Пролонгирующие действие что это
ПРЕПАРАТЫ ПРОДЛЁННОГО ДЕЙСТВИЯ
ПРЕПАРАТЫ ПРОДЛЁННОГО ДЕЙСТВИЯ (син.: дюрантные препараты; препараты пролонгированного действия) — лекарственные препараты, обеспечивающие более длительное терапевтическое действие но сравнению с обычными препаратами, содержащими те же лекарственные средства. Принцип их действия заключается в постепенном освобождении определенных доз лекарственных средств в течение длительного времени, благодаря чему поддерживается оптимальная их концентрация в организме.
Увеличение времени пребывания лекарственного средства в организме достигается путем замедления всасывания, биотрансформации и выделения. Пролонгирование действия лекарственных средств, применяемых для инъекций, может осуществляться путем создания труднорастворимых солей, эфиров и комплексных соединений лекарственных средств (напр., новокаиновая соль бензилпенициллина, протамин-цинкинсулин, эфиры стероидных гормонов и др.).
Всасывание лекарственного средства из инъекционного р-ра зависит также от вязкости последнего. На этом принципе основано использование в качестве растворителей для инъекционных р-ров растительных масел с добавлением воска и стеарата алюминия. Увеличение вязкости растворителя может быть достигнуто путем добавления к водным р-рам высокомолекулярных соединений (декстрана, поливинилпирролидона, карбоксиметилцеллюлозы, желатина). Весьма значительно замедляется всасывание инъекционных препаратов в форме микрокристаллических суспензий. Так, микрокристаллическая суспензия инсулина обеспечивает продолжительность действия этого гормона до 36 час. Масляные р-ры труднорастворимых веществ и суспензии вводят внутримышечно. На месте инъекции таких препаратов создается депо лекарственного средства, откуда оно постепенно всасывается в кровь, что обеспечивает увеличение продолжительности действия.
В офтальмол. практике в качестве П. п. д. применяют р-ры пилокарпина гидрохлорида, скополамина гидробромида и гоматропина гидробромида с метилцеллюлозой.
П. п. д. для приема внутрь выпускают в виде микрокапсул, спансул, медул, лакированного гранулята, импрегнированных таблеток с оболочками, таблеток типа «дуплекс», многослойных таблеток. Содержащееся в этих лекарственных формах (см.) вещество может освобождаться через определенное время независимо от локализации препарата в жел.-киш. тракте или в заданном его отделе. Некоторые таблетки содержат две или более однократных доз лекарственного средства, каждая из которых освобождается последовательно. При этом освобождение последующей дозы начинается в момент, когда концентрация вещества в крови от предыдущей дозы начинает снижаться.
Особую лекарственную форму с пролонгированным типом действия представляют имплантационные таблетки и стерильные капсулы, которые оперативным путем имплантируют под кожу. Этот способ введения лекарств обеспечивает равномерное поступление их в кровь и действие в течение нескольких месяцев. В таких лекарственных формах выпускают некоторые гормональные препараты и средства, применяемые для лечения алкоголизма (напр., тетурам).
К мягким лекарственным формам с пролонгированным действием относятся мази и суппозитории на специальных основах, суппозитории с оболочками, ректальные тампоны. Пролонгирование эффекта лекарственного средства можно получить также за счет фармакол. взаимодействия с другими веществами, напр. применение адреналина с местноанестезирующими средствами пролонгирует фармакол. эффект последних.
Библиография: Муравьев И. А. Технология лекарств, т. 1—2, М., 1980; Voigt R. Lehrbuch der pharmazeutischen Technologie, S. 721, B., 1973.
C. И. Золотухин, В. Ф. Кремнева.
Пролонгированные твёрдые лекарственные формы
Пролонгированные твёрдые лекарственные формы
Мы продолжаем серию публикацию статей молодых специалистов, изучающих заводскую технологию. От тех, кто завтра придет работать на российские фармпроизводства, зависит будущее российской фармпромышленности. Поэтому подготовка высоко-квалифицированных кадров инженеров, технологов, специалистов по качеству должна начинаться еще в вузе. Надеемся, тема выпуска пролонгированных твердых лекарственных форм является особо актуальной и для наших читателей-производственников.
Е.А.Чурсина, студентка 5-го курса фармфакультета, кафедра общей фармацевтической и биомедицинской технологии, ММА им. И.М. Сеченова
Основными достоинствами данных лекарственных форм являются:
— возможность уменьшения частоты приёма,
— возможность уменьшения курсовой дозы,
— возможность устранения раздражающего действия ЛВ на желудочно-кишечный тракт,
— возможность уменьшить проявления основных побочных эффектов.
К пролонгированным лекарственным формам предъявляются следующие требования:
— Концентрация ЛВ по мере высвобождения из препарата не должна подвергаться значительным колебаниям и должна быть в организме оптимальной в течение определённого периода времени.
— Вспомогательные вещества, введённые в лекарственную форму, должны полностью выводиться из организма или инактивироваться.
— Способы пролонгирования должны быть простыми и доступными в исполнении и не должны оказывать отрицательного воздействия на организм. Наиболее индифферентным в физиологическом отношении является метод пролонгирования посредством замедления всасывания ЛВ. В зависимости от пути введения пролонгированные формы подразделяются на лекарственные формы ретард и лекарственные формы депо. С учётом кинетики процесса различают лекарственные формы с периодическим высвобождением, непрерывным и отсроченным высвобождением. Лекарственные формы депо ( от франц.depot – склад, откладывать. Синонимы – лекарственные формы депонируемые) – это пролонгированные лекарственные формы для инъекций и имплантаций, обеспечивающие создание в организме запаса лекарственного средства и его последующее медленное высвобождение. Лекарственные формы депо всегда попадают в одинаковую окружающую среду, в которой они накапливаются, в отличие от изменяющейся среды желудочно-кишечного тракта. Преимуществом является то, что их можно вводить с более продолжительными интервалам (иногда до недели). В данных лекарственных формах замедление всасывания, как правило, достигается применением трудно растворимых соединений ЛВ (соли, эфиры, комплексные соединения), химической модификацией – например, микрокристаллизация, помещением ЛВ в вязкую среду (масло, воск, желатин или синтетическая среда), использованием систем доставки – микросферы, микрокапсулы, липосомы.
