Причиной чего становится завершенный внешний электронный слой
Зависимость химических свойств элементов от строения их атомов
Согласно теории строения атома в основе химических реакций лежат процессы перестройки электронных оболочек атома – электронные взаимодействия. В химических реакциях участвуют главным образом электроны внешних слоев (валентные электроны). Обычно это одиночные (непарные, неспаренные) электроны.
Максимально заполненные орбитали наиболее устойчивы. Электронные слои, орбитали которых заполнены максимально, называются завершенными. Внешний электронный слой является завершенным, если имеет электронную конфигурацию s 2 p 6 (восемь электронов), кроме гелия.
Атомы инертных элементов (Не, Ne, Аr, Кr, Хе, Rn) имеют завершенные внешние электронные слои и поэтому с большим трудом вступают в химические реакции. Атомы всех других элементов имеют незавершенные внешние электронные слои.
Энергию ионизации выражают в электрон-вольтах (эВ). Значения энергий ионизации более активных металлов меньше, чем менее активных. Щелочные металлы имеют самые низкие значения энергий ионизации
У атомов неметаллов во внешнем электронном слое содержится четыре и больше электронов, которые прочно связаны с атомом. Атомы неметаллов, вступая в химическую реакцию, обычно присоединяют электроны. Для сравнения неметаллических свойств используют специальную величину – сродство к электрону Е.
Сродство к электрону также выражают в электрон-вольтах (эВ). Наибольшие значения сродства к электрону у элементов главной подгруппы седьмой группы (F, C1, Вr, I), т.е. у типичных неметаллов.
С увеличением заряда ядра атомов у элементов одного периода уменьшается радиус атома, а количество внешних электронов увеличивается. Вследствие этого притяжение внешних электронов к ядру усиливается, энергия ионизации и сродство к электрону увеличиваются. Поэтому к концу периода металлические свойства элементов ослабляются, а неметаллические усиливаются.
В больших периодах металлические свойства ослабляются, а неметаллические усиливаются более медленно, чем в малых периодах. Это объясняется тем, что большие периоды содержат переходные элементы. На внешнем слое атомов переходных элементов находятся два s-электрона, а заполняются предпоследний слой у d-элементов и третий с конца у f-элементов.
Число электронов во внешнем слое атомов изменяется периодически с возрастанием заряда ядер атомов. Поэтому и свойства химических элементов изменяются периодически.
В настоящее время периодический закон формулируется так:
Свойства химических элементов, а также формы и свойства их соединений, находятся в периодической зависимости от величины заряда их атомных ядер или порядкового номера элемента в периодической системе.
Химическая связь.
Электронная теория строения атомов объясняет, как атомы соединяются в молекулы, т.е. природу и механизм образования химической связи.
Под химической связью понимают электрические силы притяжения, удерживающие частицы друг около друга.
Частицы, которые принимают участие в образовании химических связей, могут быть атомами, молекулами или ионами. В основе теории химической связи лежат представления об электронных взаимодействиях. Наиболее прочными группировками электронов являются завершенные внешние электронные слои атомов инертных элементов. Незавершенные внешние электронные слои всех остальных элементов являются неустойчивыми группировками электронов. При соединении атомов с незавершенными внешними электронными слоями происходит перестройка их электронных оболочек: непарные электроны различных атомов образуют общие электронные пары.
Основными типами химической связи являются ковалентная, ионная, металлическая и водородная.
Ковалентная связь
Схематически это можно изобразить с помощью электронных формул:
Общая электронная пара одинаково принадлежит обоим атомам, каждый атом получает устойчивую оболочку из двух электронов. Наибольшая электронная плотность общего электронного облака проявляется в области между ядрами. Молекула водорода образуется за счет взаимодействия общей электронной пары с ядрами обоих атомов.
Связь атомов с помощью общих электронных пар называется ковалентной.
В молекулах фтора F2, хлора С12, кислорода О2, азота N2 связь между атомами ковалентная. Она образуется в молекулах фтора и хлора с помощью общей электронной пары (рис. 4в), в молекуле азота — с помощью трех общих электронных пар. Схематически это можно изобразить так:
Во всех этих случаях каждый атом образует завершенный устойчивый внешний электронный слой из восьми электронов.
