Проекция точки что это
Проекция точки на плоскость, координаты проекции точки на плоскость.
Эта статья является ответом на два вопроса: «Что такое проекция точки на плоскость» и «Как найти координаты проекции точки на плоскость»? Сначала дана необходимая информация о проецировании и его видах. Далее приведено определение проекции точки на плоскость и дана графическая иллюстрация. После этого получен метод нахождения координат проекции точки на плоскость. В заключении разобраны решения примеров, в которых вычисляются координаты проекции заданной точки на заданную плоскость.
Навигация по странице.
Проецирование, виды проецирования – необходимая информация.
При изучении пространственных фигур удобно пользоваться их изображениями на чертеже. Чертеж пространственной фигуры представляет собой так называемую проекцию этой фигуры на плоскость. Процесс построения изображения пространственной фигуры на плоскости происходит по определенным правилам. Так вот процесс построения изображения пространственной фигуры на плоскости вместе с набором правил, по которым осуществляется этот процесс, называется проецированием фигуры на данную плоскость. Плоскость, в которой строится изображение, называют плоскостью проекции.
В зависимости от правил, по которым осуществляется проецирование, различают центральное и параллельное проецирование. Вдаваться в подробности не станем, так как это выходит за рамки этой статьи.
Следует отметить, что проекция фигуры на плоскость представляет собой совокупность проекций всех точек этой фигуры на плоскость проекции. Иными словами, чтобы получить проекцию некоторой фигуры необходимо уметь находить проекции точек этой фигуры на плоскость. В следующем пункте статьи как раз показано, как найти проекцию точки на плоскость.
Проекция точки на плоскость – определение и иллюстрация.
Еще раз подчеркнем, что мы будем говорить о перпендикулярной проекции точки на плоскость.
Выполним построения, которые помогут нам дать определение проекции точки на плоскость.
Данному определению проекции точки на плоскость эквивалентно следующее определение.
Проекция точки на плоскость – это либо сама точка, если она лежит в заданной плоскости, либо основание перпендикуляра, опущенного из этой точки на заданную плоскость.
На приведенном ниже чертеже точка H1 есть проекция точки М1 на плоскость ; точка М2 лежит в плоскости , поэтому М2 – проекция самой точки М2 на плоскость .
Нахождение координат проекции точки на плоскость – решения примеров.
Решение задачи логически следует из определения проекции точки на плоскость.
Рассмотрим решения примеров.
Найдите координаты проекции точки на плоскость .
В условии задачи нам дано общее уравнение плоскости вида , так что его составлять не нужно.
Чтобы получить требуемые координаты проекции точки на плоскость, осталось определить координаты точки пересечения прямой и плоскости . Для этого от канонических уравнений прямой переходим к уравнениям двух пересекающихся плоскостей , составляем систему уравнений и находим ее решение. Используем метод Крамера:
Таким образом, проекция точки на плоскость имеет координаты .
.
Напишем сначала уравнение плоскости, проходящей через три заданные точки :
Дальше для нахождения координат проекции точки М1 на плоскость АВС можно действовать как в предыдущем примере.
Но давайте рассмотрим альтернативный подход.
Осталось определить координаты точки пересечения прямой и плоскости . Для этого в уравнение плоскости подставим :
.
Таким образом, проекция точки М1 на плоскость АВС имеет координаты .
.
В заключении давайте обсудим нахождение координат проекции некоторой точки на координатные плоскости и плоскости, параллельные координатным плоскостям.
Покажем, как были получены эти результаты.
Для примера найдем проекцию точки на плоскость (остальные случаи аналогичны этому).
Найдем координаты точки пересечения прямой и плоскости . Для этого сначала подставляем в уравнение равенства : . Теперь вычисляем искомые координаты по параметрическим уравнениям прямой при :
Таким образом, проекцией точки на плоскость является точка с координатами , что и требовалось показать.
Найдите координаты проекций точки на координатную плоскость Oxy и на плоскость .
