Признаки что треугольники равны

Треугольник. Признаки равенства треугольников.

Треугольник – геометрическая фигура, сформированная тремя отрезками, которые соединяют три точки, не принадлежащие одной прямой.

Стороны треугольника формируют в вершинах треугольника три угла. Перефразируя, треугольник – это многоугольник, у которого три угла.

Практическое значение признаков равенства треугольников сводится к нижеследующему: согласно формулировке треугольники равны, в случае когда получается их наложить друг на друга так, чтобы они совпали; однако реализовать наложение треугольников иногда бывает трудно, а иногда и невозможно.

Признаки равенства треугольников позволяют заменить наложение треугольников нахождением и сопоставлением отдельных основополагающих компонентов (сторон и углов) и таким образом обосновать равенство треугольников.

У равных треугольников тождественны и их соответствующие элементы.

И так треугольники равны, если у них соответственно равны:

1. Две стороны и угол между ними:

Признаки что треугольники равны

2. Сторона и прилежащие к ней два угла:

Признаки что треугольники равны

Признаки что треугольники равны

Еще выделяют четвертый признак, который не так широко освещен в школьном курсе математики как предыдущие три. Он формулируется следующим образом:

Если две стороны первого треугольника соответственно равны двум сторонам второго треугольника и угол, противолежащий большей из этих сторон в первом треугольнике, равен углу, противолежащему соответственно равной ей стороне во втором треугольнике, то эти треугольники равны.

Источник

Содержание:

Если на плоскости отметить три точки А, В и С, не лежащие на одной прямой, и соединить их отрезками, то получим треугольник ABC. Можно сказать, что треугольник — это трехзвенная замкнутая ломаная. Обозначают: Признаки что треугольники равны

Определения

Признаки что треугольники равны

Определение. Треугольником называется трехзвенная замкнутая ломаная вместе с частью плоскости, которую она ограничивает.

Если соединить концами три деревянных планки, то получится треугольник, который нельзя подвергнуть деформации — он будет сохранять свою форму. Тогда как четырехугольник может менять свою форму (рис. 102)? Это свойство «жесткости» треугольника широко используется в технике, производстве, строительстве.
Признаки что треугольники равны

Равные треугольники

Равные треугольники можно совместить наложением так, что соответственно совпадут все три стороны и все три угла (рис. 103). В совпавших, то есть в равных треугольниках, против равных сторон лежат равные углы, а против равных углов — равные стороны. Если Признаки что треугольники равныто Признаки что треугольники равныа если Признаки что треугольники равныто Признаки что треугольники равны

Признаки что треугольники равны

Для совмещения равных отрезков достаточно совпадения их концов, а для совмещения равных треугольников — совпадения их вершин.

Виды треугольников

Если у треугольника все три стороны имеют разную длину, то такой треугольник называется разносторонним.

Треугольник, у которого две стороны равны, называется равнобедренным. Его равные стороны называются боковыми сторонами, третья сторона — основанием, вершина, противолежащая основанию, — вершиной равнобедренного треугольника (рис. 104).

Признаки что треугольники равны

Если у треугольника равны все три стороны, то он называется равносторонним (рис. 105). Равносторонний треугольник является также и равнобедренным, где любую пару сторон можно принять за боковые стороны.

Признаки что треугольники равны

По величине углов треугольники делятся на остроугольные (у них все углы острые), тупоугольные (есть тупой угол) и прямоугольные (есть прямой угол) (рис. 106).

Признаки что треугольники равны

Треугольником называется трехзвенная замкнутая ломаная вместе с частью плоскости, которую она ограничивает.

Периметром треугольника (многоугольника) называется сумма длин его сторон.

Равными треугольниками называются треугольники, которые можно совместить наложением.

Равнобедренным треугольником называется треугольник, у которого две стороны равны.

Равносторонним треугольником называется треугольник, у которого все стороны равны.

Свойство равных треугольников. В равных треугольниках против равных сторон лежат равные углы, а против равных углов — равные стороны.

