По оценкам Intel, большую часть времени работает всего 30% всех исполнительных устройств в процессоре. Поэтому возникла идея каким-то образом использовать и остальные 70% (как вы уже знаете Pentium 4, в котором применяют эту технологию, отнюдь не страдает от избыточной производительности на мегагерц). Суть Hyper Threading состоит в том, что во время исполнения одной «нити» программы, простаивающие исполнительные устройства могут перейти на исполнение другой «нити» программы. Т. е. получается нечто вроде разделение одного физического процессора на два виртуальных. Возможны и ситуации, когда попытки одновременного исполнения нескольких «нитей» приведут к ощутимому падению производительности. Например, из-за того, что размер кэша L2 довольно мал, а активные «нити» будут пытаться загрузить кэш. Возможна ситуация, когда борьба за кэш приведет к постоянной очистке и перезагрузке данных в нем (следовательно будет падать скорость). Очень важно помнить, что пока наблюдается отсутствие нормальной поддержки со стороны операционных систем и, самое главное, необходимость перекомпиляции, а в некоторых случаях и смены алгоритма, приложений, чтобы они в полной мере смогли воспользоваться Hyper Threading. Первые тесты это уже доказывают, ощутимого прироста в скорости нет, иногда наблюдается даже некоторое падение производительности.
Маркировка процессоров Intel.
Здрасте. Решил сделать свой «путеводитель по миру процессоров Intel».
Начнём с самых слабых.
— D. Старые процессоры, 32 нм(лучше не брать, ибо старьё).
Celeron. Просто очень слабый процессор. Игры скорее всего не пойдут(хотя некоторые и играют в Цивилизацию 5). Маркировка:
Pentium. Лучшее создание человечества. Но только для офисных компов. На базовые задачи его вполне хватает, а Windows будет тянуть следующие 5 лет. Теперь о линейках:
Core i*. Здесь обошлись без первых букв(хоть какое-то облегчение). Но здесь дело в цифрах:
Core m. Вот здесь совсем всё просто.
Нахера тут тэг Xeon, если про маркировку зеонов ничего не сказано?
Спасибо! Я как раз такой краткий ликбез искал!
А в маркировке матплат нет такой же подборки? (В частности Асус интересует)
Путешествие в нанометровый мир
Все мы знаем как выглядит процессор. Знаем что под крышкой которая передает тепло находится небольшой кремниевый кристалл, в нем и творится вся магия вычислений. Казалось бы, любоваться тут не на что – что может быть красивого в обычном кусочке полированного металла?
Но стоит снять с кристалла верхний слой пустого кремния, добавить капельку иммерсионного масла и чип начинает переливаться всеми цветами радуги, показывая свой богатый внутренний мир. Разумеется, эти цвета ложные — структуры внутри, давно уже имеют нанометровые размеры и на порядки меньше длины волны света.
Красота из прошлого – Penitum II
Начнем нашу экскурсию вглубь старичка Pentium II родом из 97 года. Вторые пеньки производились по техпроцессу от 180 до 350 нм, а частоты достигали смешных по современным меркам 450 МГц.
Эти процессоры интересны тем, что среди них есть первые решения, производимые по технологии Flip Chip, то есть когда кристалл припаивается к подложке, а не соединяется с ней проводками.
На фото слева кристалл Pentium II, который изготовлен по старой «проводной» технологии Wire Bonding, справа — чуть более крупный собрат уже с Flip Chip.
При этом, что интересно, техпроцесс у них одинаковый, 250 нм, а увеличение площади произошло только из-за перехода на новую технологию. Да, на тот момент в новом способе производства не было смысла, но это позволило заложить фундамент для создания современных процессоров с тысячей контактов. Момент еще пока заметной глазу эволюции.
И сразу для контраста погрузимся в знакомые многим 14 нанометров. Уничтожать старые чипы может каждый, то вот выводить из строя современные мощные CPU на много дороже. Но все же такие находятся и у нас есть возможность посмотреть что под верхним слоем кремния у быстрого 8-ядерного Core i9-9900K.
