Проржавел полотенцесушитель что делать
Почему ржавеют полотенцесушители
Полотенцесушители эксплуатируются в условиях, неблагоприятных для железосодержащих сплавов. Проходящая через трубы вода может вызывать коррозию стенок изнутри. Пропитанный влагой воздух представляет опасность для внешних поверхностей. Но если увидеть начало наружных изменений несложно, то остальные станут заметными только после появления сквозных отверстий. В первом случае можно принять меры, чтобы избавиться от ржавчины и таким образом остановить разрушение. Во втором все намного сложнее – обычно эти дефекты требуют замены трубы или всей конструкции.
Водяные полотенцесушители более подвержены коррозии, чем трубы системы ГВС или отопления, к которым они подключаются. Причина в том, что вода движется через змеевик с малой скоростью, поэтому в застойных зонах накапливаются отложения, вызывающие интенсивный коррозионный процесс. Хотя чугун и оцинкованная сталь намного устойчивее, чем обычный железный сплав, со временем такие полотенцесушители также начинают течь. Поэтому старые змеевики заменяют нержавеющими. Но иногда наблюдается аномально быстрое разрушение нового полотенцесушителя, что вызывает целый ряд вопросов – соответствует ли материал заявленным характеристикам? Откуда берется ржавчина? Есть ли способы предотвратить процесс?
Причины коррозии металлических труб
Появление любых пятен или налета на полотенцесушителе нельзя оставлять без внимания – это признак электрохимического коррозионного процесса. Чаще страдают от него сварные швы – наиболее уязвимые места конструкции. Дефектные участки могут быть точечными, в виде изъязвлений, ржавых пятен или канавок. Характерный бурый цвет свидетельствует об образовании оксидов железа. В результате структурных изменений металл меняет свои свойства, теряет прочность и под давлением воды быстро разрушается.
Если одновременно ржавеют большие участки поверхности, это называется сплошной коррозией. Наглядный пример – бурые отложения, равномерно распределенные по внутренней поверхности стальной или чугунной трубы. Такой процесс характеризуется сравнительно медленным течением и при определенных условиях может растянуться на десятилетия. Локальная коррозия протекает намного интенсивнее. Именно она опаснее для труб, так как ржавчина быстро проникает в толщу материала и создает сквозные отверстия.
По механизму протекания коррозионного процесса различают химический и электрохимический. Обычно мы имеем дело с последним, когда окисление металла с термодинамической неустойчивостью происходит в электропроводящей среде. В случае с полотенцесушителями электролитом становится водопроводная вода, обычно не особенно чистая. При определенных условиях на поверхности трубы возникают электродные потенциалы с разными значениями (катодные и анодные участки), что способствует процессу ионизации железа.
Самопроизвольное растворение начинается также в случае контакта двух разнородных металлов – например, в месте соединения с футоркой. Быстро разрушаются стальные (в том числе оцинкованные) трубы, напрямую соединенные с медными, и идущие после них по ходу водяного потока. Такие пары обязательно должны разделяться переходниками из бронзы или нержавейки. То же относится к латуни, в основе которой лежит медь.
Для защиты поверхностей, постоянно контактирующих с водой, предназначена технология «ПолимерПротект», разработанная компанией Сунержа. В основе метода лежит использование искусственных полимерных материалов для защиты металла от разрушающей среды. Согласно этой технологии на внутренние поверхности труб наносится полимерная пленка, которая выдерживает высокие температуры, не выделяет токсических веществ, не повреждается находящимися в воде примесями. Покрытие позволило увеличить гарантийный срок на продукцию компании – сейчас он составляет 10 лет.
Такие методы не требуют много времени на их осуществление, но взамен достается долгая и бесперебойная работа полотенцесушителя, и в дальнейшем вопрос “как заземлить полотенцесушитель” не вызовет затруднений. |
Друзья также смотрите видео для чего нужно заземлять полотенцесушитель.
Похожие материалы на сайте:
Причины возникновения электрокоррозии
Появление вихревых токов Фуко – довольно сложное непредсказуемое явление. В системах горячего водоснабжения, а порой и в системе отопления такие токи появляются из-за многих причин, казалось бы не связанных между собой.
Вообще, вихревые токи образуются при разности потенциалов. При строительстве дома, все металлические конструкции подключаются к общему контуру заземления, причем раньше в строительстве использовали заземление по контуру, а сейчас довольствуются методом уравнивания потенциалов.
