При окислении углеводов и жиров образуется что образуется
Что представляет из себя углеводный обмен в организме?
В правильном питании и распределении баланса нутриентов не последнюю роль играют именно углеводы. Люди, которым небезразлично собственное здоровье, знают, что сложные углеводы предпочтительнее простых. И что лучше употреблять еду для более длительного переваривания и подпитки энергией на протяжении дня. Но почему именно так? Чем различаются процессы усвоения медленных и быстрых углеводов? Почему сладости стоит употреблять только для закрытия белкового окна, а мед лучше есть исключительно на ночь? Чтобы ответить на эти вопросы, подробно рассмотрим обмен углеводов в организме человека.
Для чего нужны углеводы
Помимо поддержания оптимального веса, углеводы в организме человека выполняют огромный фронт работы, сбой в которой влечет не только возникновение ожирения, но и массу других проблем.
Основными задачами углеводов является выполнение следующих функций:
Для нас главными источниками углеводов являются те молекулы, которые мы получаем с продуктами питания: крахмал, сахароза и лактоза.
Этапы расщепления сахаридов
Прежде чем рассматривать особенности биохимических реакций в организме и влияние метаболизма углеводов на спортивные результаты, изучим процесс расщепления сахаридов с их дальнейшим превращением в тот самый гликоген, который так отчаянно добывают и тратят спортсмены во время подготовки к соревнованиям.
Этап 1 – предварительное расщепление слюной
В отличие от белков и жиров, углеводы начинают распадаться почти сразу после попадания в полость рта. Дело в том, что большая часть продуктов, поступающих в организм, имеет в своем составе сложные крахмалистые углеводы, которые под воздействием слюны, а именно фермента амилазы, входящей в ее состав, и механического фактора расщепляются на простейшие сахариды.
Этап 2 – влияние желудочной кислоты на дальнейшее расщепление
Здесь вступает в силу желудочная кислота. Она расщепляет сложные сахариды, которые не попали под воздействие слюны. В частности, под действием ферментов лактоза расщепляется до галактозы, которая в последствии превращается в глюкозу.
Этап 3 – всасывание глюкозы в кровь
На этом этапе практически вся ферментированная быстрая глюкоза напрямую всасывается в кровь, минуя процессы ферментации в печени. Уровень энергии резко повышается, а кровь становится более насыщенной.
Этап 4 – насыщение и инсулиновая реакция
Под воздействием глюкозы кровь густеет, что затрудняет её перемещение и транспортировку кислорода. Глюкоза замещает кислород, что вызывает предохранительную реакцию – уменьшение количества углеводов в крови.
В плазму поступает инсулин и глюкагон из поджелудочной железы.
Первый открывает транспортные клетки для перемещения в них сахара, что восстанавливает утраченный баланс веществ. Глюкагон в свою очередь уменьшает синтез глюкозы из гликогена (потребление внутренних источников энергии), а инсулин “дырявит” основные клетки организма и помещает туда глюкозу в виде гликогена или липидов.
Этап 5 – метаболизм углеводов в печени
На пути к полному перевариванию углеводы сталкиваются с главным защитником организма – клетками печени. Именно в этих клетках углеводы под воздействием специальных кислот связываются в простейшие цепочки – гликоген.
Этап 6 – гликоген или жир
Печень способна переработать только определенное количество моносахаридов, находящихся в крови. Возрастающий уровень инсулина заставляет её делать это в кратчайшие сроки. В случае, если печень не успевает перевести глюкозу в гликоген, наступает липидная реакция: вся свободная глюкоза путём её связывания кислотами превращается в простые жиры. Организм делает это с целью оставить запас, однако в виду нашего постоянного питания, “забывает” переварить, и глюкозные цепочки, превращаясь в пластические жировые ткани, транспортируются под кожу.