На фото отчетливо видны 8 прямоугольников ядер, и большая область справа — это интегрированная графика, которая занимает почти треть всего кристалла — раньше про нее мало кто вспоминал, сейчас другое время. Разумеется, после таких варварских экспериментов процессор умер, но в данном случае красота определенно стоила жертв.
Варварское уничтожение AMD Threadripper
Спасибо AMD, восьмью ядрами сейчас уже никого не удивить. Известный немецкий оверклокер Роман «Der8auer» Хартунг буквально разломал отнюдь недешевый Threadripper 1950X чтобы показать нам его 16-ядер.
В 2017 году это были те же 14 нанометров, вернее назывались так же как у Интел, но по факту на тот момент синие нанометры были меньше. Почему так мы рассказали в выпуске про 2 нм IBM.
Как на самом деле выглядит процессор на примере Intel 4004
Глядя на красивые переливающиеся кристаллы многие, наверно, задаются вопросом — а как на самом деле выглядят процессоры внутри? Можем ли мы как-то это узнать? Разумеется — достаточно взять чип, техпроцесс которого больше длины волны видимого света, что позволяет разглядеть его внутренности в обычный световой микроскоп.
Пожалуй самый яркий пример — Intel 4004 — первый микропроцессор компании, 50 лет назад совершивший настоящую революцию в электронной промышленности. Его техпроцесс в 10 мкм на порядок больше длин волн видимого излучения, что делает его идеальным кандидатом для изучения. И, надо сказать, выглядит он не особо эффектно: оранжевые полоски — это медные дорожки, серые — различные кремниевые структуры. И да, это реальные процессорные цвета.
По оценке Intel, вычислительная мощность 10-летних процессоров Intel Core второго поколения с миллиардом транзисторов, не менее чем в 350 тыс. раз превосходит мощность первого процессора Intel. Невероятный прогресс за 40 лет. Сейчас мы такого уже не увидим.
Разглядываем отдельные транзисторы
Кстати о транзисторах, некоторые свежие процессоры имеют уже больше 40 миллиардов крошечных переключателей, которые увидеть в световой микроскоп невозможно. Но если очень хочется узнать, как на самом деле выглядит один транзистор, то можно обратиться к старым простым логическим микросхемам – например, советской 3320A, которая выпускалась в Зеленограде в 70х годах.
Этот золотой лабиринт не имеет ничего общего со словом техпроцесс ибо структуру микросхемы, которая представляет из себя пару логических элементов 4И-НЕ, можно рассмотреть буквально в школьный микроскоп.
И да, как видите по фото, никакой тут магии и сложной электроники нет — сам по себе транзистор устроен очень просто, что позволяет значительно их уменьшить и производить миллиардами штук.
Огромный кристалл AMD Fiji
Но что-то мы все о процессорах да о процессорах. Давайте посмотрим, как выглядят внутри видеочипы. Да, уничтожать дефицитные графические кристаллы сейчас выглядит кощунством, но спешу успокоить — фото были сделаны еще до дефицита. Итак, мы можем полюбоваться на большой 28 нм кристалл AMD Fiji, который работал в видеокартах Fury 2015 года выпуска и снабжался 4 ГБ памяти HBM.
Почти 9 млрд транзисторов. Прошло 6 лет, новыми эти карты уже не встретить, а на авито они стоят аж 25 000 рублей.
А вот еще фото другого GPU – на этот раз GP102, который ставился в топовую GTX 1080 Ti. Хорошо видны 6 кластеров GPC, что дает аж 3.5 тысячи потоковых процессоров. Мощь 12 млрд. транзисторов в 2017 году за 50 000 рублей.
Сенсор оптической мыши
Теперь, давайте уйдем в сторону. Вы никогда не задумывались, как выглядит сенсор оптической мыши? На самом деле достаточно занятно, ведь это объединение фотосенсора и чипа. Вы видите фотосенсор старенькой мышки с разрешением матрицы всего 22 на 22 пикселя (ST Microelectronics OS MLT 04), однако этого вполне хватает, чтобы улавливать изменения поверхности и тем самым определять сдвиг мыши. А с учетом того, что делать это нужно быстро, сам чип расположен в одном кристалле с фото матрицей.