Когда в квартире вместо существующей металлической системы ставят пластиковые – разность потенциалов возникает из-за разрыва заземления (например, на полотенцесушителе один потенциал, а на стояке – совсем другой). Отсюда и разность потенциалов, отсюда и блуждающие токи. Еще они могут возникать в результате короткого замыкания, отсутствия заземления близнаходящихся электрических бытовых приборов, будь то стиральная машина и так далее.
Даже наличие/отсутствие трамвайных путей в непосредственной близости играет роль. Блуждающие токи возникают также при нарушении изоляции электропроводки, обрыва сети, заземления, сделанного на систему отопления.
Все это ведет к электрокоррозии сантехники, к ней еще приводит соседство двух разных материалов, особенно нержавеющей и черной стали. То место, через которое в полотенцесушитель проходит заряд, в результате подвергается электрохимической реакции, поэтому там образуется повреждение. Такие проблемы обычно решаются непосредственно заземлением самого полотенцесушителя.
При покупке водяного полотенцесушителя необходимо ознакомиться с правилами его эксплуатации, в частности, обратить внимание нужно ли заземлять полотенцесушитель или нет, чтобы учесть этот момент во время ремонта, а не после того, как ремонт будет завершен
Для чего заземлять водяной полотенцесушитель
После того, как пластиковые трубы начали вытеснять обычные металлические, на их заземление стали не обращать внимания, ошибочно полагая, что металлическая труба и труба из металлопластика имеют одинаковую токопроводимость. Это не так. Между металлопластиковой трубой и алюминием отсутствует контакт: они не соединены.
Практика показывает, что 90 процентов полотенцесушителей начинают протекать именно в случае замены металлических систем горячего водоснабжения на их пластиковые аналоги (например, полипропилен). Старые металлические трубы меняются на современные пластиковые с целью уменьшения вихревых токов. Однако коррозия продолжает себя проявлять.
Первые симптомы электрической коррозии – возникновение пятен ржавчины на полотенцесушителе, причем ржавчина проявляется даже на устройствах, сделанных из нержавейки. Вообще, все металлические электро-изделия, контактирующие с водой, подвержены как электрохимической так и гальванической коррозии. Электрокоррозия возникает при наличии блуждающих токов. В результате на металл оказывается одновременное воздействие электрического тока и воды, после чего появляются металлические пробои, а уже оттуда начинает свое распространение коррозия.
При контакте двух разных металлов, один из которых более химически активен, чем другой, оба металла вступают в химическую реакцию. Чистая вода является очень плохим проводником электрического тока (диэлектриком), но, благодаря большой концентрации различных примесей, вода превращается в своеобразный электролит.
Не стоит забывать о том, что температура оказывает большое влияние на электропроводимость: чем выше температура воды, тем лучше она проводит электрический ток. Данное явление известно под именем “гальваническая коррозия”, именно она методично приводит полотенцесушитель в негодность.
Необходимость антикоррозионной защиты
Защита металла от воздействий, которые разрушающе действуют на его поверхность – одна из основных задач, возникающих перед теми людьми, которые работают с механизмами, агрегатами и машинами, морскими судами и строительными процессами.
Чем активнее эксплуатируется устройство или деталь, тем больше шансов у нее подвергнуться разрушительному воздействию и атмосферных условий, жидкостей, с которыми приходится сталкиваться в процессе работы. Над защитой металла от коррозии работают многие отрасли науки и промышленного производства, но основные способы остаются при этом неизменными, и состоят в создании защитных покрытий:
Неметаллические покрытия создаются с помощью органических и неорганических соединений, их принцип действия достаточно эффективен и отличается от остальных типов защиты. Для создания неметаллической защиты в промышленном и строительном производстве используются лакокрасочные составы, бетон и битум и высокомолекулярные соединения, особенно активно взятые на вооружение в последние годы, когда больших высот достигла химия полимеров.
Химия внесла свой вклад в создание защитных покрытий методами:
Электрохимическая защита от коррозии – это процесс, обратный электрохимической коррозии. В зависимости от смещения потенциала металла в положительную или отрицательную стороны, различают анодную и катодную защиту. Путем подсоединения к металлическому изделию протектора или источника постоянного тока на металлической поверхности создается катодная поляризация, которая и препятствует разрушению металла через анод.
Электрохимические методы защиты состоят в двух вариантах:
Анодная защита от коррозии – это, например, оцинкованное железо. Пока не израсходуется весь цинк с защитного слоя, железо будет в относительной безопасности.