В молекулах, которые состоят из разных элементов, связь тоже может быть ковалентной. Рассмотрим образование молекулы хлороводорода. Электронные конфигурации атомов водорода и хлора
H 1s 1 ; Cl 1s 2 2s 2 2p 6 3s 2 3p 5
показывают, что внешние электронные слои этих атомов имеют по одному непарному электрону. При сближении орбитали этих электронов перекрываются, образуя общую электронную пару (рис. 4б).
Ковалентная связь может образоваться между двумя атомами, из которых один имеет пару электронов, а другой — свободную орбиталь. Например, при взаимодействии аммиака NH3 и хлороводорода НCl пара s-электронов атома азота, которые не участвуют в образовании связей в молекуле аммиака <неподеленная пара электронов) становится общей для водорода и азота, получается ион аммония
Такой механизм образования ковалентной связи называется донорно-акцепторным. В нашем примере донором электронной пары является атом азота, а акцептором — ион водорода (он имеет свободную орбиталь). Донорно-акцепторный механизм образования ковалентной связи наблюдается в комплексных соединениях ([Ag(NH3)2]0H, K4[Fe(CN)6]).
Электроны, которые участвуют в образовании химических связей, называются валентными. У элементов главных подгрупп валентные электроны расположены на s- и р-орбиталях внешнего электронного слоя. У элементов побочных подгрупп (за исключением лантаноидов и актиноидов) валентные электроны расположены на s-орбиталях внешнего слоя и на d-орбиталях предпоследнего электронного слоя. Валентными электронами могут быть не только непарные электроны атома в нормальном (невозбужденном) состоянии, но и парные. Например, в нормальном состоянии атом углерода имеет два непарных электрона.
Однако в большинстве своих соединений атом углерода образует четыре ковалентных связи (СН4, СС14, СН3ОН и т. д.). Это становится возможным потому, что при поглощении энергии (420 кДж/моль) у атома углерода один 2s-электрон переходит на 2p-орбиталь:
Такой атом углерода называется возбужденным. Он имеет четыре непарных электрона и может образовать четыре ковалентных связи.
Если общие электронные пары обозначать чертой, то электронная формула превращается в структурную:
Электронные и структурные формулы показывают последовательность соединения атомов в молекуле. Например, в молекуле аммиака атомы водорода соединяются с атомами азота, но между собой не соединяются.
Вещества с ковалентными связями могут быть твердыми (парафин, лед), жидкими (вода, спирт), газообразными (кислород, азот, аммиак) при обычных условиях.
Структурные формулы не отражают пространственного расположения атомов в молекуле. Изобразить его можно с помощью модели (рис. 5),
Презентация была опубликована 9 лет назад пользователемmarinaboroviko.ucoz.ru
Похожие презентации
Презентация на тему: » Внешние электронные слои Завершенные8 электроновНезавершенные1-7 электронов Наиболее устойчивы – завершенные электронные слои (у инертных газов)» — Транскрипт:
2 Внешние электронные слои Завершенные8 электроновНезавершенные1-7 электронов Наиболее устойчивы – завершенные электронные слои (у инертных газов)
3 +11 2е8 е1 е Na +17 Cl 2е 8е 7е
5 это энергия, необходимая для отрыва наименее связанного с атомом электрона
6 это энергия, которая выделяется при присоединении одного электрона к атому
7 ЭО = E ионизации + E сродства 2 Чем больше ЭО, тем больше выражены металлические свойства ЭО – мера неметалличности элемента
8 это способность атомов оттягивать на себя электроны от атомов других элементов
10 Электроны удерживаются в атоме за счет притяжения к положительно заряженному ядру Сила притяжения между разноименно заряженными частицами зависит от заряда частиц и расстояния между ними Чем больше заряды, тем больше сила притяжения Чем больше расстояние, тем меньше сила притяжения
11 Заряд ядра увеличивается Число электронных слоев увеличивается Число электронов на внешнем слое не изменяется Радиус атомов увеличивается Энергия ионизации, энергия сродства к электрону, ЭО уменьшается Металлические свойства усиливаются, неметаллические ослабевают Li Na K
12 Заряд ядра увеличивается Число электронных слоев не изменяется Число электронов на внешнем слое увеличивается Радиус атома уменьшается (« атомное сжатие » в периодах ) Энергия ионизации, энергия сродства к электрону, ЭО увеличивается Металлические свойства ослабевают, неметаллические усиливаются Li BeB
14 Выучить конспект Письменно : доделать 6-26
Причиной чего становится завершенный внешний электронный слой
На этом уроке вы узнаете, как устроена электронная оболочка атома, и сможете объяснить явление периодичности. Познакомитесь с моделями строения электронных оболочек атомов, с помощью которых можно предсказать и объяснить свойства химических элементов и их соединений.
I. Состояние электронов в атоме
Выдающийся датский физик Нильс Бор (Рис. 1) предположил, что электроны в атоме могут двигаться не по любым, а по строго определенным орбитам.
При этом электроны в атоме различаются своей энергией. Как показывают опыты, одни из них притягиваются к ядру сильнее, другие – слабее. Главная причина этого заключается в разном удалении электронов от ядра атома. Чем ближе электроны к ядру, тем они прочнее связаны с ним и их труднее вырвать из электронной оболочки. Таким образом, по мере удаления от ядра атома запас энергии электрона увеличивается.
Электроны, движущиеся вблизи ядра, как бы загораживают (экранируют) ядро от других электронов, которые притягиваются к ядру слабее и движутся на большем удалении от него. Так образуются электронные слои.
Каждый электронный слой состоит из электронов.
Электрон вращается вокруг ядра атома с невообразимой скоростью. Так, за 1 секунду он делает столько оборотов вокруг ядра атома, сколько оборотов делает пропеллер самолета вокруг оси за 5–5,5 лет непрерывной работы двигателя. Пропеллер самолета образует «облако», находящееся в одной плоскости, а электрон образует объемное облако –электронное облако, форма и размер которого зависят от энергии электрона.
Если обозначить точками все вероятные места нахождения электрона в атомном пространстве за некоторое время, то совокупность этих точек будет представлять собойэлектронное облако.
II. Электронное облако
Электронное облако – это модель, которая описывает состояние (движение) электрона в атоме.
Электронное облако не имеет строго очерченных границ и плотность его неравномерна.
Часть атомного пространства, в котором вероятность нахождения электрона наибольшая (
90%), называется орбиталью.
Виды электронных орбиталей
Форма орбитали в пространстве
Количество орбиталей в атоме.
Условное обозначение орбитали – клетка:
(электронное облако s – электрона)
Электронное облако такой формы может занимать в атоме одно положение
(электронное облако p – электрона)
Электронное облако такой формы может занимать в атоме три положения вдоль осей координат пространства x, y и z.
(электронное облако d – электрона)
(электронное облако f – электрона)
Электронное облако такой формы может занимать в атоме семь положений.
Число электронов в атоме определяют по порядковому номеру
О – 8 электронов, S – 16 электронов.
На одной орбитали могут находиться только ДВА электрона, которые вращаются вокруг своей оси в противоположных направлениях (по часовой стрелке и против часовой стрелке) – электроны с противоположными спинами:
Cледовательно, на s – орбитали максимально может разместиться два электрона (s 2 ); на p – орбитали максимально может разместиться шесть электронов (p 6 ) на d – орбитали максимально может разместиться десять электронов (d 10 ); f – четырнадцать электронов (f 14 ).
Располагаясь на различных расстояниях от ядра, электроны образуют электронные слои (энергетические уровни) – каждому слою соответствует определённый уровень энергии.
Число энергетических уровней определяют по номеру периода, в котором находится химический элемент
О – 2 уровня, S – три уровня.
Для элементов главных подгрупп (А) число электронов на внешнем уровне = номеру группы.
+15P – V группа (А) – на внешнем уровне 5 электронов
Для элементов побочных подгрупп (В) число электронов на внешнем уровне = двум.
Исключения (один электрон) – хром, медь, серебро, золото и некоторые другие.
III. Формулы отражающие строение атомов первого и второго периодов
– схема строения атома, отображает распределение электронов по энергоуровням.
+1 Н 1s 1
– электронная формула, отображает число электронов по орбиталям.
— электронно-графическая формула – показывает распределение электронов по орбиталям и отображает спин электрона.
У элементов второго периода начинается заполнение второго энергетического уровня — он включает восемь электронов (n = 2, N = 8). Второй период содержит восемь элементов. У неона, элемента, завершающего второй период, первый и второй энергетические уровни оказываются целиком заполненными.
IV. Распределение электронов по энергетическим уровням элементов третьего и четвертого периодов ПСХЭ
1. Порядок заполнения уровней и подуровней электронами
Электронные формулы атомов химических элементов составляют в следующем порядке:
Порядок заполнения электронами атомных орбиталей определяется :
Принципом наименьшей энергии
Шкала энергий:
1s внешнего энергетического уровня, называются s-элементами. Это первые 2 элемента каждого периода, составляющие главные подгруппы I и II групп.
Элементы, в атомах которых электронами заполняется p-подуровень внешнего энергетического уровня, называются p-элементами. Это последние 6 элементов каждого периода (за исключением I и VII), составляющие главные подгруппы III—VIII групп.
Элементы, в которых заполняется d-подуровень второго снаружи уровня, называются d-элементами. Это элементы вставных декад IV, V, VI периодов.
Элементы, в которых заполняется f-подуровень третьего снаружи уровня, называются f-элементами. К f-элементам относятся лантаноиды и актиноиды.
В третьем периоде происходит заполнение третьего энергетического уровня. Третий уровень (n = 3) может максимально вмещать 18 электронов. Однако элементов в третьем периоде всего восемь. К концу третьего периода (у аргона) полностью заполняются 3s- и 3p-подуровни, а 3d-подуровень остается пустым, поэтому третий уровень не заполняется до конца.
В четвертом периоде у первых двух элементов (калия и кальция) электроны идут на четвертый энергетический уровень (4s-подуровень), а затем у последующих десяти элементов (от скандия до цинка) завершается заполнение третьего энергетического уровня (3d-подуровня).
«Проскок» или «провал» электрона
Особо следует отметить палладий, у которого «проваливаются» два электрона:
Pd1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 0 4d 10
V. Тест
Решите тестовые задания (один верный вариант ответа).
1. Заряд ядра атома фосфора равен
2. Количество энергоуровней в атоме равно
а) порядковому номеру элемента;
в) заряду ядра атома;
3. Число нейтронов в атоме цинка равно
4. В ряду элементов Na, Mg, Al, Cl металлические свойства
г) сначала убывают, а затем возрастают
5. Формула высшего оксида RO2 характерна для
6. Электронная формула строения атома меди, это-
а) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 ;
б) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 9 ;
в) 1s 2 2s 2 2p 6 3s 1 3p 6 4s 2 3d 10 ;
7. Заряд ядра атома кальция равен
8. Число электронов на внешнем энергоуровне для элементов главных подгрупп равно
в) порядковому номеру элемента;
9. Число нейтронов в атоме железа равно
10. В ряду элементов C, Si, Ge, Sn способность отдавать валентные электроны
г) сначала увеличивается, а затем уменьшается.
11. Формула летучего водородного соединения для элемента с электронным строением атома 1s22s22p2 – это
12. Электронная формула строения атома мышьяка, это-
а) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 11 4p 3 ;
б) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 9 4p 4 ;
в) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 4p 4 ;
Атомы и электроны
Атомно-молекулярное учение
Описываемая модель атома называется «планетарной» и была предложена в 1913 году великими физиками: Нильсом Бором и Эрнестом Резерфордом
Запомните, что в невозбужденном состоянии атом содержит одинаковое число электронов и протонов. Так у кальция (порядковый номер 20) в ядре находится 20 протонов, а вокруг ядра на электронных орбиталях 20 электронов.
Я еще раз подчеркну эту важную деталь. На данном этапе будет отлично, если вы запомните простое правило: порядковый номер элемента = числу электронов. Это наиболее важно для практического применения и изучения следующей темы.
Электронная конфигурация атома
Электроны атома находятся в непрерывном движении вокруг ядра. Энергия электронов отличается друг от друга, в соответствии с этим электроны занимают различные энергетические уровни.