Этап 7 – вторичное расщепление
В случае, если печень справилась с сахарной нагрузкой и смогла превратить все углеводы в гликоген, последний под воздействием гормона инсулина успевает запастись в мышцах. Далее в условиях недостатка кислорода расщепляется назад до простейшей глюкозы, не возвращаясь в общий кровоток, а сохраняясь в мышцах. Таким образом, минуя печень, гликоген поставляет энергию для конкретных мышечных сокращений, повышая при этом выносливость (источник – “Википедия”).
Именно этот процесс зачастую называют «вторым дыханием». Когда у спортсмена большие запасы гликогена и простых висцеральных жиров, превращаться в чистую энергию они будут только в отсутствии кислорода. В свою очередь спирты, содержащиеся в жирных кислотах, простимулируют дополнительное расширение сосудов, что приведет к лучшей восприимчивости клеток к кислороду в условиях его дефицита.
Особенности метаболизма по ГИ
Важно понимать, почему углеводы разделяются на простые и сложные. Все дело в их гликемическом индексе, который определяет скорость распада. Это, в свою очередь, запускает регуляцию обмена углеводов. Чем проще углевод, тем быстрее он попадет в печень и тем выше вероятность его превращения в жир.
Примерная таблица гликемического индекса с общим составом углеводов в продукте:
Наименование | ГИ | Кол-во углеводов |
Семечки подсолнуха сухие | 8 | 28.8 |
Арахис | 20 | 8.8 |
Брокколи | 20 | 2.2 |
Грибы | 20 | 2.2 |
Салат листовой | 20 | 2.4 |
Салат-латук | 20 | 0.8 |
Помидоры | 20 | 4.8 |
Баклажаны | 20 | 5.2 |
Зеленый перец | 20 | 5.4 |
© IrinaPotter — depositphotos.com. Гликемический индекс продуктов
Особенности метаболизма по ГН
Однако даже продукты с высоким гликемическим индексом не способны нарушить обмен и функции углеводов так, как это делает гликемическая нагрузка. Она определяет, насколько сильно печень загрузится глюкозой при употреблении этого продукта. При достижении определенного порога ГН (порядка 80-100), все калории, поступающие сверх нормы, будут автоматически конвертироваться в триглицериды.
Примерная таблица гликемической нагрузки с общей калорийностью:
Наименование | ГН | Калорийность |
Семечки подсолнуха сухие | 2.5 | 520 |
Арахис | 2.0 | 552 |
Брокколи | 0.2 | 24 |
Грибы | 0.2 | 24 |
Салат листовой | 0.2 | 26 |
Салат-латук | 0.2 | 22 |
Помидоры | 0.4 | 24 |
Баклажаны | 0.5 | 24 |
Зеленый перец | 0.5 | 25 |
© designer491 — depositphotos.com. Расчет гликемической нагрузки
Инсулиновая и глюкагоновая реакция
В процессе потребление любого углевода, будь то сахар или сложный крахмал, организм запускает сразу две реакции, интенсивность которых будет зависеть от ранее рассмотренных факторов и в первую очередь, от выброса инсулина.
Важно понимать, что инсулин всегда выбрасывается в кровь импульсами. А это значит, что один сладкий пирожок для организма так же опасен, как 5 сладких пирожков. Инсулин регулирует густоту крови. Это необходимо, чтобы все клетки получали достаточное количество энергии, не работая в гипер- или гипо- режиме. Но самое главное, от густоты крови зависит скорость её движения, нагрузка на сердечную мышцу и возможность транспортировки кислорода.
Выброс инсулина – это естественная реакция. Инсулин дырявит все клетки в организме, способные воспринимать дополнительную энергию, и запирает её в них. В случае, если печень справилась с нагрузкой, в клетки помещается гликоген, если печень не справилась, то в те же клетки попадают жирные кислоты.
Таким образом, регуляция углеводного обмена происходит исключительно благодаря выбросам инсулина. Если его недостаточно (не хронически, а одноразово), у человека может возникнуть сахарное похмелье – состояние, при котором организм требует дополнительной жидкости для увеличения объемов крови, и разжижения её всеми доступными средствами.
Вторым важным фактором на этом этапе обмена углеводов выступает глюкагон. Этот гормон определяет, нужно ли печени работать с внутренними источниками или с внешними.
Под воздействием глюкагона печень выпускает готовый гликоген (не распавшийся), который был получен из внутренних клеток, и начинает собирать из глюкозы новый гликоген.
Именно внутренний гликоген инсулин и распределяет по клеткам в первое время (источник – учебник “Спортивная биохимия”, Михайлов).
© VectorMine — depositphotos.com. Регуляция уровня сахара в крови
Последующее распределение энергии
Последующее распределение энергии углеводов происходит в зависимости от типа сложения, и тренированности организма:
Рецепты для здорового питания
Энергетический обмен – процесс, в котором участвуют углеводы. Важно понимать, что даже в отсутствии прямых сахаров, организм все равно будет расщеплять ткани до простейшей глюкозы, что приведет к уменьшению мышечной ткани или жировой прослойки (в зависимости от типа стрессовой ситуации).
Эксперт проекта. диагностика, лечение, первичная, вторичная профилактика заболеваний почек, суставов, сердечно-сосудистой системы; дифференциальная диагностика заболеваний различных органов и систем; рекомендации по диетическому питанию, физическим нагрузкам, лечебной физкультуре, подбор индивидуальной схемы питания.
Как не потерять форму за рождественские праздники: советы от тренеров по кроссфиту
Урок Бесплатно Энергетический обмен
Ведение
Метаболизм состоит из двух взаимно противоположных, но взаимосвязанных процессов пластического и энергетического обмена.
Энергетический обмен необходим организму для образования энергии, которая, в свою очередь, будет израсходована на важные биологические процессы, происходящие в клетках, тканях, органах, в том числе и на пластический обмен.
Все наши движения, мыслительные и физиологические процессы (пищеварение, кровообращение, выделение), любое проявление жизнедеятельности требуют затрат энергии.
Энергетический обмен также называют катаболизм или диссимиляцией. Это достаточно длительный процесс, который происходит вплоть до того момента, пока все питательные вещества, поступившие в организм, не расщепятся до углекислого газа, воды или других простых соединений, которые организм уже не сможет использовать.
Этот процесс аналогичен горению, при котором выделяется вода, углекислый газ и огромное количество энергии.
Катаболизм- это прежде всего многоступенчатый процесс, он не нуждается в высоких температурах, а выделившаяся энергия по большей части не переходит в тепловую, чтобы безвозвратно рассеяться, а запасается для дальнейших нужд в виде молекул АТФ.
Все это делает этот процесс невероятно эффективным и уникальным!
Первый этап энергетического обмена (подготовительный)
Энергетический обмен— это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ.
Каким же образом энергия реакции расщепления используется клеткой?
Ученые обнаружили, что любая деятельность клетки всегда точно совпадает во времени с распадом молекул АТФ.
К примеру, при синтезе белков, углеводов, жиров в клетке идет активный распад АТФ.
В результате опытов было обнаружено, что любая работа мышц сопровождается активным расщеплением АТФ в их клетках.
Ученые сделали вывод, что именно АТФ является непосредственным источником энергии, необходимой для сокращения мышц и для синтеза сложных соединений.
Известно, что в среднем содержание АТФ в клетках составляет от 0,05% до 0,5% ее массы, то есть запас молекул АТФ в организме ограничен, и после распада АТФ должно произойти его восстановление.
Многоуровневый процесс энергетического обмена- это последовательные реакции восстановления молекул АТФ, которые происходят при участии ферментов.
Это можно сравнить с аккумулятором для телефона- когда его заряд садится, то устройство необходимо вновь зарядить.
Если в клетке постоянно измерять содержание АТФ, то его количество существенно не изменяется, но количество углеводов, белков, жиров будет уменьшаться. Это объясняется тем, что реакции расщепления углеводов, белков, жиров и других веществ обеспечивают быстрое и полное восстановление израсходованной АТФ.
В каждой клетке нашего организма в течение суток АТФ примерно 10 тысяч раз распадается и вновь заново образуется.
Таким образом, АТФ- это единый и универсальный источник энергии для функциональной деятельности клетки.
Следует отметить, что возможна передача энергии из одних частей клетки в другие.
Синтез АТФ может происходить в одном месте и в одно время, а использоваться может в другом месте и в другое время.
Синтез АТФ в основном происходит в митохондриях, образовавшаяся здесь АТФ по каналам эндоплазматической сети направляется в те места клетки, где возникает потребность в энергии.
Это одно из проявлений высочайшей организованности и упорядоченности всех химических реакций, протекающих в клетке.
Растения могут преобразовывать энергию солнечных лучей в АТФ на первом этапе фотосинтеза; хемосинтезирующие бактерии способны запасать энергию в форме АТФ, получаемую при реакциях окисления различных неорганических соединений.
Следует отметить, что фотосинтезирующие и хемосинтезирующие организмы также способны получать энергию благодаря окислению органических веществ, синтезированных в собственных клетках из неорганических соединений.
У гетеротрофов (животных, грибов) образование АТФ идет в клетках при помощи реакций окисления органических веществ, поступающих вместе с пищей.
В клетках растений:
Крахмал →глюкоза → АТФ
В клетках животных:
гликоген → глюкоза → АТФ
Энергетический обмен делится на три последовательных этапа:
Подготовительный этап
Вся пища, которая поступает в наш организм, подвергается ферментативному расщеплению, при котором:
На этом этапе вся выделившаяся при расщеплении веществ энергия рассеивается в виде тепла.
У одноклеточных животных подготовительный этап протекает в клетках, где и происходит расщепление сложных органических веществ на простые вещества под действием ферментов лизосом.
У многоклеточных организмов расщепление веществ начинает происходить в пищеварительном канале, а далее в клетках под действием лизосом.
У меня есть дополнительная информация к этой части урока!
В ротовой полости человека фермент α-амилаза расщепляет полисахариды (крахмал, гликоген) до мальтозы (дисахарида).
Фермент мальтаза, которая входит в состав слюны, действует на мальтозу и расщепляет ее до глюкозы.
Если долго пережевывать крахмалистую пищу, то можно почувствовать сладковатый привкус, это означает, что небольшая часть крахмала расщепилась до глюкозы (сладкий вкус возникает при пережевывании хлеба).
В желудке идет начальная стадия расщепления белков, гидролиз, под влиянием фермента пепсина.
В желудке небольшая часть жиров гидролизуется под действием липазы, а их переваривание происходит в тонком кишечнике.
Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению (гликолизу).
Вывод: на первом этапе энергетического обмена происходит распад сложных органических веществ на простые с выделением энергии, которая вся рассеивается в виде тепла.
Пройти тест и получить оценку можно после входа или регистрации
Второй этап энергетического обмена (гликолиз)
Ключевое место в метаболизме всех типов клеток занимают реакции с участием сахаров, например, глюкозы, потому что процесс расщепления глюкозы идет наиболее быстро и легче, ведь организму необходимо достаточно быстро восстанавливать энергетические затраты.
Аминокислоты и белки использовать для образования энергии слишком не выгодно, так как большая их часть является структурными компонентами клеток. В этом случае организм разрушал бы сам себя.
Жиры могут использоваться для получения энергии, но главным образом после того, как израсходовались запасы углеводов, ведь жиры из-за своей гидрофобности очень медленно окисляются и малоподвижны в клетках. При этом из жиров в отсутствие кислорода АТФ получить нельзя, а из глюкозы можно.
Поэтому организм выбирает наиболее выгодный путь получения энергии в виде молекул АТФ за счет расщепления, в первую очередь, глюкозы.
Второй этап энергетического обмена называют бескислородным, так как процесс расщепления глюкозы и образования молекул АТФ идет без участия кислорода.
Гликолиз идет в цитоплазме клеток без участия кислорода. Он состоит из последовательных реакций, каждая из которых катализируется общим ферментом.
В ходе реакций гликолиза молекула глюкозы С6Н12О6 распадается на две трехуглеродные молекулы пировиноградной кислоты (ПВК)— С3Н4О3, при этом суммарно образуются две молекулы АТФ и вода.
Акцептором (лат. accipio- «я принимаю, получаю») водорода в реакции гликолиза служит кофермент НАД+.
НАД+ переносит электроны из одной реакции в другую.
НАД+ является окислителем и забирает электрон от другой молекулы и один водород, восстанавливаясь в НАД H, который далее служит восстановителем и уже отдаёт электроны.
Уравнение реакции гликолиза:
У меня есть дополнительная информация к этой части урока!
Клетка кроме аккумулятора АТФ использует и другие вещества, например, аккумуляторы водорода.
Существуют приемщики (акцепторы) водорода- ферменты, которые могут брать у одних веществ водород и переносить его к другим веществам.
Таких переносчиков три типа:
Еще существует переносчик остатков карбоновых кислот, который называется КоА (КоэнзимА).
НАДФ (никотинамидадениндинуклеотидфосфат)- отличается от НАД содержанием ещё одного остатка фосфорной кислоты.
НАДФ принимает на себя водород и электроны окисляемого соединения и передаёт их на другие вещества.
В хлоропластах растительных клеток НАДФ восстанавливается при световых реакциях фотосинтеза и затем обеспечивает водородом синтез углеводов при темновых реакциях.
ФАД+ присоединяет к себе сразу два атома водорода и превращается ФАД Н2.
Все эти вещества активно участвуют в процессах образования молекул АТФ
Дальнейшая судьба ПВК может быть различной и зависит от того, какой тип извлечения энергии предпочитают организмы: анаэробный (бескислородный) или аэробный (кислородный).
Например, паразитические черви, живущие в кишечнике организмов хозяев, выбирают бескислородный путь преобразования ПВК, так как они мало подвижны и их клеткам хватает энергии, которая образуется при гликолизе глюкозы.
Эти виды паразитов выбирают именно такой путь преобразования энергии еще и потому, что при распаде глюкозы образуются ядовитые вещества (ацетон, уксусная кислота и этиловый спирт), которые действуют угнетающе на организм хозяина и ослабляют его иммунитет, что, в свою очередь, помогает паразиту существовать в агрессивной для него среде.
У меня есть дополнительная информация к этой части урока!
Есть такое заболевание (гиполактазия), при котором человек не может усваивать лактозу, которая является основным сахаром, содержащимся в молоке и молочных продуктах.
Если человек употребил пищу с содержанием лактозы, то это может привести к тому, что кишечная палочка (бактерия нашего кишечника) всю поступившую лактозу начинает перерабатывать сама, в результате чего активно размножается и выделяет много ядовитых веществ, которые образовались в ходе гликолиза (распада сахара).
Организм пытается вывести из себя все эти вредные вещества, усиливается работа кишечника, происходит резь и вздутие живота из-за ядовитых веществ и активного размножения бактерий.
Но в целом кишечная палочка помогает человеку расщепить те вещества, которые не способен расщепить он сам (к примеру, клетчатку) и получить витамины группы В
Образовавшаяся в результате гликолиза пировиноградная кислота подвергается дальнейшему преобразованию уже на внутренней мембране митохондрий, то есть переходит на третий этап энергетического обмена.
Вывод: на втором этапе энергетического обмена, гликолизе, из 1 молекулы глюкозы образуется 2 молекулы ПВК и 2 молекулы АТФ.
Если в клетку прекратилась подача кислорода, то ПВК подвергается брожению, к примеру, в клетках растений, которые были затоплены во время весенних паводков.
В зависимости от того, какие конечные продукты образуются, выделяют несколько видов брожения.
Рассмотрим основные виды:
1. Спиртовое брожение
Встречается в основном у дрожжей и растений.
Конечными продуктами являются этанол и углекислый газ.
При доступе кислорода процесс брожения ослабевает, на смену ему приходит дыхание.
Подавление спиртового брожения кислородом называется эффектом Пастера.
Спиртовое брожение используется в пищевой промышленности: хлебопекарной, виноделии.
При этом типе брожения сначала происходит образование уксусного альдегида, а затем этилового спирта:
2. Молочнокислое брожение
Осуществляется с помощью лактобактерий, бифидобактерий, стрептококков.
Из ПВК они образуют молочную кислоту, ацетон, янтарную и уксусную кислоту.
Молочнокислые бактерии широко используются в молочной промышленности для получения молочнокислых продуктов, а также в создании пробиотиков.
У меня есть дополнительная информация к этой части урока!
Пробиотики- класс микроорганизмов и веществ микробного и иного происхождения, использующихся в терапевтических целях, а также пищевые продукты и биологически активные добавки, содержащие живые микрокультуры.
Пробиотики обеспечивают при систематическом употреблении в пищу благоприятное воздействие на организм человека в результате нормализации состава и (или) повышения биологической активности нормальной микрофлоры кишечника
У животных и человека при недостатке кислорода также может происходить молочнокислое брожение с образованием молочной кислоты.
В мышцах есть запасы углеводов в виде гликогена. При долгой и усиленной работе, кровь не успевает снабдить мышцы достаточным количеством кислорода, в результате чего мышечные клетки вынуждены переходить на бескислородный способ получения АТФ.
При этом образуется молочная кислота, вызывающая боли в мышцах.
Квашение- разновидность молочнокислого брожения, в процессе которого образуется молочная кислота, оказывающая на продукты (наряду с добавляемой поваренной солью) консервирующее и размягчающее действие.
Квашение применяется при консервировании овощей и в кожевенном производстве.
У меня есть дополнительная информация к этой части урока!
Скелетные мышцы человека неоднородны. Мышца может состоять из нескольких типов волокон в разных пропорциях.
Красные волокна содержат много митохондрий и обладают высокой способностью к аэробному окислению глюкозы и жирных кислот. Они хорошо снабжаются кровью и приспособлены к продолжительной работе.
В белых мышечных волокнах мало митохондрий, но много запасов гликогена, в них с большой скоростью происходит анаэробный (бескислородный) распад гликогена с образованием молочной кислоты.
Мышцы с большой долей белых волокон быстрее переходят от состояния покоя к максимальной активности, сокращаются энергично, но в них быстрее наступает утомление: запасы гликогена в мышечных клетках быстро истощаются, а поступление глюкозы из крови и ее использование происходят медленно.
3. Маслянокислое брожение
Масляная кислота, бутанол, ацетон, уксусная и ряд других органических кислот являются продуктами сбраживания углеводов бактериями- сахаролитическими анаэробами.
Благодаря определению наличия тех или иных кислот в клетке можно установить, какие бактерии образовали эти кислоты.
Знание механизмов брожения имеет большое практическое значение не только для живых организмов, но и для человека:
Недостатком процессов брожения является извлечение незначительной доли той энергии, которая заключена в связях органических молекул.
Для бактерий, паразитических видов, живущих в бескислородной среде, энергии, образующейся в результате брожения или гликолиза, достаточно для существования, поэтому они, в отличие от человека, не нуждаются в кислороде.
Также брожение является жизненно важным процессом для хвойных растений. В зимний период устьица хвои закупориваются смолой и газообмен с окружающей средой практически прекращается, в этом случае для получения энергии в клетках активно идет процесс спиртового брожения.
Пройти тест и получить оценку можно после входа или регистрации