Замечание. Называя или записывая равные треугольники, стараются соблюдать последовательность соответствующих вершин. Во многих случаях это удобно. Однако делать это необязательно. Обе записи: Признаки что треугольники равныАВС =Признаки что треугольники равныKNM и Признаки что треугольники равныBAC =Признаки что треугольники равныKNM — правильные. Иногда соответствующие вершины равных треугольников обозначают одними и теми же буквами, добавляя к буквам одного из треугольников индекс: Признаки что треугольники равныАВС = = Признаки что треугольники равныА1В1С1. При такой записи имеют в виду, что соответствующими являются вершины А и А1, В и В1, С и С1.

Первый и второй признаки равенства треугольников

При выяснении равны ли треугольники нет необходимости устанавливать равенство всех их соответствующих элементов путем наложения или измерения. Следующие две теоремы гарантируют равенство треугольников при равенстве некоторых сторон и углов.

Теорема (первый признак равенства треугольников). Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Дано: АВ =А1В1, АС =А1С1, Признаки что треугольники равныA = Признаки что треугольники равныA1 (рис. 108).

Признаки что треугольники равны

Доказать: Признаки что треугольники равныАВС = Признаки что треугольники равныА1В1С1.

Доказательство:

Наложим треугольник ABC на треугольник А1В1С1 так, чтобы совпали равные углы А и А1, луч АВ совпал с лучом А1В1, а луч АС совпал с лучом А1С1. Так как отрезки АВ и А1В1 равны, то они совпадут при наложении, и вершина В совпадет с вершиной В1. Аналогично совпадут равные отрезки АС и A1C1, вершина С совпадет с вершиной C1. Треугольники совпадут полностью, так как совпадут их вершины. Таким образом, Признаки что треугольники равныАВС = Признаки что треугольники равныА1В1С1. Теорема доказана.

Говорят, что две стороны и угол между ними задают треугольник однозначно.

Теорема (второй признак равенства треугольников). Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

AC =А1С1, Признаки что треугольники равныA = Признаки что треугольники равныА1, Признаки что треугольники равныC = Признаки что треугольники равныС1 (рис. 109).

Доказать: Признаки что треугольники равныАВС = Признаки что треугольники равныА1В1С1.

Доказательство:

Наложим треугольник ABC на треугольник А1В1С1 так, чтобы совпали равные стороны АС и А1С1, угол А совпал с равным углом А1, а угол С — с равным углом Сх. Тогда луч АВ совпадет с лучом А1В1, луч СВ — с лучом С1В1, а вершина В совпадет с вершиной В1 (точка В будет принадлежать и прямой
А1В1, и прямой С1В1, и поэтому совпадет с точкой их пересечения В1). Треугольники совпадут полностью, так как совпадут их вершины. Таким образом, Признаки что треугольники равныАВС = Признаки что треугольники равныА1В1С1. Теорема доказана.

Говорят, что сторона и два прилежащих к ней угла задают треугольник однозначно

Пример №1

Отрезки АВ и CD пересекаются в их серединах. Доказать, что расстояния между точками А и С, В и D равны.

Признаки что треугольники равны

Доказательство:

Пусть О — точка пересечения отрезков АВ и CD (рис. 110). Рассмотрим Признаки что треугольники равныАОС и Признаки что треугольники равныBOD. У них АО = ОВ, CO = OD по условию, Признаки что треугольники равныAOC = Признаки что треугольники равныBOD как вертикальные. Треугольники равны по двум сторонам и углу между ними, то есть по 1-му признаку равенства треугольников. Стороны АС и BD равны, так как в равных треугольниках против равных углов лежат равные стороны.

Возможно краткое оформление решения задачи.Признаки что треугольники равны

Пример №2

Решение:

У треугольников ABC и ADC сторона АС — общая (рис. 111), AB=AD по условию, Признаки что треугольники равныBAC =Признаки что треугольники равныDAC, так как АС — биссектриса угла BAD.