Современная номенклатура лекарственных форм депо включает:
Инъекционные формы – раствор масляный, суспензию депо, суспензию масляную, суспензию микрокристаллическую, суспензию микронизированную масляную, суспензии инсулинов, микрокапсулы для инъекций.
Имплантационные формы – таблетки депо, таблетки подкожные, капсулы подкожные ( капсулы депо), плёнки интраокулярные, терапевтические системы глазные и внутриматочные. Для обозначения парентеральных аппликационных и ингаляционных лекарственных форм используется термин «пролонгированный» или более общий – «с модифицированным высвобождением».
Лекарственные формы ретард (от лат. retardo – замедлять, tardus – тихий, медленный; синонимы- ретардеты, лекарственные формы ретардированные) – это пролонгированные лекарственные формы, обеспечивающие в организме запас лекарственного вещества и его последующее медленное высвобождение. Данные лекарственные формы применяются преимущественно перорально, однако иногда используются и для ректального введения. Ранее данным термином также обозначали пролонгированные инъекционные формы гепарина и трипсина.
Для получения лекарственных форм ретард используют физические и химические методы.
К физическим относят методы покрытия оболочкой кристаллических частиц, гранул, таблеток, капсул; смешивание лекарственных веществ с веществами, замедляющими всасывание, биотрансформацию и выделение; использование нерастворимых основ (матриц) и др.
Основными химическими методами являются адсорбция на ионитах и образование комплексов. Вещества, связанные с ионнообменной смолой, становятся нерастворимыми и их высвобождение из лекарственных форм в пищеварительном тракте основано исключительно на обмене ионов. Скорость высвобождения лекарственного вещества изменяется в зависимости от степени измельчения ионита и от количества его разветвлённых цепей.
В зависимости от технологии получения различают лекарственные формы ретард двух принципиальных типов – резервуарного и матричного.
Формы резервуарного типа представляют собой ядро, содержащее ЛВ, и полимерную ( мембранную) оболочку, которая определяет скорость высвобождения. Резервуаром может быть единичная лекарственная форма ( таблетка, капсула) или лекарственная микроформа, множество которых образуют конечную форму ( пеллеты, микрокапсулы). Формы ретард матричного типа содержат полимерную матрицу, в которой распределено ЛВ, и очень часто имеет вид простой таблетки. К лекарственным формам ретард относятся гранулы кишечнорастворимые, драже ретард, драже с покрытием кишечнорастворимым, капсулы ретард и ретард форте, капсулы с покрытием кишечнорастворимым, раствор ретард, раствор рапид ретард, суспензия ретард, таблетки двухслойные, таблетки кишечнорастворимые, таблетки каркасные, таблетки многослойные, таблетки ретард, рапид ретард, ретард форте, ретард мите и ультраретард; таблетки с покрытием многофазным, таблетки с покрытием плёночным и т.д.
С учётом кинетики процесса различают лекарственные формы с периодическим высвобождением, с непрерывным высвобождением и отсроченным высвобождением.
В этих лекарственных формах одна доза отделяется от другой барьерным слоем, который может быть плёночным, прессованным или дражированным. В зависимости от его состава доза лекарственного вещества может высвобождаться либо через заданное время независимо от локализации препарата в желудочно-кишечном тракте, либо в определённое время в необходимом отделе пищеварительного тракта.
Так при использовании кислотоустойчивых покрытий одна часть лекарственного вещества может высвобождаться в желудке, а другая в кишечнике. При этом период общего действия препарата может продлеваться в зависимости от числа доз ЛВ, находящегося в нём, т.е. от числа слоёв таблетки или драже. К лекарственным формам с периодическим высвобождением относятся таблетки двуслойные и драже двуслойные («дуплекс»), таблетки многослойные.
Лекарственные формы с непрерывным высвобождением – это пролонгированные лекарственные формы, при введении в организм которых высвобождается начальная доза лекарственного вещества, а остальные ( поддерживающие) дозы высвобождаются с постоянной скоростью, соответствующей скорости элиминации и обеспечивающей постоянство желаемой терапевтической концентрации. Лекарственные формы с непрерывным, равномерно продлённым высвобождением обеспечивают поддерживающее действие лекарственного средства. Они являются более эффективными по сравнению с формами с периодическим высвобождением, т.к. обеспечивают постоянную концентрацию ЛВ в организме на терапевтическом уровне без выраженных экстремумов, не перегружают организм чрезмерно высокими концентрациями.
К лекарственным формам с непрерывным высвобождением относятся таблетки каркасные, таблетки и капсулы с микроформами и др.
Лекарственные формы с отсроченным высвобождением – это пролонгированные лекарственные формы, при введении которых в организм высвобождение лекарственного вещества начинается позже и длится дольше, чем из обычной лекарственной формы. Они обеспечивают замедленное начало действия ЛВ. Примером данных форм могут служить суспензии ультралонг, ультраленте с инсулином.
Особый интерес среди пролонгированных лекарственных форм представляют таблетки.
Таблетки пролонгированные (сино нимы – таблетки с пролонгированным действием, таблетки с пролонгированным высвобождением) – это таблетки, лекарственное вещество из которых высвобождается медленно и равномерно или несколькими порциями. Данные таблетки позволяют обеспечивать терапевтически действующую концентрацию ЛВ в организме в течение длительного периода времени.
Номенклатура таблеток пролонгированных включает таблетки имплантируемые, или депо; таблетки ретард, каркасные, многослойные, многофазные. К ним относят Депакин Хроно, Кардил, Нифекард ХЛ, Триттико, Сустонит).