Состоит из s-подуровня: одной «s» ячейки (2s 2 ) и p-подуровня: трех «p» ячеек (2p 6 ), на которых помещается 6 электронов
Состоит из s-подуровня: одной «s» ячейки (3s 2 ), p-подуровня: трех «p» ячеек (3p 6 ) и d-подуровня: пяти «d» ячеек (3d 10 ), в которых помещается 10 электронов
Состоит из s-подуровня: одной «s» ячейки (4s 2 ), p-подуровня: трех «p» ячеек (4p 6 ), d-подуровня: пяти «d» ячеек (4d 10 ) и f-подуровня: семи «f» ячеек (4f 14 ), на которых помещается 14 электронов
Зная теорию об энергетических уровнях и порядковый номер элемента из таблицы Менделеева, вы должны расположить определенное число электронов, начиная от уровня с наименьшей энергией и заканчивая к уровнем с наибольшей. Чуть ниже вы увидите несколько примеров, а также узнаете об исключении, которое только подтверждает данные правила.
Подуровни: «s», «p» и «d», которые мы только что обсудили, имеют в определенную конфигурацию в пространстве. По этим подуровням, или атомным орбиталям, движутся электроны, создавая определенный «рисунок».
Правила заполнения электронных орбиталей и примеры
Должно быть, вы обратили внимание на некоторое несоответствие: после 3p подуровня следует переход к 4s, хотя логично было бы заполнить до конца 4s подуровень. Однако природа распорядилась иначе.
Запомните, что, только заполнив 4s подуровень двумя электронами, можно переходить к 3d подуровню.
Теперь мы располагаем указанное количество электронов на энергетических уровнях, руководствуясь правилами заполнения.
Обращаю ваше особе внимание: на 2p-подуровне углерода мы расположили 2 электрона в разные ячейки, следуя одному из правил. А на 3p-подуровне у серы электронов оказалось много, поэтому сначала мы расположили 3 электрона по отдельным ячейкам, а оставшимся одним электроном дополнили первую ячейку.
Внешний уровень и валентные электроны
Тренировка
Потренируйтесь и сами составьте электронную конфигурацию для магния и скандия. Определите число электронов на внешнем (валентном) уровне и число неспаренных электронов. Ниже будет дано наглядное объяснение этой задаче.
Причиной чего становится завершенный внешний электронный слой
§2.6 Электронная конфигурация. Электронные формулы. Орбитальные диаграммы. Правило октета.
На схеме вверху вы видите орбитальную диаграмму атома водорода, у которого единственный электрон размещается на самом близком к ядру 1-м уровне. На этом уровне только одна s-орбиталь (на схеме она показана квадратиком). Собственно, квадратик с изображением внутри электрона-стрелочки и является орбитальной диаграммой.
Теперь рассмотрим атом гелия:
Рассмотрим атом лития:
На рис. 2-8 показана более подробная орбитальная диаграмма для первых электронных уровней большинства атомов.
Рис. 2-8. Порядок заполнения орбиталей на первых, наиболее близких к ядру электронных уровнях в многоэлектронных атомах. Заполнение электронами происходит снизу вверх. Справа показано наибольшее количество электронов, способных разместиться на орбиталях данного подуровня. 4-й уровень показан не полностью.
Чем дальше от ядра располагаются уровни и подуровни, тем выше их энергия. Для атомов, у которых мало электронов (например, 3Li) уровни и подуровни распределяются по энергии вполне логично: 1s, затем 2s, 2p, затем 3s, 3p, 3d, затем 4s, 4p, 4d, 4f … и т.д. Правда, об этом редко вспоминают, потому что у «легких» атомов 3-й и 4-й уровни пусты. Но с возрастанием числа электронов в многоэлектронных атомах все электроны начинают заметно взаимодействовать не только с ядром, но и друг с другом. В частности, электроны нижних уровней «заслоняют» электроны верхних уровней от влияния ядра (в физике это называется экранированием). Чем дальше от ядра, тем меньше становится разница между соседними уровнями и подуровнями. В результате некоторые верхние подуровни начинают «наезжать» друг на друга. Уже в атоме углерода 6С (у него 6 электронов) 3d-подуровень оказывается чуть выше по энергии, чем 4s. Такие аномалии еще чаще встречаются на более высоких уровнях. Вот как выглядит порядок заполнения уровней и подуровней в многоэлектронных атомах (это атомы большинства элементов):
Нет никакой необходимости запоминать эту последовательность. В главе 4 мы научимся легко извлекать ее из Периодической таблицы Д.И.Менделеева.
** Если говорить более строго, то относительное расположение подуровней обусловлено не столько их большей или меньшей энергией, сколько требованием минимума полной энергии атома. Исходя из этого требования, минимум энергии достигается у большинства атомов тогда, когда их подуровни заполняются в показанной выше последовательности. Но есть и исключения, которые вы можете найти в таблицах «Электронные конфигурации элементов» (см. меню слева). Однако эти исключения редко приходится принимать во внимание при рассмотрении химических свойств элементов.
Пользуясь рис. 2-8, мы можем приступить к заполнению электронных уровней атомов многих элементов. Как нам уже известно, атом каждого элемента содержит строго определенное число электронов, равное числу протонов в его ядре (то есть заряду ядра). Правила заполнения электронных оболочек следующие:
1. Сначала выясняем, сколько всего электронов содержит атом интересующего нас элемента. Для этого достаточно знать заряд его ядра, который, как мы увидим в главе 4, всегда равен порядковому номеру элемента в Периодической таблице Д.И.Менделеева. Порядковый номер (число протонов в ядре) в точности равен и числу электронов во всем атоме.
2. Последовательно заполняем орбитали, начиная с нижней 1s-орбитали, имеющимися электронами (рис. 2-8). При этом нельзя располагать на каждой орбитали более двух электронов.
3. Записываем электронную формулу элемента.
Электронная формула описывает распределение электронов по энергетическим уровням, существующим в электронном облаке. Такое распределение называется также электронной конфигурацией атома.
Запись электронной формулы проще показать на конкретном примере. Допустим, нам надо выяснить электронную формулу элемента с порядковым номером 7. В атоме такого элемента должно быть 7 электронов. Заполним орбитали семью электронами, начиная с нижней 1s-орбитали.
Электронная формула элемента с порядковым номером 7 (это элемент азот, имеющий символ “N”) выглядит так:
Существует правило (оно называется правилом Гунда ), по которому электроны предпочитают расселяться на одинаковых по энергии орбиталях (например, на трех p-орбиталях) сначала по одиночке, и лишь когда в каждой такой орбитали уже находится по одному электрону, начинается заполнение этих орбиталей вторыми электронами. Когда орбиталь заселяется двумя электронами, такие электроны называют спаренными.
Рис. 2-9. Правильная (а) и неправильная (б) орбитальная диаграмма азота. В соответствии с правилом Гунда орбитали заселяются сначала одиночными, а не спаренными электронами.
По правилу Гунда при заполнении электронами одинаковых по энергии орбиталей электроны располагаются в первую очередь по одиночке на каждой орбитали, и лишь потом начинается заселение этих орбиталей вторыми электронами.
Полученная нами электронная формула азота несет очень важную информацию: 2-й (внешний) электронный уровень азота заполнен электронами не до конца (на нем 2 + 3 = 5 электронов) и до полного заполнения не хватает трех электронов.
Завершенный уровень энергетически выгоднее незавершенного (о том, как это выяснилось, вы узнаете уже в этом параграфе). Поэтому атом азота должен легко реагировать с любым другим атомом, способным предоставить ему 3 дополнительных электрона для завершения его внешнего уровня.
Другой пример: элемент с порядковым номером 18. Действуя так же, как и в первом случае, мы с помощью рис. 2-8 расположим 18 электронов в следующую электронную формулу:
1s 2 2s 2 2p 6 3s 2 3p 6
Инертность аргона такова, что до сих пор, несмотря на все попытки, не удалось получить ни одного его устойчивого соединения.
Из-за своей химической инертности благородные газы долго не были известны химикам. Аргон был открыт первым благодаря наблюдательности английского ученого Джона Уильяма.Рэлея.
Спустя два года они осуществили эксперимент по поглощению азота раскаленным магнием при пропускании искрового электрического разряда и выделили оставшийся в сосуде таинственный газ, который оказался в 20 раз тяжелее водорода. Это и был аргон.
Впоследствии У. Рамзай провел эксперименты по дробной перегонке жидкого воздуха и открыл еще три инертных газа: неон, ксенон и криптон. Гелий также впервые был выделен Рамзаем в опыте по обработке минерала клевеита горячей серной кислотой.
** Внимательный читатель может возразить, что внешняя оболочка криптона 36Kr, строго говоря, не является заполненной, поскольку свободны 4d- и 4f-орбитали. Действительно, правильнее говорить только о завершенных 4s и 4p-подуровнях криптона.
Чтобы полностью заполнить 4-й уровень, следующие за криптоном элементы вынуждены перед 4d- и 4f-орбиталями заполнить сначала более «низкие» (по энергии) 5s- и 6s-подуровни. В результате элемент, имеющий, например, полный набор 4d-электронов, должен обязательно иметь еще и 5s-электроны. Такой элемент имеет пока незавершенный 5-й уровень.
Причины необычайной устойчивости атомов с полностью заполненными s- и p-подуровнями до сих пор не совсем ясны. Нам полезно воспринять этот очень важный факт как известный химикам из природы, из опыта. В дальнейшем завершенность или незавершенность внешних уровней атомов позволит нам оценить многие химические свойства элементов.
Отметим, что каждый заполненный внешний электронный уровень благородных элементов содержит (s 2 + p 6 ) то есть 8 электронов. Логично предположить, что именно заполненные внешние электронные уровни являются причиной химической инертности благородных элементов, поскольку все другие элементы имеют частично незаполненные внешние (s + p) электронные уровни.
Образно говоря, атомы элементов «любят» наряжаться в электронные одежды благородных газов. Они стремятся создавать завершенные внешние электронные уровни (оболочки) из 8 электронов, отдавая свои электроны другим атомам или, наоборот, принимая электроны других атомов. Такой обмен электронами и вызывает все многообразие химических реакций.
Более строгая формулировка правила октета может выглядеть так:
Атомы элементов стремятся к наиболее устойчивой электронной конфигурации. Устойчивой является электронная конфигурация с завершенным внешним электронным уровнем из (s 2 + p 6 ), т.е. из октета электронов.
Только в одном случае завершенная оболочка может включать не 8, а 2 электрона. Благородный газ гелий (порядковый номер 2) имеет завершенную внешнюю оболочку из 2-х электронов (1s 2 ). Причина этого исключения вполне понятна: на самом нижнем уровне помещается только одна s-орбиталь, на которой можно разместить не более двух электронов. Физический смысл правила октета при этом не меняется. Суть его в том, что только завершенная электронная оболочка наиболее выгодна для атома, поскольку в этом случае электронная конфигурация обладает наименьшей энергией. Впрочем, иногда правило октета называют и «правилом октета-дублета».
Фтор (F): 1s 2 2s 2 2p 5 ;
Хлор (Cl): 1s 2 2s 2 2p 6 3s 2 3p 5
Акцепторные свойства фтора выше, потому что его внешний электронный уровень находится ближе к ядру, чем у хлора. Это означает, что фтор (по сравнению с хлором) в химических реакциях ведет себя более «агрессивно» и легче заполняет свой внешний уровень до октета, забирая недостающий электрон у какого-либо другого элемента. Подтверждение этому факту мы уже знаем: существуют соединения фтора даже с благородными элементами ксеноном и криптоном, но до сих пор не известно соединений благородных газов с хлором.
Может возникнуть вопрос: почему наиболее акцепторные свойства проявляет все-таки фтор, а не водород? Ведь атом водорода самый маленький, он имеет наименьшее расстояние от ядра до электронной оболочки, а для ее завершения тоже нужен всего один электрон. Дело в том, что отсутствие электронов (как в ионе H + ) можно рассматривать как частный случай «завершенной» электронной оболочки. Поэтому частицы H + относительно устойчивы. Например, они присутствуют в растворах кислот (хотя и не в свободном виде, а в окружении молекул растворителя) и придают таким растворам кислый вкус. Следовательно, атому водорода часто выгоднее «отдать» свой единственный электрон, чем «забирать» чужой. Впрочем, акцепторные свойства атомов водорода все-таки заметно выше, чем, например, у атомов натрия. Мы еще вернемся к донорным и акцепторным свойствам в следующей главе при рассмотрении химической связи и окислительно-восстановительных свойств элементов.