Признаки что треугольники равны

Эти треугольники равны по 1-му признаку равенства треугольников.

Отсюда ВС = CD как соответствующие (соответственные) стороны в двух равных треугольниках.

Длина ломаной ABCD: Признаки что треугольники равны

Пример №3

На сторонах угла В отложены отрезки: ВА = ВС, КА-МС (рис. 112). Доказать, что Признаки что треугольники равныA = Признаки что треугольники равныС.

Признаки что треугольники равны

Доказательство:

Пример №4

На рисунке 113 Признаки что треугольники равныBAD = Признаки что треугольники равныCDA, Признаки что треугольники равныCAD = Признаки что треугольники равныBDA. Доказать равенство треугольников АОВ и DOC.

Признаки что треугольники равны

Доказательство:

Так как Признаки что треугольники равныABD =Признаки что треугольники равныDCA по 2-му признаку равенства треугольников (сторона AD — общая, углы при стороне AD соответственно равны по условию), то АВ = DC, Признаки что треугольники равныB =Признаки что треугольники равныC.

Высота, медиана и биссектриса треугольника

У треугольника, помимо трех сторон, трех вершин и трех углов, имеются также и другие элементы — высота, медиана и биссектриса.
Признаки что треугольники равны

Определение. Высотой треугольника (рис. 118, а) называется перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на ее продолжение (отрезок ВН).

Определение. Медианой треугольника (рис. 118, б) называется отрезок, который соединяет вершину треугольника с серединой противоположной стороны (отрезок ВМ).

Определение. Биссектрисой треугольника (рис. 118, в) называется отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой пересечения биссектрисы с противоположной стороной (отрезок ВК).

В равных треугольниках равны соответствующие высоты, медианы и биссектрисы.

Если треугольник не равнобедренный, то высота, медиана и биссектриса, проведенные из одной вершины треугольника, не совпадают (рис. 119).

Признаки что треугольники равны

Поскольку у треугольника три вершины, то у него и три высоты, три медианы, три биссектрисы. Позже мы докажем, что высоты треугольника (или их продолжения) пересекаются в одной точке. Это же касается медиан треугольника (рис. 120) и его биссектрис (рис. 121).

Признаки что треугольники равны

Если треугольник остроугольный (рис. 122, а), то точка пересечения его высот находится внутри треугольника ABC. Если треугольник тупоугольный или прямоугольный (рис. 122, б, в), то продолжения высот пересекаются соответственно вне треугольника или в вершине прямого угла.

Признаки что треугольники равны

Точки пересечения высот, биссектрис и медиан называются замечательными точками треугольника.

Геометрия 3D

Тетраэдром или треугольной пирамидой называется многогранник, у которого все четыре грани — треугольники. Любую его грань можно принять за основание, а противолежащую вершину — за вершину пирамиды. Если точка S — вершина, а треугольник ABC — основание пирамиды, то перпендикуляр SH к плоскости ABC является высотой тетраэдра (рис. 124).
Признаки что треугольники равны

Равнобедренный треугольник

Определение. Треугольник называется равнобедренным, если у него две стороны равны.

Равные стороны называются боковыми сторонами, третья сторона — основанием, вершина, противолежащая основанию, — вершиной равнобедренного треугольника.

Рассмотрим некоторые свойства равнобедренного треугольника и один из его признаков.

Теорема (о свойстве углов при основании). В равнобедренном треугольнике углы при основании равны.

Дано: Признаки что треугольники равны(рис. 126).

Признаки что треугольники равны

Доказать: Признаки что треугольники равны

Доказательство:

Проведем биссектрису ВК треугольника ABC. Треугольники АВК и СВК равны по двум сторонам и углу между ними: сторона ВК — общая, АВ = ВС по условию, углы АВК и СВК равны по определению биссектрисы. Из равенства этих треугольников следует, что Признаки что треугольники равныТеорема доказана.

Теорема (о свойстве биссектрисы равнобедренного треугольника).

В равнобедренном треугольнике биссектриса, проведенная к основанию, является его медианой и высотой.