Таблетки имплантируемые ( син. – имплантаблеты, таблетки депо, таблетки для имплантации) – это стерильные тритурационные таблетки с пролонгированным высвобождением высокоочищенных лекарственных веществ для введения под кожу. Имеет форму очень маленького диска или цилиндра. Данные таблетки изготавливаются без наполнителей. Данная лекарственная форма является очень распространённой для введения стеройдных гормонов. В зарубежной литературе также используется термин «пеллеты». Примеры – Дисульфирам, Долтард, Эспераль.
Таблетки ретард – это пероральные таблетки с пролонгированным (в основном с периодическим) высвобождением ЛВ.
Обычно представляют собой микрогранулы лекарственного вещества, окружённые биополимерной матрицей (основой). Они послойно растворяются, высвобождая очередную порцию ЛВ. Их получают прессованием микрокапсул с твёрдым ядром на таблеточных машинах. В качестве вспомогательных веществ применяют мягкие жиры, которые способны предотвратить разрушение оболочки микрокапсулы в процессе прессования.
Существуют также таблетки ретард с другими механизмами высвобождения – отсроченным, непрерывным и равномерно продлённым высвобождением. Разновидностями таблеток ретард являются таблетки «дуплекс», таблетки структурные. К ним относят Дальфаз СР, Диклонат претард 100, Калий-нормин, Кетонал, Кордафлекс, Трамал Претард.
Репетабс – это таблетки с многослойным покрытием, обеспечивающие повторное действие ЛВ. Они состоят из наружного слоя с лекарственным веществом, который предназначен для быстрого высвобождения, внутренней оболочки с ограниченной проницаемостью и ядра, которое содержит ещё одну дозу лекарственного вещества.
Для изготовления данных таблеток применяют циклические таблеточные машины с многократным насыпанием. В машинах можно проводить троекратное насыпание, выполняемое с различными гранулятами.
Таблетки каркасные (син. Дурулы, таблетки дурулес, таблетки матричные, таблетки пористые, таблетки скелетные, таблетки с нерастворимым каркасом) – это таблетки с непрерывным, равномерно продлённым высвобождением и поддерживающим действием ЛВ. Данную лекарственную форму получают путём включения ( инкорпорирования ) ЛВ в сетчатую структуру ( матрицу ) из нерастворимых вспомогательных веществ, либо в матрицу из гидрофильных веществ, которые не образуют гель высокой вязкости. Материалом для «скелета» служат неорганические соединения – сульфат бария, гипс, фосфат кальция, диоксид титана и органические – полиэтилен, поливинилхлорид, мыла алюминиевые. Скелетные таблетки могут быть получены путём простого прессования лекарственных веществ, образующих скелет. Эти таблетки не распадаются в желудочно-кишечном тракте. В зависимости от природы матрицы могут набухать и медленно растворяться или сохранять свою геометрическую форму в течение всего периода пребывания в организме и выводиться в виде пористой массы, поры которой заполнены жидкос тью. Таким образом ЛВ высвобождается путём вымывания. Лекарственные формы могут быть многослойными. Важно, что лекарственное вещество находится преимущественно в среднем слое. Растворение его начинается с боковой поверхности таблетки, в то время как с верхней и нижней поверхностей вначале диффундируют только вспомогательные вещества из среднего слоя через капилляры, образовавшиеся в наружных слоях. Перспективной в настоящее время является технология получения каркасных таблеток с использованием твёрдых дисперсных систем (Кинидин дурулес).
Спейстабс – это таблетки с лекарственным веществом, включённым в твёрдую жировую матрицу, которая не распадается, а медленно диспергируется с поверхности.
Лонтабс – это таблетки с пролонгированным высвобождением ЛВ. Ядро этих таблеток представляет собой смесь ЛВ с высокомолекулярными восками. В желудочно – кишечном тракте не распадаются, а медленно растворяются с поверхности.
Одним из современных методов пролонгирования действия таблеток является покрытие их оболочками, в частности покрытиями Aqua Polish. Эти покрытия обеспечивают пролонгированное высвобождение субстанции. Они обладают алкалифильными свойствами, благодаря которым таблетка способна проходить через кислую среду желудка в неизменном состоянии. Солюбилизация покрытия и высвобождение активных субстанций происходит в кишечнике. Время высвобождения субстанции можно контролировать путём подбора вязкости покрытия. Также возможно задать время высвобождения различных субстанций в комбинированных препаратах.
Примеры составов данных покрытий:
Метакриловая кислота/ Этилацетат
В другом варианте покрытия карбоксиметилцеллюлоза натрия заменяется на полиэтиленгликоль.
Часто для пролонгирования лекарственных форм используется процесс микрокапсулирования.
Микрокапсулирование – процесс заключения в оболочку микроскопических частиц твердых, жидких или газообразных лекарственных веществ. Чаще всего применяют микрокапсулы размером от 100 до 500 мкм. Частицы размером
а) предохранение неустойчивых лекарственных препаратов от воздействия внешней среды (витамины, антибиотики, ферменты, вакцины, сыворотки и др.);
б) маскировка вкуса горьких и тошнотворных лекарств;
в) высвобождение лекарственных веществ в нужном участке желудочно-кишечного тракта (кишечно-растворимые микрокапсулы);
г) пролонгированное действие. Смесь микрокапсул, отличающихся размером, толщиной и природой оболочки, помещенная в одну капсулу, обеспечивает поддержание определенного уровня лекарства в организме и эффективное терапевтическое действие в течение длительного времени;
д) совмещение в одном месте несовместимых между собой в чистом виде лекарств (использование разделительных покрытий);
е) «превращение» жидкостей и газов в псевдотвердое состояние, т.е. в сыпучую массу, состоящую из микрокапсул с твердой оболочкой, заполненных жидкими или газообразными лекарственными веществами.