Координатной плоскости Oxy соответствует неполное общее уравнение плоскости вида , и проекция точки на плоскость имеет координаты .
Уравнение плоскости вида можно переписать как . Теперь легко записать координаты проекции точки на плоскость : .
и .
Начертательная геометрия: конспект лекций
Данное учебное пособие представляет собой курс лекций и предназначено для студентов, сдающих экзамен по специальности «Начертательная геометрия». Подготовлено с учетом требований Министерства образования РФ.
Оглавление
Приведённый ознакомительный фрагмент книги Начертательная геометрия: конспект лекций предоставлен нашим книжным партнёром — компанией ЛитРес.
1. Проекции точки на две плоскости проекций
Рассмотрим проекции точек на две плоскости, для чего возьмем две перпендикулярные плоскости (рис. 4), которые будем называть горизонтальной фронтальной и плоскостями. Линию пересечения данных плоскостей называют осью проекций. На рассмотренные плоскости спроецируем одну точку А с помощью плоской проекции. Для этого необходимо опустить из данной точки перпендикуляры Аа и A на рассмотренные плоскости.
Проекцию на горизонтальную плоскость называют горизонтальной проекцией точки А, а проекцию а́ на фронтальную плоскость называют фронтальной проекцией.
Точки, которые подлежат проецированию, в начертательной геометрии принято обозначать с помощью больших латинских букв А, В, С. Для обозначения горизонтальных проекций точек применяют малые буквы а, b, с… Фронтальные проекции обозначают малыми буквами со штрихом вверху а́, b́, с́…
Применяется также и обозначение точек римскими цифрами I, II,… а для их проекций — арабскими цифрами 1, 2… и 1́, 2́…
При повороте горизонтальной плоскости на 90° можно получить чертеж, в котором обе плоскости находятся в одной плоскости (рис. 5). Данная картина называется эпюром точки.
Через перпендикулярные прямые Аа и Аа́ проведем плоскость (рис. 4). Полученная плоскость является перпендикулярной фронтальной и горизонтальной плоскостям, потому что содержит перпендикуляры к этим плоскостям. Следовательно, данная плоскость перпендикулярна линии пересечения плоскостей. Полученная прямая пересекает горизонтальную плоскость по прямой аах, а фронтальную плоскость — по прямой а́ах. Прямые аах и а́ах являются перпендикулярными оси пересечения плоскостей. То есть Аааха́ является прямоугольником.
При совмещении горизонтальной и фронтальной плоскостей проекции а и а́ будут лежать на одном перпендикуляре к оси пересечения плоскостей, так как при вращении горизонтальной плоскости перпендикулярность отрезков аах и а́ах не нарушится.
Получаем, что на эпюре проекции а и а́ некоторой точки А всегда лежат на одном перпендикуляре к оси пересечения плоскостей.
Две проекции а и а́ некоторой точки А могут однозначно определить ее положение в пространстве (рис. 4). Это подтверждается тем, что при построении перпендикуляра из проекции а к горизонтальной плоскости он пройдет через точку А. Точно так же перпендикуляр из проекции а́ к фронтальной плоскости пройдет через точку А, т. е. точка А находится одновременно на двух определенных прямых. Точка А является их точкой пересечения, т. е. является определенной.
Рассмотрим прямоугольник Aaaха́ (рис. 5), для которого справедливы следующие утверждения:
1) Расстояние точки А от фронтальной плоскости равно расстоянию ее горизонтальной проекции а от оси пересечения плоскостей, т. е.
2) расстояние точки А от горизонтальной плоскости проекций равно расстоянию ее фронтальной проекции а́ от оси пересечения плоскостей, т. е.
Иначе говоря, даже без самой точки на эпюре, используя только две ее проекции, можно узнать, на каком расстоянии от каждой из плоскостей проекций находится данная точка.
Пересечение двух плоскостей проекций разделяет пространство на четыре части, которые называют четвертями (рис. 6).