У современных мышей разрешение матрицы выше и достигает сотни на сотню пикселей, что позволяет им быть точнее и быстрее. Но в целом сенсоры выглядят также. — например, на картинке можно полюбоваться на внутренности PixArt PMW 3310.
Вернем к процессорам, на этот раз мобильным. Современные ARM-чипы можно в прямом смысле назвать искусством, ведь в одном кристалле прячутся и несколько кластеров ядер, и GPU, и многочисленные контроллеры. Так, например, выглядит 8-нм Exynos 9820.
Сходу тут сложно понять, где что. Но все же получилось определить, что в правом нижнем углу расположены два больших ядра M4, которые могут работать на частоте до 3 ГГц. Над ними 2 средних ядра Cortex A75 и 4 малых Cortex A55, которые ощутимо меньше и слабее. Слева внизу можно увидеть двухъядерный нейропроцессор, ну а выше от него расположен крупный GPU Mali с 12 ядрами.
Консольный чип Xbox One X
Что интересно, ARM-чипы очень напоминают APU из консолей. И это не случайно — последние также на одном кристалле имеют и процессорные ядра, и графику, и различные контроллеры. Так выглядит 16-нанометровый чип из Xbox One X.
Хорошо видно, насколько велика графика от AMD с 40 вычислительными модулями — она занимает 3/4 чипа. А вот 8 процессорных ядер AMD Jaguar можно сначала и не заметить – все дело в том, что по сути это урезанная архитектура, которая применялась для различных ультрабучных чипов «красной» компании, что и отразилось на их размерах.
Огромный кристалл 18-ядерного Core i9
В то время как AMD продолжает приносить в массы многокристальную структуру процессоров, Intel все еще выступает за один большой кристалл.
И в случае с высокопроизводительной линейкой гигантомания компании удивляет — так, в случае с Core i9-7980XE на одном кристалле размещено аж 18 ядер!
Разумеется, стоит такой CPU немало, но все тому же Роману «Дербауэру» он достался нерабочим от подписчика, что и позволило с чистой душой произвести вскрытие пациента. Картинки действительно удивляют — 18 огромных ядер вплотную друг к другу, из-за чего теплопакет составляет аж 165 Вт, а на деле выше 200. Но зато с межъядерными задержками все хорошо.
Российский чип Байкал
И под конец — а вы никогда не задумывались, как выглядят внутри российские процессоры? Много ли в них отличий от забугорных решений? На самом деле — нет, как показало вскрытие последнего Baikal — 2 миллиарда транзисторов на 28 нанометрах. Этот ARM-чип имеет два 4-ядерных кластера и графику Mali, а производится на заводах TSMC.
Так что внутренних отличий от других ARM-чипов, очевидно, немного, и структура действительно похожа на фото Exynos выше. К слову, на основе этого Байкала уже выпускаются и продаются простенькие, но отнюдь не дешевые ПК.
Как видите, процессоры прошли огромный путь от простых интегральных схем, внутренности которых можно разглядеть буквально под лупой, до высокотехнологических чипов, состоящих из миллиардов транзисторов. И уже долгие годы человек не является главным звеном в цепи производства полупроводниковых кристаллов — целой жизни не хватит, чтобы расположить в кусочке кремния размером с ноготь такие огромные количества миниатюрных переключателей.
Да, вы правильно поняли — компьютеры проектируют процессоры. Умные машины создают себе подобных. А может, лет через 10, компьютеры решат, что мы вообще лишние в этой схеме?
Мой Компьютер специально для Пикабу.
50 лет назад создан первый микропроцессор
Микропроцессор Intel 4004 в керамическом корпусе с серыми полосами (оригинальный тип корпуса)
15 ноября 1971 года фирма Intel выпустила свой первый коммерческий микропроцессор Intel 4004, ставший также первым микропроцессором в мире. Его разработка началась в 1969 году, когда японская компания Nippon Calculating Machine Corporation попросила Intel создать 12 чипов для калькулятора Busicom 141-PF.
Эта задача была поручена инженерам Федерико Фаггину, Теду Хоффу и Стэнли Мазору. Именно они придумали инновацию, которая стала настоящей гордостью компании: 16-пиновый микропроцессор из единого куска кремния с 2300 транзисторами MOS, работающий с частотой 740 кГц.
— По стечению обстоятельств первый микропроцессор получил обозначение, аналогичное дате сотворения мира по версии одного из основоположников библейской хронологии Джеймса Ашшера.
— Цикл инструкций: 10,8 микросекунд (в рекламном буклете Intel есть ошибка, указана скорость выполнения операций 108 кГц вместо 93 кГц, ошибку заметили лишь на 40-летие процессора в 2011 году).
— Intel 4004 является одной из самых популярных микросхем в плане коллекционирования. Наиболее высоко ценятся бело-золотые микросхемы Intel 4004 с видимыми серыми следами на белой части (оригинальный тип корпуса). Так, в 2004 году такая микросхема на интернет-аукционе eBay оценивалась примерно в 400 долларов. Немного менее ценными являются микросхемы без серых следов на корпусе, обычно их стоимость составляет порядка 200—300 долларов
Задача серьёзная
ZX Spectrum
23 апреля 1982 года британская компания «Синклер Рисёрч» представила 8-разрядный домашний компьютер «ZX Spectrum», один из наиболее популярных компьютеров в Европе в 1980-е годы!
Компьютер был создан на основе микропроцессора Z80 фирмы «Zilog», улучшенного и более продвинутого варианта Intel 8080 (в отличие от прототипа ему, в частности, требовалось только один источник питания +5В).
В ходе разработки компьютер назывался «ZX81 Colour» и «ZX82», название «Spectrum» должно было подчеркнуть одно из главных отличий от его предшественника ZX81 — цветное изображение. Почитатели этого компьютера часто называют его «Спекки» (англ. Speccy).
В апреле 1982 года компьютер был представлен в двух вариантах — с 16 и 48 КБ оперативной памяти. В ПЗУ был прошит диалект языка Бейсик, так называемый Sinclair BASIC.
Эта же программа ПЗУ обеспечивала базовый ввод-вывод и пользовательский интерфейс. Системными процедурами (например, печатью на экран) можно было воспользоваться из машинного кода, вызвав их по абсолютным адресам. Архитекторами компьютера была принята политика не изменять программу ПЗУ, несмотря на наличие в ней ошибок. Расположение такой «операционной системы» и языка программирования в постоянной памяти обеспечивало перезагрузку компьютера за пару секунд, включая тестирование ОЗУ, и, что важно, уменьшало размер программ (программист мог использовать «стандартные» процедуры ПЗУ, не расходуя доступную оперативную память и не теряя при этом совместимость).
Первая модель «ZX Spectrum» имела недорогую в производстве клавиатуру, состоящую из 40 резиновых клавиш. Характерной её особенностью была многофункциональность: алфавитно-цифровые клавиши имели до семи значений в различных режимах. При этом режим ввода отображался с помощью курсора. Такими режимами были: L — для ввода строчных букв, C — для ввода заглавных букв, K — для ввода основных ключевых слов BASIC, E — для ввода дополнительных ключевых слов и операторов и G — для ввода псевдографических, управляющих символов и символов, определённых пользователем.
Режим переключался как автоматически, так и с помощью управляющих клавиш Caps Shift и Symbol Shift. Например, в начале набора BASIC ждёт номер строки или команду, поэтому курсор находится в режиме K. Однократное нажатие клавиши «G» в таком режиме приведёт к автоматическому вводу оператора GO TO. После этого курсор перейдёт в режим L и позволит набрать число, имя переменной по буквам или математическое выражение (в том числе с помощью режима Е). Более поздние модели (начиная с ZX Spectrum 128) позволяли в качестве альтернативы набирать команды языка по буквам.
Благодаря невысокой цене, за первые 17 месяцев было продано более миллиона этих машин. Низкая стоимость компьютера была обусловлена целым рядом факторов: низкими техническими и пользовательскими характеристиками по сравнению с более дорогими компьютерами того времени; использованием бытового телевизора в качестве монитора и магнитофона в качестве внешнего накопителя.
В начале 80-х ZX Spectrum был одним из самых популярных компьютеров в Европе. На мировом рынке его основным соперником были американские компьютеры Commodore 64, а также 8-битные Atari, BBC Micro, Amstrad CPC и компьютеры системы MSX. Любопытно, что европейские MSX-системы (например, Philips VG80XX) были также построены на базе процессора Z80.
Появление в продаже доступных компьютеров привело не только к всплеску популярности видеоигр, но и программирования. Несколько поколений европейских программистов называют своим первым компьютером ZX Spectrum. Комментируя вызванный им компьютерный бум, сэр Клайв Синклер (владелец Sinclair Research) тогда заявлял, что «программное обеспечение, работающее на кремнии» должно положить конец «долгой монополии углеродных организмов, являющихся самой разумной жизнью на Земле».
В 80-е годы большинство советских микрокомпьютеров было построено на базе микропроцессора КР580ВМ80А (аналог Intel 8080) и не имело общей совместимости. С открытием советского рынка и приходом на него импортных микропроцессоров Z80 (а позднее и собственных аналогов Т34ВМ1 и КР1858ВМ1), появилась возможность клонировать ZX-Spectrum и адатировать его богатейшую библиотеку игр и программ!
В результате, в начале 90-х многочисленные клоны ZX Spectrum, полностью или частично собранные на отечественной элементной базе (включая наборы для самостоятельной сборки), получили широкое распространение на территории бывшего СССР.
Иной раз кажется, что если бы и фирма Sinclair Research вовремя подсуетилась и выпустила свою игровую приставку, она сумела бы сохранить лидирующее положение на рынке. Как ни удивительно, но такая идея у неё была!
Создатели ZX-Spectrum готовили к выпуску игровую консоль
В 1983-м (том самом году, когда компания Nintendo выпустила легендарный Famicom) Sinclair Research могла выпустить первую европейскую игровую приставку!
Инженер Sinclair Research Мартин Бреннан разработал игровую систему LC3 (Low Cost Colour Computer), реализованную всего на двух микросхемах, с играми не на кассетах, а на картриджах. Стив Берри написал для LC3 многозадачную операционную систему с оконным графическим интерфейсом. Если бы этот игровой «low-coster» увидел свет, возможно, он повторил бы успех ZX-Spectrum и смог бы составить конкуренцию Nintendo, Atari и Sega!
По всей видимости, прообразом будущей консоли стал интерфейс ZX Microdrive, позволявший загружать игры с картриджей.
Но в ноябре 1983-го все работы над LC3 прекратились. Силы были переброшены на проект Sinclair QL, который должен был стать первым в мире 32-разрядным домашним компьютером.
В 1983-м до Клайва Синклера дошли слухи о том, что американская фирма Apple готовит к выпуску компьютер на 32-разрядном процессоре, ориентированный для домашнего и бизнес-использования. Он решил действовать на опережение. Им было приложено максимум усилий для того, чтобы успеть выпустить Sinclair QL раньше компьютера Apple. Спешка отразилась даже в названии компьютера: буквы QL означали Quantum Leap — «Квантовый Скачок».
В свою очередь, разработчики игр и ПО также не спешили осваивать платформу QL из-за необходимости использования картриджей Microdrive. В итоге владельцы ZX-Spectrum, которые были вполне довольны тем, что у них уже было, делать апгрейд до компьютера с довольно скромной библиотекой игр не пожелали.
Фирма Amstrad продолжила линейку Spectrum, снабдив их встроенным магнитофоном (величаво именуемым «datacorder»), как и компьютеры своей марки. В 1986-м был выпущен ZX Spectrum +2, а год спустя ZX Spectrum +3, ZX Spectrum +2A и +2B. Ни одному из них не удалось даже приблизиться ни к успеху ZX-Spectrum, ни к популярности Amstrad CPC-664.
Фирма Sinclair Research продолжила своё существование, однако компьютерным бизнесом уже не занималась. Интересы Клайва Синклера переключились на транспортные средства: инвалидные коляски, велосипеды и электромобили. Оглядываясь в прошлое, можно с уверенностью сказать, что ZX-Spectrum стал самым большим успехом его жизни!
- Процессор тулантин что это
- Процессор ушел в защиту что делать