В виде микрокапсул выпускают ряд лекарственных веществ: витамины, антибиотики, противовоспалительные, мочегонные, сердечно-сосудистые, антиастматические, противокашлевые, снотворные, противотуберкулезные и т.д.
Микрокапсулирование открывает интересные возможности при использовании ряда лекарственных веществ, которые нельзя реализовать в обычных лекарственных формах. Пример – применение нитроглицерина в микрокапсулах. Обычный нитроглицерин в подъязычных таблетках или в каплях (на кусочке сахара) обладает кратковременным периодом действия. Микрокапсулированный нитроглицерин обладает способностью длительно высвобождаться в организме.
Существующие методы микрокапсулирования: физические; физико-химические; химические.
Физические методы. Физические методы микрокапсулирования многочисленны. К ним относятся методы дражирования, распыления, напыления в псевдоожиженном слое, диспергирования в несмешивающихся жидкостях, экструзионные методы, электростатический метод и др. Суть всех этих методов заключается в механическом нанесении оболочки на твердые или жидкие частицы лекарственных веществ. Использование того или иного метода осуществляется в зависимости от того, является ли «ядро» (содержимое микрокапсулы) твердым или жидким веществом.
Метод распыления. Для микрокапсулирования твердых веществ, которые перед этим должны быть переведены в состояние тонких суспензий. Размер получаемых микрокап сул 30 – 50 мкм.
Метод «напыления» в псевдоожиженном слое. В апп аратах типа СП-30 и СГ-30. Метод применим для твердых лекарственных веществ. Твердые ядра сжижают потоком воздуха и «напыляют» на них раствор пленкообразующего вещества с помощью форсунки. Затвердение жидких оболочек происходит в результате испарения растворителя.
Метод кструзии. Под воздействием центробежной силы частицы лекарственных веществ (твердых или жидких), проходя через пленку раствора пленкообразователя, покрываются ею, образуя микрокапсулу.
В качестве пленкообразователей применяются растворы веществ со значительным поверхностным натяжением (желатин, натрия альгинат, поливиниловый спирт и др.)
Физико-химические методы. Основаны на разделении фаз, позволяют заключить в оболочку вещество в любом агрегатном состоянии и получить микрокапсулы разных размеров и свойств пленок. В физико-химических методах используется явление коацервации.
Коацервация – образование в растворе высокомолекулярных соединений капель, обогащенных растворенным веществом.
В результате коацервации образуется двухфазная система за счет расслаивания. Одна фаза представляет собой раствор высокомолекулярного соединения в растворителе, другая – раствор растворителя в высокомолекулярном веществе.
Раствор, более богатый высокомолекулярным веществом, часто выделяется в виде капелек коацервата – коацерватных капель, что связано с переходом от полного смешения к ограниченной растворимости. Снижению растворимости способствует изменение таких параметров системы, как температура, рН, концентрация и др.
Коацервация при взаимодействии раствора полимера и низкомолекулярного вещества называется простой. В ее основе лежит физико-химический механизм слипания, «сгребания в кучу» растворенных молекул и отделения от них воды при помощи водоотнимающих средств. Коацервация при взаимодействии двух полимеров называется сложной, причем образование сложных коацерватов сопровождается взаимодействием между (+) и (-) зарядами молекул.
Способ коацервации заключается в следующем.
Сначала в дисперсионной среде (раствор полимера) путем диспергирования получают ядра будущих микрокапсул. Непрерывной фазой при этом является, как правило, водный раствор полимера (желатина, карбоксиметилцеллюлозы, поливинилового спирта и т.д.), но иногда может быть и неводный раствор. При создании условий, при которых уменьшается растворимость полимера, происходит выделение из раствора коацерватных капель этого полимера, которые осаждаются вокруг ядер, образуя начальный жидкий слой, так называемую эмбриональную оболочку. Далее происходит постепенное затвердевание оболочки, достигаемое с помощью различных физико-химических приемов.
Химические методы. Эти методы основаны на реакциях полимеризации и поликонденсации на границе раздела двух несмешивающихся жидкостей (вода – масло). Для получения микрокапсул этим методом в масле растворяют сначала лекарственное вещество, а затем мономер (например, метилметакрилат) и соответствующий катализатор реакции полимеризации (например, перекись бензоила). Полученный раствор нагревают 15 – 20 мин при t=55 о C и вливают в водный раствор эмульгатора. Образуется эмульсия типа М/В, которую выдерживают для завершения полимеризации в течение 4 часов. Полученный полиметилметакрилат, нерастворимый в масле, образует вокруг капелек последнего оболочку. Образовавшиеся микрокапсулы отделяют фильтрованием или центрифугированием, промывают и сушат.
Аппарат для сушки таблеточных смесей в кипящем слое СП-30
Предназначен для сушки порошкообразных материалов и таблеточных гранулятов, не содержащих органических растворителей и пирофорных примесей в фармацевтической, пищевой, химической промышленности.
При сушке многокомпонентных смесей смешивание производится непосредственно в аппарате. В сушилках типа СП возможно проведение опудривания таблеточных смесей перед таблетированием.
Принцип действия: Поток воздуха, всасываемый в сушилку вентилятором, подогревается в калориферной установке, проходит через воздушный фильтр и направляется под сетчатое дно резервуара с продуктом. Проходя через отверстия в днище, воздух приводит гранулят во взвешенное состояние. Увлажненный воздух выводится из рабочей зоны сушилки через рукавный фильтр, сухой продукт остается в резервуаре. По окончании сушки продукт в тележке транспортируется на дальнейшую обработку.
Список использованной литературы
1.В.И. Чуешов, Промышленная технология лекарств: учебник. – Харьков, НФАУ, 2002. 715 с.