Ось пересечения плоскостей делит горизонтальную плоскость на две четверти — переднюю и заднюю, а фронтальную плоскость — на верхнюю и нижнюю четверти. Верхнюю часть фронтальной плоскости и переднюю часть горизонтальной плоскости рассматривают как границы первой четверти.
При получении эпюра вращается горизонтальная плоскость и совмещается с фронтальной плоскостью (рис. 7). В этом случае передняя часть горизонтальной плоскости совпадет с нижней частью фронтальной плоскости, а задняя часть горизонтальной плоскости — с верхней частью фронтальной плоскости.
На рисунках 8-11 показаны точки А, В, С, D, располагающиеся в различных четвертях пространства. Точка А расположена в первой четверти, точка В — во второй, точка С — в третьей и точка D — в четвертой.
При расположении точек в первой или четвертой четвертях их горизонтальные проекции находятся на передней части горизонтальной плоскости, а на эпюре они лягут ниже оси пересечения плоскостей. Когда точка расположена во второй или третьей четверти, ее горизонтальная проекция будет лежать на задней части горизонтальной плоскости, а на эпюре будет находиться выше оси пересечения плоскостей.
Фронтальные проекции точек, которые расположены в первой или второй четвертях, будут лежать на верхней части фронтальной плоскости, а на эпюре будут находиться выше оси пересечения плоскостей. Когда точка расположена в третьей или четвертой четверти, ее фронтальная проекция — ниже оси пересечения плоскостей.
Чаще всего при реальных построениях фигуру располагают в первой четверти пространства.
В некоторых частных случаях точка (Е) может лежать на горизонтальной плоскости (рис. 12). В этом случае ее горизонтальная проекция е и сама точка будут совпадать. Фронтальная проекция такой точки будет находиться на оси пересечения плоскостей.
В случае, когда точка К лежит на фронтальной плоскости (рис. 13), ее горизонтальная проекция k лежит на оси пересечения плоскостей, а фронтальная ḱ показывает фактическое местонахождение этой точки.
Для подобных точек признаком того, что она лежит на одной из плоскостей проекций, служит то, что одна ее проекция находится на оси пересечения плоскостей.
Если точка лежит на оси пересечения плоскостей проекций, она и обе ее проекции совпадают.
Когда точка не лежит на плоскостях проекций, она называется точкой общего положения. В дальнейшем, если нет особых отметок, рассматриваемая точка является точкой общего положения.
2. Отсутствие оси проекций
Для пояснения получения на модели проекций точки на перпендикулярные плоскости проекций (рис. 4) необходимо взять кусок плотной бумаги в форме удлиненного прямоугольника. Его нужно согнуть между проекциями. Линия сгиба будет изображать ось пересечения плоскостей. Если после этого согнутый кусок бумаги вновь расправить, получим эпюр, похожий на тот, что изображен на рисунке.
Совмещая две плоскости проекций с плоскостью чертежа, можно не показывать линию сгиба, т. е. не проводить на эпюре ось пересечения плоскостей.
При построениях на эпюре всегда следует располагать проекции а и а́ точки А на одной вертикальной прямой (рис. 14), которая перпендикулярна оси пересечения плоскостей. Поэтому, даже если положение оси пересечения плоскостей остается неопределенным, но ее направление определено, ось пересечения плоскостей может находиться на эпюре только перпендикулярно прямой аа́.
Если на эпюре точки нет оси проекций, как на первом рисунке 14 а, можно представить положение этой точки в пространстве. Для этого проведем в любом месте перпендикулярно прямой аа́ ось проекции, как на втором рисунке (рис. 14) и согнем чертеж по этой оси. Если восстановить перпендикуляры в точках а и а́ до их пересечения, можно получить точку А. При изменении положения оси проекций получаются различные положения точки относительно плоскостей проекций, но неопределенность положения оси проекций не влияет на взаимное расположение нескольких точек или фигур в пространстве.