Дано: Признаки что треугольники равны— биссектриса (рис. 127).

Признаки что треугольники равны

Доказать: ВК — медиана и высота.

Доказательство:

Треугольники АВК и СВК равны по двум сторонам и углу между ними (см. предыдущую теорему). Из равенства треугольников следует, что АК=КС и Признаки что треугольники равны1 =Признаки что треугольники равны2. Так как углы 1 и 2 смежные, то их сумма равна 180°, поэтому Признаки что треугольники равныСледовательно, ВК — медиана и высота. Теорема доказана.

Замечание. Поскольку из вершины треугольника можно провести только одну биссектрису, одну высоту и одну медиану, то теорему можно сформулировать так: «Биссектриса, высота и медиана равнобедренного треугольника, проведенные из вершины к основанию, совпадают». То есть если по условию задачи дана высота равнобедренного треугольника, проведенная к основанию, то согласно данной теореме она является биссектрисой и медианой. Аналогично, если дана медиана равнобедренного треугольника, проведенная к основанию, то она является высотой и биссектрисой.

Теорема (признак равнобедренного треугольника). Если в треугольнике два угла равны, то он равнобедренный.

Дано: Признаки что треугольники равны

Доказать:Признаки что треугольники равны

Доказательство:

Мысленно перевернем треугольник ABC обратной стороной (рис. 128) и наложим перевернутый треугольник на треугольник ABC так, чтобы их стороны АС совпали, угол С совпал с углом А, угол А совпал с углом С.

Признаки что треугольники равны

Тогда перевернутый треугольник совместится с данным, и сторона ВС совместится со стороной АВ. Следовательно, АВ = ВС, т. е. Признаки что треугольники равныАВС — равнобедренный. Теорема доказана.

Доказанный признак равнобедренного треугольника является теоремой, обратной теореме о свойстве углов при основании равнобедренного треугольника (рис. 129).

Признаки что треугольники равны

Напомним, что любая теорема состоит из условия — того, что дано, и заключения — того, что нужно доказать. У теоремы, обратной данной, условием является заключение данной теоремы, а заключением — условие данной.

Пример №5

Доказать, что в равнобедренном треугольнике биссектрисы, проведенные к боковым сторонам, равны между собой.

Доказательство:

Пусть в Признаки что треугольники равныАВС АВ =ВС, АК и СМ — биссектрисы (рис. 130). Нужно доказать, что АК = СМ. Рассмотрим Признаки что треугольники равныАКВ и Признаки что треугольники равныСМВ. У них Признаки что треугольники равныB — общий, АВ = ВС по условию, Признаки что треугольники равныBAK = Признаки что треугольники равныBCM как половины равных углов А и С при основании равнобедренного треугольника. Тогда Признаки что треугольники равныАКВ = Признаки что треугольники равныСМВ по 2-му признаку равенства треугольников, откуда АК = СМ. Что и требовалось доказать.

Замечание. Вторым способом доказательства будет рассмотрениеПризнаки что треугольники равныАКС иПризнаки что треугольники равныСМА и доказательство их равенства.

Пример №6

Доказать, что перпендикуляр, проведенный из центра окружности к хорде, делит эту хорду пополам.

Доказательство:

Пусть О — центр окружности, АВ — хорда, ОН — перпендикуляр к хорде АВ (рис. 131).

Признаки что треугольники равны

Отрезки OA и ОВ равны как радиусы. Поэтому треугольник АОВ — равнобедренный, а ОН — его высота, проведенная к основанию. Мы знаем, что высота равнобедренного треугольника, проведенная к основанию, является и медианой. А медиана делит сторону треугольника пополам, то есть АН = НВ. Что и требовалось доказать.

Признаки равнобедренного треугольника

Вы уже знаете один признак равнобедренного треугольника: «Если в треугольнике два угла равны, то треугольник равнобедренный». Докажем еще три признака равнобедренного треугольника, связанных с его высотой, медианой и биссектрисой.