2.материал лекций кафедры общей фармацевтической и биомедицинской технологии, ММА им. И.М. Сеченова
Современные полимеры в технологии таблеток с пролонгированным высвобождением
Полный текст
Аннотация
В настоящее время среди лекарственных форм представляют особый интерес системы доставки лекарственных веществ второго и третьего поколения. К лекарственным формам второго поколения относятся системы с пролонгированным высвобождением действующего вещества, к лекарственным формам третьего поколения – системы с контролируемым высвобождением. Замедленное непрерывное высвобождение лекарственного вещества может быть достигнуто с применением специальных вспомогательных веществ или при помощи специальных технологий.
Для получения таблеток с пролонгированным высвобождением наиболее часто применяют специальные вспомогательные вещества, а именно, полимеры и их композиции.
Применение полимеров в качестве носителей лекарственных веществ, используемых для программирования скорости и места высвобождение известно с середины XX столетия [1]. На сегодняшний день в области использования полимеров для пролонгации высвобождения достигнут значительный прогресс: изучено влияние и взаимодействие полимеров и лекарственных веществ, изучены механизмы высвобождения лекарственных веществ, изучены способы программирования кинетики высвобождения с использованием различных свойств полимеров и т. д.
В статье рассмотрено современное состояние в области технологии таблеток с пролонгированным высвобождением. Описаны преимущества пролонгированного высвобождения, математические модели для описания лекарственных форм с пролонгированным высвобождением. Рассмотрены технологии получения таблеток с пролонгированным высвобождением, виды систем доставки и механизмы высвобождения активного фармацевтического ингредиента.
В статье представлены современные полимеры, которые применяются в технологии таблеток с пролонгированным высвобождением. Представлена классификация полимеров по отношению к воде и физиологическим жидкостям.
Ключевые слова
Полный текст
В настоящее время фармацевтический рынок предлагает большой выбор ЛФ с модифицированным высвобождением АФИ.
СОКРАЩЕНИЯ:
ЛФ – лекарственная форма.
АФИ – активный фармацевтический ингредиент.
ВВ – вспомогательные вещества.
ЛВ – лекарственное вещество.
ЖКТ – желудочно-кишечный тракт.
ВВЕДЕНИЕ
Согласно Государственной Фармакопее РФ XIV изд., под ЛФ с модифицированным высвобождением понимают ЛФ, содержащие специальные ВВ или полученные по особой технологии, в результате чего можно программировать время и место высвобождения АФИ [2, 3, 4].
На сегодняшний день существуют различные методы модификации высвобождения для различных ЛФ. Наибольший интерес представляют пероральные ЛФ с пролонгированным высвобождением, в частности таблетки.
Высокий интерес к таким ЛФ связан с рядом их преимуществ: удобство применения для пациента, естественность пути введения, отсутствие необходимости использования дополнительных устройств для введения, сохранение целостности кожного покрова, безболезненность введения, относительно высокая точность дозирования [3, 4].
Пролонгированное высвобождение, в свою очередь, также обладает рядом достоинств: отсутствие пиковых концентраций, уменьшение концентрационно-зависимых побочных эффектов, комплаентность пациента и др. [5, 6]. Более того, технологии пролонгации высвобождения позволяют доставлять ЛВ в кишечник, если это необходимо, а также защищают от негативного воздействия желудочного сока или способствуют длительному нахождению ЛФ в желудке. Таким образом, пролонгированное высвобождение ЛВ из таблеток помогает не только увеличить период полувыведения и время присутствия вещества в организме, но также повысить эффективность препарата.
ПРОЛОНГИРОВАННОЕ ВЫСВОБОЖДЕНИЕ
Таблетки с пролонгированным высвобождением являются самыми распространенными среди ЛФ второго поколения [7, 8].
В настоящее время известно множество технологических приемов, позволяющих задать ЛФ такой тип высвобождения. Эти приемы можно условно разделить на четыре группы по типу создаваемых систем [7, 8]:
Пролонгированные ЛВ на основе монолитных систем характеризуются различными физико-химическими свойствами, определяемыми выбранными в качестве матрицеобразователя полимерами. Матриксы могут быть гидрофильными, гидрофобными или инертными. Широкое распространение получили гидрофильные полимеры для создания пероральных ЛФ. Такие полимеры способны к набуханию и биодеградации. ЛВ может быть соединено с монолитным полимером физически или химически [5, 8].
Резервуарные системы, как правило, получают путем нанесения пленочной оболочкой на таблетку-ядро или другую ЛФ. Для приготовления пленочного покрытия можно использовать композиции с различными физико-химическими свойствами, программируя тем самым скорость и место высвобождения. В настоящее время известны композиции, которые растворимы в слабокислых и щелочных средах. Таким образом, становится возможным высвобождение в любом отделе ЖКТ.
Осмотические системы доставки для перорального приема представляют собой резервуарные системы, которые, помимо ЛВ, содержат также осмотическое вещество. Такая система покрыта полупроницаемой оболочкой, отверстия которой составляют от 300 мкм до 500 мкм. Отверстия можно получать, используя легкорастворимые в желудочном соке вещества с определенным размером частиц, или при помощи специального лазерного луча. Принцип действия такой системы основан на проникновении жидкости внутрь резервуара и набухании осмотического вещества. Набухшее осмотическое вещество постепенно «выдавливает» ЛВ из системы. Скорость высвобождения АФИ можно контролировать посредством выбора осмотического вещества с необходимыми физико-химическими свойствами, а также при помощи варьирования размера пор оболочки [9].
Системы на основе множества пеллет представляют собой матриксные системы или капсулы, состоящие из пеллет или микрогранул диаметром 1–2 мм. Каждая пеллета может быть покрыта полимерной пленочной оболочкой или многослойной оболочкой, состоящей из растворимых или нерастворимых полимеров. Путем изменения покрытия пеллет можно задавать необходимую кинетику высвобождения АФИ из ЛФ. Из пеллет можно получить таблетку или спансулу, которая после попадания в ЖКТ немедленно распадается, а пеллеты могут свободно распространяться по отделам ЖКТ в зависимости от заданных свойств [7].