3. Проекции точки на три плоскости проекций
Рассмотрим профильную плоскость проекций. Проекции на две перпендикулярные плоскости обычно определяют положение фигуры и дают возможность узнать ее настоящие размеры и форму. Но бывают случаи, когда двух проекций оказывается недостаточно. Тогда применяют построение третьей проекции.
Третью плоскость проекции проводят так, чтобы она была перпендикулярна одновременно обеим плоскостям проекций (рис. 15). Третью плоскость принято называть профильной.
В таких построениях общую прямую горизонтальной и фронтальной плоскостей называют осью х, общую прямую горизонтальной и профильной плоскостей — осью у, а общую прямую фронтальной и профильной плоскостей — осью z. Точка О, которая принадлежит всем трем плоскостям, называется точкой начала координат.
Проекция точки на плоскость, координаты проекции точки на плоскость
В этой статье мы найдем ответы на вопросы о том, как создать проекцию точки на плоскость и как определить координаты этой проекции. Опираться в теоретической части будем на понятие проецирования. Дадим определения терминам, сопроводим информацию иллюстрациями. Закрепим полученные знания при решении примеров.
Проецирование, виды проецирования
Для удобства рассмотрения пространственных фигур используют чертежи с изображением этих фигур.
Проекция фигуры на плоскость – чертеж пространственной фигуры.
Очевидно, что для построения проекции существует ряд используемых правил.
Проецирование – процесс построения чертежа пространственной фигуры на плоскости с использованием правил построения.
Использование тех или иных правил определяет тип проецирования: центральное или параллельное.
Частным случаем параллельного проецирования является перпендикулярное проецирование или ортогональное: в геометрии в основном используют именно его. По этой причине в речи само прилагательное «перпендикулярное» часто опускают: в геометрии говорят просто «проекция фигуры» и подразумевают под этим построение проекции методом перпендикулярного проецирования. В частных случаях, конечно, может быть оговорено иное.
Отметим тот факт, что проекция фигуры на плоскость по сути есть проекция всех точек этой фигуры. Поэтому, чтобы иметь возможность изучать пространственную фигуру на чертеже, необходимо получить базовый навык проецировать точку на плоскость. О чем и будем говорить ниже.
Проекция точки на плоскость
Напомним, что чаще всего в геометрии, говоря о проекции на плоскость, имеют в виду применение перпендикулярной проекции.
Произведем построения, которые дадут нам возможность получить определение проекции точки на плоскость.
Проекция точки на плоскость – это либо сама точка (если она принадлежит заданной плоскости), либо основание перпендикуляра, опущенного из заданной точки на заданную плоскость.
Нахождение координат проекции точки на плоскость, примеры
Решение очевидным образом следует из данного выше определения проекции точки на плоскость.
Таким образом, для нахождения координат проекции точки на плоскость необходимо:
— получить уравнение плоскости α (в случае, если оно не задано). Здесь вам поможет статья о видах уравнений плоскости;
Рассмотрим теорию на практических примерах.
Решение
Как мы видим, уравнение плоскости нам задано, т.е. составлять его необходимости нет.
Составим систему уравнений:
И решим ее, используя метод Крамера:
Решение
В первую очередь запишем уравнение плоскости, проходящей через три заданные точки:
Далее рассмотрим еще один вариант решения, отличный от того, что мы использовали в первом примере.
Теперь, имея координаты точки прямой М 1 и координаты направляющего вектора этой прямой, запишем параметрические уравнения прямой в пространстве:
Затем определим координаты точки пересечения плоскости х – 2 y + 2 z – 4 = 0 и прямой
Для этого в уравнение плоскости подставим:
Отдельно остановимся на вопросе нахождения координат проекции точки на координатные плоскости и плоскости, которые параллельны координатным плоскостям.
Продемонстрируем, как был получен этот результат.
x = x 1 + λ y = y 1 z = z 1
Решение