Теорема. Если в треугольнике высота является медианой, то треугольник равнобедренный.

Дано: ВН — высота и медиана Признаки что треугольники равныАВС (рис. 136).

Признаки что треугольники равны

Доказательство:

Рассмотрим Признаки что треугольники равныАВН и Признаки что треугольники равныСВН. У них сторона ВН — общая, Признаки что треугольники равны Признаки что треугольники равны(так как ВН — высота), АН = СН (так как ВН — медиана). Треугольники АВН и СВН равны по двум сторонам и углу между ними. Из равенства треугольников следует равенство соответствующих сторон АВ и ВС. Теорема доказана.

Теорема. Если в треугольнике высота является биссектрисой, то треугольник равнобедренный.

Дано: ВН — высота и биссектриса Признаки что треугольники равныАВС.

Доказать: АВ = ВС (рис. 137).

Признаки что треугольники равны

Доказательство:

Рассмотрим Признаки что треугольники равныАВН и Признаки что треугольники равныСВН. У них сторона ВН — общая, Признаки что треугольники равны Признаки что треугольники равны(так как ВН — высота), Признаки что треугольники равны Признаки что треугольники равны(так как ВН — биссектриса). Треугольники АВН и СВН равны по стороне и двум прилежащим к ней углам. Из равенства треугольников следует равенство соответствующих сторон АВ и ВС. Теорема доказана.

Теорема. Если в треугольнике медиана является биссектрисой, то треугольник равнобедренный.

Дано: ВМ — медиана и биссектриса Признаки что треугольники равныАВС.

Доказать: АВ = ВС (рис. 138).

Доказательство:

Продлим медиану ВМ на ее длину за точку М. Получим МВХ = ВМ. Треугольники АМВ1 и СМВ равны по двум сторонам и углу между ними (МВ1 = ВМ по построению; AM = МС, так как ВМ — медиана; Признаки что треугольники равныAMВ1 =Признаки что треугольники равныCMB как вертикальные). Из равенства этих треугольников следует, что АВ1=ВС и Признаки что треугольники равныAB1M = =Признаки что треугольники равныCBM. Но ZCBM = ZABM, так как ВМ — биссектриса по условию. Тогда Признаки что треугольники равныAB1B = Признаки что треугольники равныABB1 и Признаки что треугольники равныАВВ1 — равнобедренный по признаку равнобедренного треугольника. Следовательно, АВ=АВ1. А так как АВ1=ВС, то АВ = ВС. Теорема доказана.

Замечание. Прием продления (продолжения) медианы часто используется при решении геометрических задач.

Пример №7

В треугольнике ABC с периметром 54 см медиана АК перпендикулярна стороне ВС, а высота ВМ составляет равные углы со сторонами ВА и ВС. Найти стороны треугольника ABC.

Решение:

Так как медиана АК является и высотой, то Признаки что треугольники равныАВС — равнобедренный с основанием ВС и АВ =АС. Так как высота ВМ является и биссектрисой, то Признаки что треугольники равныАВС — равнобедренный с основанием АС и АВ = ВС. Тогда Признаки что треугольники равныАВС — равносторонний, Признаки что треугольники равны Признаки что треугольники равны(см).

Пример №8

Биссектриса АК треугольника АБС делит сторону ВС пополам. Периметр треугольника ABC равен 36 см, периметр треугольника АКС равен 30 см. Найти длину биссектрисы АК.

Решение:

Из условия следует, что биссектриса АК является и медианой Признаки что треугольники равныАВС (рис. 139).

Признаки что треугольники равны

Геометрия 3D

У правильной треугольной пирамиды DABC в основании лежит равносторонний треугольник ABC, а боковые грани ADB, ADC, BDC — равные равнобедренные треугольники с общей вершиной D (рис. 142).

Признаки что треугольники равны

У правильной четырехугольной пирамиды в основании лежит квадрат MNKE, а боковые грани МРЕ, MPN, NPK, ЕРК — равные равнобедренные треугольники с общей вершиной Р (рис. 143).