Исходя из вышеизложенного, можно сделать вывод, что большинство известных технологических приемов связано с применением различных полимеров и их комбинаций. Выбор необходимого полимера или их композиции зависит от ряда факторов. В первую очередь, необходимо определить требуемую кинетику высвобождения. Моделирование кинетики высвобождения ЛВ из ЛФ позволяет получить информацию о необходимом времени релаксации полимера (в случае применения набухающих полимеров) или о химической структуре (если предпочтительно использование в технологии полимеров, растворимых в щелочной и слабокислой среде) [10].
Для прогнозирования кинетики высвобождения ЛВ из пероральных ЛФ с пролонгированным высвобождением наиболее подходящими являются такие математические модели, как:
В общем случае все модели основываются на первом и втором законах диффузии Фика. Однако оба закона имеют ряд ограничений в их применении для ЛФ с пролонгированным высвобождением, связанных с влиянием на кинетику высвобождения различных факторов, таких как растворимость ЛВ или время релаксации полимера [10, 11, 12].
Для многих ЛФ с пролонгированным действием наиболее желательным является линейный характер высвобождения. Таким образом, кинетику высвобождения можно описать при помощи модели нулевого порядка:
где W0 – исходное количество ЛВ в ЛФ, %;
Wt – количество ЛВ в ЛФ через время t, %;
На кинетику также влияет способ высвобождения ЛФ. В случае применения полимеров эти способы делятся на две группы: физические и химические. Это означает, что скорость высвобождения ЛВ будет зависеть либо от физических, либо от химических свойств полимера [1].
При физическом способе высвобождения ЛВ диффундирует из контейнера к месту действия через полимерную мембрану или непосредственно из монолитного полимера [1].
Если имеет место химический способ, то АФИ может высвобождаться из биодеградируемой матрицы, а также может отщепляться от молекулы полимера вследствие гидролиза связи при изменении температуры или рН [1].
Полимеры, используемые в производстве таблеток с пролонгированным высвобождением
Возрастающая популярность ЛФ с пролонгированным высвобождением способствует появлению на фармацевтическом рынке новых полимеров. Ассортимент их увеличивается с каждым годом.
Условно все применяемые на сегодняшний день полимеры можно разделить на две группы по способу применения: матрицеобразующие (монолитные) и для создания покрытий. Однако большую часть полимеров, применяемых для образования оболочек, можно использовать также и для создания каркасов таблеток. Например, сополимеры метакриловой кислоты и этилактрилата могут быть использованы в составе суспензии для покрытия, но также и как самостоятельный полимер при создании монолитной системы. В этом случае полимер выполняет роль наполнителя (разбавителя) [13, 14].
Кроме того, классифицировать полимеры можно по отношению к воде: гидрофильные и инертные. Инертные, в свою очередь, могут быть образованы из гидрофобных веществ (триглицериды жирных кислот) или из синтетических и полусинтетических полимеров. В некоторых случаях для программирования необходимой скорости высвобождения применяют комбинации таких полимеров [13].
Наиболее часто используют гидрофильные полимеры, т. к. они являются биодеградируемыми и обладают свойством набухания. Каждый такой полимер имеет свою степень набухания, что помогает в моделировании кинетики высвобождения. Чаще всего в качестве гидрофильных матрицеобразующих полимеров применяют ГПМЦ, альгиновую кислоту и ее натриевые и калиевые соли, декстран и т. д.
Другой классификационной системой для полимеров может служить классификация по отношению к среде ЖКТ. Полимеры могут быть растворимыми в желудочном соке, растворимыми в кишечнике, нерастворимыми. В свою очередь, полимеры, растворимые в кишечнике, могут быть разделены на полимеры, растворимые в двенадцатиперстной кишке, в тонком кишечнике, в толстом кишечнике и т. д. [12, 14].
Современные гидрофильные полимеры для лекарственных форм с пролонгированным высвобождением
Замедленное высвобождение ЛВ из матричных таблеток осуществляется путем набухания и медленного растворения матрицеобразующего полимера или путем задания необходимой скорости с использованием порообразующих веществ в нерастворимом полимерном комплексе.
Наиболее часто в ЛФ второго поколения используют гидрофильные полимеры. Их важным свойством является способность к набуханию в жидкой среде. ЛВ из матричных таблеток на основе гидрофильных полимеров высвобождается и всасывается во всех отделах ЖКТ.
К гидрофильным полимерам относятся производные целлюлозы, производные акриловой кислоты, полисахариды и т. д.
Производные целлюлозы (например, ГПМЦ) применяются широко [15]. Данный полимер существует в широком диапазоне молекулярных масс, что связано с содержанием метильных и гидроксипропильных радикалов. Применение ГПМЦ различных молекулярных масс позволяет получать гели с заданной вязкостью, а, следовательно, с различной способностью к набуханию.
На рынке существуют различные разрешенные для фармацевтического применения марки ГПМЦ. К ним относится линейка ГПМЦ различной степени вязкости VIVAPHARM® HPMC (JRS, Германия). Внутри линейки для получения таблеток пригодны марки VIVAPHARM® HPMC E3, VIVAPHARM® HPMC E5, VIVAPHARM® HPMC E6 и VIVAPHARM® HPMC E15. Содержание метоксильных групп варьируется от 28,0 до 30,0%, а гидроксипропильных – от 7,0 до 12,0%.
Подобная же линейка ГПМЦ выпускается под торговым наименованием Methocel® (DuPont, Германия). Для получения таблеток с пролонгированным высвобождением можно применять полимеры этой линейки со средними или низкими значениями вязкости Methocel®K4M, Methocel® K100 LV, Methocel® Premium, Methocel® Premium CR, Methocel Premium DC2 и т. д. [16, 17].
Другие водорастворимые производные целлюлозы также широко применяются в технологии лекарственных форм с пролонгированным высвобождением. К ним относятся ГПЦ, ГЭЦ [18, 19].
ГПЦ – водорастворимый эфир целлюлозы, который характеризуется большим количеством гидроксипропильных групп, однако среди производных целлюлозы является более липофильным. Наиболее известной торговой маркой данного производного целлюлозы является Klucel™ (Ashland, США). Линейка насчитывает более 13 марок продукта, которые отличаются по вязкости, средней молекулярной массе и размеру частиц. К низкомолекулярным относятся Klucel™ EF, Klucel™ EXF, Klucel™ LF, Klucel™ LXF, применяемые для модификации пленочного покрытия. Среднемолекулярные (Klucel™ JF, Klucel™ JXF, Klucel™ GF, Klucel™ GXF), а также высокомолекулярные (Klucel™ MF, Klucel™ MXF, Klucel™ HF, Klucel™ HXF) применяют для создания матричных таблеток пролонгированного действия.
ГЭЦ – водорастворимый полимер. Как и остальные производные целлюлозы, может отличаться по вязкости и молекулярной массе. Наиболее популярной на фармацевтическом рынке линейкой ГЭЦ является Natrosol™ 250 (Ashland, США). Линейка насчитывает более 10 различных марок [18, 19].
Кроме производных целлюлозы, широкое применение в технологии ЛФ с пролонгированным высвобождением также нашли поперечно сшитые карбоксиакриловые или карбоксивиниловые полимеры [20, 21]. Они так же, как и другие гидрофильные полимеры, обладают высокой способностью к набуханию. Среди доступных на фармацевтическом рынке можно выделить Carbopol® (Lubrizol, США) и Noveon® (Lubrizol, США). Оба полимера представляют собой поперечно-сшитые полимеры акриловой кислоты с разным механизмом сшивки. Основное отличие заключается в плотности сшивки, что влияет на скорость набухания.
Важным отличием этого типа полимеров по отношению к производным целлюлозы, обладающим гидрофильными свойствами, является то, что они нерастворимы в воде. Высвобождение АФИ происходит путем диффузии через слой геля, который образуется при контакте со средами ЖКТ. Гелевый слой быстро образуется при рН от 4,0 до 6,0 (рКa полимеров колеблется от 0,5 до 6,0). Одновременно происходит релаксация полимерной матрицы вследствие ионизации карбоксильных групп, что усиливает диффузионные процессы [13, 22]. Среди полимеров данной линейки для получения таблеток с пролонгированным высвобождением подходят Carbopol® 971P NF, Carbopol® 71G NF, Carbopol® 974P NF, Noveon® AA-1 USP.
Среди гидрофильных полимеров также представляют интерес производные акриловой кислоты [23, 24].
Альгиновая кислота, а также ее натриевые и калиевые соли являются гидроколлоидами природного происхождения, производными природных полисахаридов, которые образуются в клеточных стенках бурых водорослей. Мономерами альгиновой кислоты являются сахара D-маннуронат и L-гулуронат, связанные ковалентно друг с другом. Такие полимеры пригодны для пролонгированного высвобождения, а также для защиты веществ, неустойчивых в кислотах. Попадая в ЖКТ, альгинаты образуют в кислой среде нерастворимый гелевый слой. При более высоких значениях рН (например, в слабощелочной среде) альгинаты переходят в растворимую форму, высвобождая тем самым ЛВ из ядра таблетки [13].
Среди разрешенных к медицинскому применению альгинатов можно выделить существующие на рынке Aquateric™, Protanal™, Kelcoloid™, Manucol™ производства компании DuPont (Германия). Представленные полимеры обладают различной степенью вязкости гелевого слоя, что связано с разной степенью полимеризации и замещения. Однако все эти полимеры применимы для получения таблеток с пролонгированным высвобождением.
Помимо различных производных целлюлозы и альгинатов, могут применяться и другие полисахариды, например декстран или хитозан [25, 26].
Декстран представляет собой разветвленный мономер глюкозы. Его средняя масса может варьироваться от 3 до 2000 кДа в зависимости от степени полимеризации. Как и для других полимеров данной группы, степень полимеризации оказывает влияние на набухание полисахарида в средах ЖКТ. Путем комбинирования декстранов с различной степенью полимеризации можно добиться необходимой кинетики высвобождения АФИ из таблетки [25].
Хитозан является природным полимером D-глюкозамина, полидисперсным по молекулярной массе. Он имеет основный характер, что объясняет его плохую растворимость в щелочных средах и хорошую – в кислых. Таким образом, не модифицированный хитозан непригоден для создания ЛФ с пролонгированным высвобождением. Однако известны сополимеры и различные производные хитозана, способные замедлять высвобождение АФИ. Так, например, на основе хитозана, гидроксиэтилметакрилата и метакрилата синтезирован полимер, способный к набуханию в широком диапазоне рН (2–10) [27]. Эта композиция была использована в качестве носителя ЛВ [28].
Также известна композиция хитозана с ПВП. При увеличении в молекуле количества ПВП уменьшается степень набухания полимера. Представленный полимер способен сорбировать ЛВ. Процесс сорбции зависит от рН раствора ЛВ. Известно применение полимера в качестве системы-носителя для контролируемого высвобождения [29].
Нерастворимые в воде полимеры для создания инертных матричных таблеток
Альтернативой гидрофильным матричным таблеткам с пролонгированным высвобождением являются инертные матричные таблетки. Инертные матрицы получают из нерастворимых в воде и физиологических жидкостях полимеров [13].
Часто для осуществления высвобождения АФИ из инертной матрицы в состав таблетки включают порообразующие вещества. Такие вещества, растворяясь, образуют каналы, через которые ЛВ может свободно диффундировать в среду растворения. Кинетика высвобождения из таких ЛФ зачастую носит экспоненциальный характер, в то время как из ЛФ с гидрофильной матрицей – линейный [11, 12].
Скорость и интенсивность высвобождения АФИ из таблеток на основе инертных матриц можно контролировать типом и количеством порообразующих веществ, но также и типом самого полимера [16].
К полимерам, нерастворимым в воде и средах ЖКТ, относится простой этиловый эфир целлюлозы – ЭЦ. Данный полимер характеризуется различной степенью замещения. Число замещенных гидроксильных групп определяет весь спектр физико-химических свойств. Коммерчески доступные марки ЭЦ предлагает компания Colorcon (Великобритания). В портфеле компании существуют этиловые эфиры целлюлозы для покрытия (например, Aquacoat® CPD или Surelease®). Также существуют марки ЭЦ (например, Ethocel™) для создания матричных таблеток путем прямого прессования или влажной грануляции (DuPont, Германия) [30].
Таблетки с пролонгированным высвобождением на основе инертных матриц также могут быть получены с использованием полиэтилена, поливинилхлорида, сополимеров винилацетата и винилхлоридов. Однако применение этих полимеров имеет ряд ограничений, т. к. они не являются биодеградируемыми [13].
Современные полимеры для получения кишечнорастворимых покрытий и доставки лекарственных веществ в кишечник
На сегодняшний день известны полимеры, которые обладают различной растворимостью в зависимости от рН среды растворения. Наиболее часто их применяют для получения кишечнорастворимых покрытий. Такие покрытия способны защитить ядро таблетки от кислых сред и позволяют ЛВ высвобождаться в разных отделах кишечника. Кроме того, полимеры для получения кишечнорастворимых покрытий могут быть использованы для создания матричных таблеток с пролонгированным или отложенным высвобождением [31].
Сюда относятся полимеры из группы сополимеров акриловой и метакриловой кислот линейки Eudragit® (Evonik industries, Германия). Полимеры Eudragit® существуют в виде тонкодисперсных порошков, гранул, водных суспензий или растворов в органических растворителях. В зависимости от степени замещения, они могут растворяться в тонком кишечнике (рН 6,0–6,5), в области двенадцатиперстной кишки (рН 5,5–6,0) или в толстом кишечнике (рН выше 7,0) (табл. 1). В данной линейке представлены также полимеры, позволяющие получать ЛФ с пролонгированным и рН-независимым высвобождением (Eudragit® RS, Eudragit® RL, Eudragit® NM 30 D) [31, 32, 33].
Марка полимера
Структура, агрегатное состояние
Среда растворения
Eudragit® L100-55
Порошок
Растворимы в средах со значением рН выше 5,5
Eudragit® L 30 D-55
Водная дисперсия
Eudragit® FL 30 D-55
Водная дисперсия без добавления пластификаторов
Eudragit® L100
Порошок
Растворимы в средах со значением рН выше 6,0
Eudragit® L 12,5
12,5% раствор в органическом растворителе
Eudragit® S 100
Порошок
Растворимы в средах со значением рН выше 7,0
Eudragit® S 12,5
12,5% раствор в органическом растворителе
Eudragit® FS 100
Порошок
Eudragit® FS 30 D
Водная дисперсия
Производители вспомогательных веществ предлагают различные сополимеры метакриловой кислоты и этилакрилата. Так, например, в портфеле компании BASF (Германия) существует ряд продуктов Kollicoat®, среди которых есть торговые наименования, предназначенные для создания покрытий, растворимых в различных отделах ЖКТ. Особый интерес представляют Kollicoat® MAE 100P, Kollicoat® MAE 100-55, Kollicoat® MAE 30 DP [34]. Представленные полимеры растворимы в средах со значением рН выше 5,5. Kollicoat® MAE 30 DP представляет собой водную дисперсию сополимера метакриловой кислоты и этилакрилата. Такой формат кишечнорастворимого покрытия значительно облегчает производственный процесс, т. к. не требует использования органических растворителей и затрат времени на подготовку суспензии для покрытия.
Для создания рН-независимых инертных покрытий, позволяющих осуществлять отложенное или пролонгированное высвобождение, могут быть также использованы поливинилацетат и поливинилацетат фталат.
Примером доступного на фармацевтическом рынке поливинилацетата может служить Kollicoat® SR 30 D (BASF, Германия), который представляет собой водную суспензию, стабилизированную поливинилпирролидоном и лаурилсульфатом натрия.
Поливинилацетат фталат представляет собой нерастворимый полимер винилацетата, пластифицированный эфирами фталевой кислоты. Используемый для покрытия таблеток, он обеспечивает отложенное высвобождение. Этот полимер нерастворим в воде и физиологических жидкостях. Компания Colorcon (Великобритания) имеет в своем портфеле поливинилацетат фталат под торговым наименованием Sureteric®, который легко диспергируется в воде с образованием тонкодисперсной суспензии для лучшего покрытия [35].
ВЫВОДЫ
Таким образом, создание новых ЛФ с пролонгированным высвобождением является актуальной задачей фармацевтической технологии, для решения которой в настоящий момент созданы все необходимые условия.
На сегодняшний день производители вспомогательных веществ предлагают различные типы полимеров: гидрофильные, гидрофобные, инертные, а также отличные друг от друга по отношению к средам ЖКТ.
Следует отметить, что наибольшей популярностью пользуются гидрофильные набухающие полимеры, а также растворимые в различных отделах ЖКТ. Это связано с тем, что регулировать кинетику высвобождения при использовании таких полимеров значительно проще, а также с тем, что полимеры данного типа являются биодеградируемыми.
Благодаря широкому выбору полимеров становится возможным программировать скорость, степень и место высвобождения ЛВ в организме при разработке ЛФ.
Производители вспомогательных веществ расширяют ассортимент полимеров, предназначенных для создания таблеток с пролонгированным высвобождением, что значительно упрощает процесс разработки и регистрации. Кроме того, обилие известных сегодня полимеров для обеспечения пролонгированного высвобождения дает возможность создавать системы, которые помогают защитить ЛВ от неблагоприятных условий, увеличить время нахождения в организме, а также улучшить его терапевтический эффект.