Защита катодным способом – это никелирование или нанесение меди. В этом случае разрушение защитного слоя приводит и к разрушению того слоя, который он защищает. Присоединение протектора для предохранения металлического изделия ничем не отличается от протекания реакции в других случаях. Протектор выступает в роли анода, а то, что находится под его протекторатом, остается в сохранности, используя созданные ему условия.
Что такое коррозия
Процесс разрушения верхнего слоя металлического материала под влиянием внешних воздействий называется коррозией в широком смысле.
Термин коррозия в данном случае – только характеристика того, что металлическая поверхность вступает в химическую реакцию и теряет под её влиянием свои изначальные свойства.
4 основных признака, по которым можно определить, что этот процесс существует:
Способы защиты металла
Электрохимическая коррозия – одно из основных препятствий, которые встречаются на пути человеческой деятельности. Защита от воздействия разрушительных процессов и их протекания на поверхности конструкций и сооружений – одна из перманентных и насущных задач любого промышленного производства, и любой бытовой деятельности человека.
Разработано несколько способов такой защиты, и все они активно применяются в повседневном цикле жизнедеятельности:
Все эти способы наработаны в процессе деятельности человека с целью защиты инструментария, средств передвижения и транспортировки на стыке нескольких промышленных отраслей, и с использованием научных достижений.
Электрохимическая коррозия, которая является естественным процессом разрушения поверхности металла под воздействием нейтральных или агрессивных факторов окружающей среды, представляет собой сложную проблему. Убытки от нее терпят и машиностроительные, и транспортные, и промышленные предприятия, средства передвижения. И это проблема, которая требует ежедневного разрешения.
Виды коррозии
В зависимости от типа металла и окислительно-восстановительной реакции, происходящей с ним, коррозия может быть:
Также в зависимости от того, какие именно внешние факторы воздействуют на поверхность, коррозия бывает химической и электрохимической. Химическая коррозия происходит в результате некоторых реакций под влиянием химических взаимодействий, но без участия электрического тока, и может быть присуща даже нефти и газу. Электрохимическая отличается определенными процессами, она более сложная, чем химическая.
На видео: коррозия металлов.
Причины и признаки электрохимической коррозии
Электрохимическая коррозия отличается от химической тем, что процесс разрушения проходит в системе электролитов, отчего внутри этой системы возникает электрический ток. Два сопряжённых процесса, анодный и катодный, приводят к удалению из кристаллической решетки металла неустойчивых атомов. Ионы при анодном переходят в раствор, а электроны от анодного процесса попадают в ловушку к веществу-окислителю и связываются деполяризатором.
Таким образом, деполяризация – это отвод с катодных участков свободных электронов, а деполяризатор – вещество, которое отвечает за этот процесс. Основные реакции происходят с участием водорода и кислорода в роли деполяризаторов.
Существует множество примеров электрохимической коррозии разного типа, которая оказывает воздействие на металлические поверхности в природе и проходит под влиянием различных условий. Водород при этом работает в кислой среде, а кислород – в нейтральной.
Практически все металлы подвергаются электрохимической коррозии, и по этому признаку их разбивают на 4 группы, определяют величину их электродного потенциала:
Но эта же реакция может протекать и в воде, в растворах оснований, солей и кислот. В узкоспециальном различии атмосферной коррозии различают почвенную и аэрационную, морскую и биологическую (протекающую под воздействием бактерий).
Есть даже электрическая коррозия, которая протекает под воздействием электрического тока, и является результатом работы блуждающих токов, возникающих там, где электрический ток используется человеком для осуществления определенной деятельности.
Гомогенная металлическая поверхность при этом разрушается из-за термодинамической неустойчивости к окружающей среде. А гетерогенная – из-за состава кристаллической решётки, в которой атомы одного металла держатся плотнее, чем атомы инородных вкраплений. Эти реакции отличаются скоростью протекания ионизации ионов, и восстановления окислительных компонентов окружающей среды.
Разрушение металлических поверхностей при электрохимической коррозии состоит в одновременном протекании двух процессов: анодного и катодного, и отличия процессов состоят в том, что растворение происходит на анодах, которые и контактируют с окружающей средой через множество микроэлектродов, которые входят в состав поверхности любого металла и замкнуты на себя.
- Проржавел номер кузова что делать
- Проржавел радиатор отопления что делать