Признаки что треугольники равны

Третий признак равенства треугольников

Вам уже известны два признака равенства треугольников. Рассмотрим еще один.

Теорема (третий признак равенства треугольников). Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Признаки что треугольники равны

Доказать: Признаки что треугольники равныАВС = Признаки что треугольники равныА1В1С1.

Доказательство:

Приложим треугольник А1В1С1 к треугольнику ABC так, чтобы у них совместились равные стороны А1С1 и АС, а вершины В1 и В оказались в разных полуплоскостях относительно прямой АС. Треугольник А1В1С1 займет положение треугольника АВ2С. Проведем отрезок ВВ2. Так как АВ2=АВ и В2С = ВС, то треугольники АВВ2 и СВВ2 — равнобедренные. Откуда Признаки что треугольники равныl =Признаки что треугольники равны2 и Признаки что треугольники равны3 =Признаки что треугольники равны4 (как углы при основании равнобедренного треугольника). Тогда Признаки что треугольники равныABC =Признаки что треугольники равныAB2C, и треугольники ABC и АВ2С равны по двум сторонам и углу между ними. Следовательно, Признаки что треугольники равныАВС =Признаки что треугольники равныА1В1С1. Теорема доказана.

Замечание. Чтобы отрезок ВВ2 проходил внутри треугольника ABC, следует прикладывать треугольники большей стороной.

Говорят, что три стороны задают треугольник однозначно.

Итак, теперь вы знаете три признака равенства треугольников. Можно сформулировать и другие признаки равенства треугольников, в которых неизбежно будет присутствовать соответственное равенство каких-то трех элементов двух треугольников. Однако не любые три элемента задают треугольник. Так, например, если три угла одного треугольника соответственно равны трем углам другого треугольника, то такие треугольники не обязательно равны. То же касается треугольников, у которых соответственно равны две стороны и угол, противолежащий одной из этих сторон.

На рисунке 145, а, б вы видите пары таких неравных треугольников.

Признаки что треугольники равны

Пример №9

У простой замкнутой ломаной ABCD AB=AD, BC = DC. Доказать, что Признаки что треугольники равныB = Признаки что треугольники равныD и луч АС — биссектриса угла BAD.

Доказательство:

Проведем отрезок АС (рис. 146).

Признаки что треугольники равны

Треугольники ABC и ADC равны по 3-му признаку равенства треугольников (AB=AD и BC = DC по условию, сторона АС — общая). Поэтому Признаки что треугольники равныB =Признаки что треугольники равныD и Признаки что треугольники равныBAC =Признаки что треугольники равныDAC как соответствующие в двух равных треугольниках и луч АС — биссектриса угла BAD.

Пример №10

Доказать равенство треугольников по двум сторонам и медиане между ними.

Доказательство:

Признаки что треугольники равны

Нужно доказать, что Признаки что треугольники равныАВС =Признаки что треугольники равныА1В1С1. Продлим в каждом треугольнике данную медиану на ее длину так, что MD = ВМ, M1D1=B1M1. Так как Признаки что треугольники равныAMD =Признаки что треугольники равныСМВ по 1-му признаку равенства треугольников (AM = МС, Признаки что треугольники равныAMD =Признаки что треугольники равныCMB как вертикальные, ВМ = MD по построению), то AD = BC. Аналогично Признаки что треугольники равныAXMXDX = Признаки что треугольники равныС1М1В1, откуда A1D1 = B1C1. По условию ВС = В1С1, следовательно, AD=A1D1 и Признаки что треугольники равныABD =Признаки что треугольники равныA1B1D1 по трем сторонам. Тогда Признаки что треугольники равныABM =Признаки что треугольники равныA1B1M1 и Признаки что треугольники равныАВМ =Признаки что треугольники равныА1В1М1 по 1-му признаку равенства треугольников. Отсюда AM =А1М1, АС =А1С1 (так как ВМ и В1М1 — медианы) и Признаки что треугольники равныАВС =Признаки что треугольники равныА1В1С1 по трем сторонам.

Пример №11

Два равных отрезка АВ и CD пересекаются в точке О и AD = BC. Доказать, что ВО = DO.

Доказательство:

Соединим точки В и D отрезком (рис. 148).

Признаки что треугольники равны

Треугольники ABD и CDB равны по трем сторонам (сторона BD — общая, AB=CD и AD=СВ по условию). Из равенства треугольников следует, что Признаки что треугольники равныABD =Признаки что треугольники равныCDB. Тогда Признаки что треугольники равныBOD — равнобедренный (по признаку равнобедренного треугольника), откуда ВО=DO.

Серединный перпендикуляр к отрезку

Определение. Серединным перпендикуляром к отрезку называется прямая, перпендикулярная этому отрезку и проходящая через его середину.

Прямая CD — серединный перпендикуляр к отрезку АВ, то есть Признаки что треугольники равны(рис. 152).

Признаки что треугольники равны
Теорема (о серединном перпендикуляре).

Любая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Если точка равноудалена от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

В данной теореме два утверждения: прямое и ему обратное. Докажем каждое из этих утверждений отдельно.

1) Дано: Признаки что треугольники равны— серединный перпендикуляр к отрезку Признаки что треугольники равны(рис. 153).

Признаки что треугольники равны

Доказательство:

По определению серединного перпендикуляра Признаки что треугольники равныТогда в треугольнике АКВ высота КМ является медианой. По признаку равнобедренного треугольника Признаки что треугольники равныАКВ — равнобедренный, поэтому КА=КВ.

2) Дано: Признаки что треугольники равны(рис. 154).

Признаки что треугольники равны

Доказать: Признаки что треугольники равныгде Признаки что треугольники равны— серединный перпендикуляр к отрезку АВ.

Доказательство:

Проведем в равнобедренном Признаки что треугольники равныАКВ высоту КМ, которая по свойству равнобедренного треугольника будет и медианой. Получим Признаки что треугольники равныПрямая Признаки что треугольники равны, проходящая через высоту КМ, — серединный перпендикуляр к отрезку АВ.

Геометрическим местом точек плоскости (или пространства) называется множество всех точек плоскости (или пространства), обладающих общим свойством.

Из доказанной теоремы следует, что серединный перпендикуляр к отрезку — это геометрическое место точек плоскости, равноудаленных от концов отрезка.

Пример №12

В четырехугольнике (рис. 155) ABCD AB=BC, AD=DC.

Признаки что треугольники равны

Доказать, что ACПризнаки что треугольники равныBD.

Доказательство:

1-й способ. Из равенства треугольников ABD и CBD по трем сторонам следует, что Признаки что треугольники равныABD =Признаки что треугольники равныCBD. В равнобедренном треугольнике ABC биссектриса ВМ является и высотой. Поэтому ACПризнаки что треугольники равныBD.

2-й способ. Точки В и D равноудалены от концов отрезка АС, поэтому они лежат на серединном перпендикуляре к отрезку АС. Так как через две точки проходит единственная прямая, то BD — серединный перпендикуляр к отрезку АС. Отсюда ACПризнаки что треугольники равныBD. и AM = МС.

Пример №13 (1-я замечательная точка треугольника).

Доказать, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство:

Пусть два серединных перпендикуляра к сторонам АС и АВ пересекаются в точке О (рис. 156).

Признаки что треугольники равны

Точка О лежит на серединном перпендикуляре ОМ, поэтому ОА = ОС. Точка О лежит на серединном перпендикуляре ОК, поэтому ОА = ОВ. Отсюда ОВ = ОС. Поскольку точка О равноудалена от концов отрезка ВС, то она лежит на серединном перпендикуляре к отрезку ВС. Таким образом, третий серединный перпендикуляр пройдет через точку О, и все три серединных перпендикуляра к сторонам треугольника пересекутся в одной точке.

Напомню:

Три признака равенства треугольников:

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *