Преобразование выражений что это

Тождественные преобразования выражений, их виды

Тождественные преобразования представляют собой работу, которую мы проводим с числовыми и буквенными выражениями, а также с выражениями, которые содержат переменные. Все эти преобразования мы проводим для того, чтобы привести исходное выражение к такому виду, который будет удобен для решения задачи. Основные виды тождественных преобразований мы рассмотрим в этой теме.

Тождественное преобразование выражения. Что это такое?

Впервые встречаемся с понятием тождественных преобразованный мы на уроках алгебры в 7 классе. Тогда же мы впервые знакомимся с понятием тождественно равных выражений. Давайте разберемся с понятиями и определениями, чтобы облегчить усвоение темы.

Тождественное преобразование выражения – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Часто это определение используется в сокращенном виде, в котором опускается слово «тождественное». Предполагается, что мы в любом случае проводим преобразование выражения таким образом, чтобы получить выражение, тождественное исходному, и это не требуется отдельно подчеркивать.

Проиллюстрируем данное определение примерами.

Замена выражения 2 · a 6 на выражение a 3 – это тождественное преобразование, тогда как замена выражения x на выражение x 2 не является тождественным преобразованием, так как выражения x и x 2 не являются тождественно равными.

Тождественные преобразования и ОДЗ

Ряд выражений, которые мы начинаем изучать в 8 классе, имеют смысл не при любых значениях переменных. Проведение тождественных преобразований в этих случаях требует от нас внимания к области допустимых значений переменных (ОДЗ). Выполнение тождественных преобразований может оставлять ОДЗ неизменной или же сужать ее.

При выполнении перехода от выражения a + ( − b ) к выражению a − b область допустимых значений переменных a и b остается прежней.

Переход от выражения x к выражению x 2 x приводит к сужению области допустимых значений переменной x от множества всех действительных чисел до множества всех действительных чисел, из которого был исключен ноль.

Тождественное преобразование выражения x 2 x выражением х приводит к расширению области допустимых значений переменной x от множества всех действительных чисел за исключением нуля до множества всех действительных чисел.

Сужение или расширение области допустимых значений переменных при проведении тождественных преобразований имеет значение при решении задач, так как может повлиять на точность проведения вычислений и привести к появлению ошибок.

Основные тождественные преобразования

Давайте теперь посмотрим, какими бывают тождественные преобразования и как они выполняются. Выделим те виды тождественных преобразований, с которыми нам приходится иметь дело чаще всего, в группу основных.

Помимо основных тождественных преобразований существует ряд преобразований, которые относятся к выражениям конкретного вида. Для дробей это приемы сокращения и приведения к новому знаменателю. Для выражений с корнями и степенями все действия, которые выполняются на базе свойств корней и степеней. Для логарифмических выражений действия, которые проводятся на основе свойств логарифмов. Для тригонометрических выражений все действия с использованием тригонометрических формул. Все эти частные преобразования подробно разбираются в отдельных темах, которые можно найти на нашем ресурсе. В связи с этим в этой стстье мы на них останавливаться не будем.

Перейдем к рассмотрению основных тождественных преобразований.

Перестановка местами слагаемых, множителей

Начнем с перестановки слагаемых местами. С этим тождественным преобразованием мы имеем дело чаще всего. И основным правилом здесь можно считать следующее утверждение: в любой сумме перестановка слагаемых местами не отражается на результате.

Основано это правило на переместительном и сочетательном свойствах сложения. Эти свойства позволяют нам переставлять слагаемые местами и получать при этом выражения, которые тождественно равны исходным. Именно поэтому перестановка слагаемых местами в сумме является тождественным преобразованием.

В качестве слагаемых в сумме могут выступать не только числа, но и выражения. Их точно так же, как и числа, можно переставлять местами, не влияя на конечный результат вычислений.

Точно так же, как и слагаемые, в исходных выражениях можно менять местами множители и получать тождественно верные уравнения. Проведение этого действия регулируется следующим правилом:

В произведении перестановка множителей местами не влияет на результат вычислений.

Основано это правило на переместительном и сочетательном свойствах умножения, которые подтверждают верность тождественного преобразования.

Раскрытие скобок

Скобки могут содержать записи числовых выражений и выражений с переменными. Эти выражения могут быть преобразованы в тождественно равные выражения, в которых скобок не будет вообще или их будет меньше, чем в исходных выражениях. Этот способ преобразования выражений называют раскрытием скобок.

Правила преобразования выражений со скобками мы подробно разобрали в теме «Раскрытие скобок», которая размещена на нашем ресурсе.

Группировка слагаемых, множителей

В случаях, когда мы имеем дело с тремя и большим количеством слагаемых, мы можем прибегнуть к такому виду тождественных преобразований как группировка слагаемых. Под этим способом преобразований подразумевают объединение нескольких слагаемых в группу путем их перестановки и заключения в скобки.

При проведении группировки слагаемые меняются местами таким образом, чтобы группируемые слагаемые оказались в записи выражения рядом. После этого их можно заключить в скобки.

Группировка множителей проводится аналогично группировке слагаемых.

Слагаемые и множители, которые группируются, могут быть представлены как простыми числами, так и выражениями. Правила группировки были подробно разобраны в теме «Группировка слагаемых и множителей».

Замена разностей суммами, частных произведениями и обратно

Мы можем переходить к суммам от любых разностей. Аналогично мы можем произвести обратную замену.

Это правило было положено в основу правила деления обыкновенных дробей.

Точно также по аналогии деление может быть заменено умножением.

Выполнение действий с числами

Выполнение действий с числами подчиняется правилу порядка выполнения действий. Сначала проводятся действия со степенями чисел и корнями из чисел. После этого мы заменяем логарифмы, тригонометрические и прочие функции на их значения. Затем выполняются действия в скобках. И затем уже можно проводить все остальные действия слева направо. Важно помнить, что умножение и деление проводят до сложения и вычитания.

Действия с числами позволяют преобразовать исходное выражение в тождественное равное ему.

Решение

Действиям с числами могут предшествовать другие виды тождественных преобразований, таких, например, как группировка чисел или раскрытие скобок.

Решение

Выполним действия в скобках: ( 3 − 2 + 11 ) + ( 2 · 2 · 4 ) · x · y 3 = 12 + 16 · x · y 3

Ответ: 3 + 2 · ( 6 : 3 ) · x · ( y 3 · 4 ) − 2 + 11 = 12 + 16 · x · y 3

Если мы работаем с числовыми выражениями, то целью нашей работы будет нахождение значения выражения. Если же мы преобразуем выражения с переменными, то целью наших действий будет упрощение выражения.

Вынесение за скобки общего множителя

В тех случаях, когда слагаемые в выражении имеют одинаковый множитель, то мы можем вынести этот общий множитель за скобки. Для этого нам сначала необходимо представить исходное выражение как произведение общего множителя и выражения в скобках, которое состоит из исходных слагаемых без общего множителя.

Освежить в памяти правил вынесения общего множителя за скобки вы можете в соответствующем разделе нашего ресурса. В материале подробно рассмотрены правила вынесения общего множителя за скобки и приведены многочисленные примеры.

Приведение подобных слагаемых

Теперь перейдем к суммам, которые содержат подобные слагаемые. Тут возможно два варианта: суммы, содержащие одинаковые слагаемые, и суммы, слагаемые которых отличаются числовым коэффициентом. Действия с суммами, содержащими подобные слагаемые, носит название приведения подобных слагаемых. Проводится оно следующим образом: мы выносим общую буквенную часть за скобки и проводим вычисление суммы числовых коэффициентов в скобках.

Замена чисел и выражений тождественно равными им выражениями

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Выполненное преобразование искусственное. Оно имеет смысл лишь при подготовке к проведению других преобразований.

Прибавление и вычитание одного и того же числа

Прибавление и одновременное вычитание одного и того же числа или выражения являетс искусственным приемом преобразования выражений.

Источник

Преобразование алгебраических выражений с примерами решения и образцами выполнения

Цель алгебраических преобразований:

При решении задач с помощью алгебры обычно приходится производить арифметические действия над алгебраическими выражениями. Причем непосредственно записанный результат получается в виде нового и часто более сложного выражения.

Пусть, например, требуется к сумме двух чисел а и b прибавить их разность. Записывая указанные действия, мы получим результат в таком виде:

Преобразование выражений что это

Однако это выражение можно упростить, если воспользоваться
свойствами сложения. Именно, в силу сочетательного и переместительного законов сложения, результат преобразуется так:

Преобразование выражений что это

Выражения (a + b) + (a — b) и 2a равны тождественно, т. е. равенство между ними справедливо при всех значениях букв а и Ь. Переход от одного алгебраического выражения к другому, тождественно равному ему, называется тождественным преобразованием.

Такого рода преобразования, которые большею частью ведут к упрощению записи результата, почти всегда возможны при действиях над алгебраическими выражениями. Настоящая глава содержит описание приемов, применяемых при’ таких преобразованиях. Этому же вопросу посвящены и две следующие главы.

Преобразование выражений что это

Типы алгебраических выражений

Определение:

Алгебраические выражения, представляющие собой запись арифметических действий (сложения, вычитания, умножения, деления и возведения в степень), производимых над числами и буквами, называются рациональными алгебраическими выражениями.

Рациональное выражение называется целым, если среди указанных в нем действий нет действия деления на выражение, содержащее буквы. Если же такое действие имеется, то выражение называется дробным. Так, выражения

Преобразование выражений что это

являются целыми. В последнем примере указано действие деления, но выражение 43 — 35, на которое нужно делить, не содержит букв. В то же время выражения :

Преобразование выражений что это

являются выражениями дробными.

Заметим, что дробное алгебраическое выражение мажет равняться целому. Так, Преобразование выражений что этоПоэтому рациональные выражения разделяют на целые и дробные в том виде, в котором они заданы непосредственно, до всяких преобразований.

В этой главе мы будем заниматься преобразованием только целых выражений. Среди целых выражений особенно простыми являются так называемые одночлены.

Одночленами называются произведения, составленные из числового множителя (коэффициента) и одной или нескольких букв, каждая из которых взята в некоторой степени.

Числа, выраженные цифрами (т. е. не обозначенные буквами), также причисляются к одночленам. Коэффициенты в одночленах могут быть целыми и дробными, положительными и отрицательными. При записи одночлена принято писать коэффициент впереди множителей, выраженных буквами. Например,

Преобразование выражений что это

представляют собой одночлены.

Алгебраическая сумма нескольких одночленов называется многочленом. Например,

Преобразование выражений что это

Одночлены, входящие в многочлен, называются его членами. Говорят, что многочлен составлен из своих членов. Так, многочлен Преобразование выражений что этосоставлен из одночленов Преобразование выражений что это5.

Одночлены целесообразно рассматривать как частный случай многочленов, именно как многочлены, составленные только из одного члена. Многочлены, составленные из двух членов, называются двучленами, из трех членов — трехчленами.

Отметим следующие свойства одночленов и многочленов.

Одночлен не изменяется, если переставить местами множители, из которых он составлен. Например,

Преобразование выражений что это

Это свойство одночлена непосредственно следует из переместительного закона умножения.

Многочлен не изменяется, если как угодно изменить порядок
его слагаемых
. Например,

Преобразование выражений что это

Справедливость этого свойства следует из переместительного закона сложения.

§ 3. Приведение подобных членов

Рассмотрим многочлен 5аb — 3аb + 4ab — с. Его можно упростить,
так как члены 5аb, —3ab и 4ab отличаются друг от друга только численными коэффициентами. Такие члены можно соединить в один. Действительно, на основании распределительного закона

Преобразование выражений что это

Преобразование выражений что это

Члены многочлена, равные или отличающиеся только коэффициентами, называются подобными. Так, члены 5аb, — 3ab и 4ab подобны.

Если многочлен содержит подобные члены, то его можно упростить по следующему правилу: если многочлен содержит несколько подобных членов, то их можно соединить в один, подобный каждому
из них, приняв за его коэффициент алгебраическую сумму
коэффициентов соединяемых членов
. Упрощение многочленов по этому правилу называется приведением подобных членов.

Пример:

Привести подобные члены в многочлене

Преобразование выражений что это

Решение:

В этом примере имеются две группы подобных членов: Преобразование выражений что это(подчеркнутые один раз) и — 4а, (подчеркнутые дважды). Члены первой группы объединяются в

Преобразование выражений что это

члены второй группы в (- 4+6)a = 2a. Итак,

Преобразование выражений что это

Правило приведения подобных членов основывается на следующих соображениях. Прежде всего можно на основании переместительного закона расположить члены многочлена так, чтобы все подобные члены оказались рядом. Затем на основании сочетательного закона можно произвести сложение в каждой группе подобных членов. На основании распределительного закона сложение подобных членов сводится к сложению их коэффициентов.

Если многочлен содержит два одночлена, отличающиеся только знаком, то их можно вычеркнуть. Действительно, такие два члена при сложении взаимно уничтожаются, т. е. дают в сумме нуль. Например,

Преобразование выражений что это

Сложение и вычитание многочленов

Правило. Для того чтобы сложить два или несколько многочленов, нужно сложить все одночлены, из которых эти многочлены составлены.

Затем для упрощения результата следует привести подобные члены.

Преобразование выражений что это

Правило сложения многочленов непосредственно следует из сочетательного закона сложения.

Правило. Для того чтобы вычесть многочлен из многочлена, нужно к членам уменьшаемого прибавить члены вычитаемого, взятые с противоположными знаками.

Преобразование выражений что это

Правило вычитания многочленов нуждается в некотором пояснении. Мы знаем, что вычесть какое-нибудь число все равно, что прибавить противоположное. Легко видеть, что если некоторое число выражено в виде многочлена, то противоположное ему число равно многочлену, составленному из тех же членов, но взятых с противоположными знаками. Например,

Преобразование выражений что это

Действительно, два таких многочлена при сложении дают в сумме нуль, так как их члены взаимно умножаются:

Преобразование выражений что это

Итак, вычесть какой-нибудь многочлен, действительно, все равно, что прибавить многочлен, составленный из тех же членов, но с противоположными знаками.

После того как правила приведения подобных членов, сложения и вычитания многочленов уже освоены, при сложении и вычитании многочленов нет необходимости выписывать промежуточные результаты. Следует сразу писать ответ, осуществляя раскрытие скобок и приведение подобных членов в уме. Например,

Преобразование выражений что это

При этом нужно аккуратно учитывать знаки коэффициентов. Коэффициенты одночленов, взятых из скобок^ перед которыми стоит знак Преобразование выражений что это, нужно брать без изменения, коэффициенты одночленов, взятых из скобок, перед которыми стоит знак Преобразование выражений что это, нужно брать с»
противоположными знаками.

Умножение степеней одной буквы и возведение степени в степень

Пример:

Умножить Преобразование выражений что этона Преобразование выражений что это

Решение:

Преобразование выражений что этоесть произведение пяти множителей, каждый из
которых равен а. Далее, Преобразование выражений что этоесть произведение трех множителей,
равных а. Следовательно, Преобразование выражений что этоесть произведение восьми
множителей, равных а, т. е.

Преобразование выражений что это

Также можно рассуждать при любых показателях степени, и мы приходим к следующему правилу.

Правило. Произведение степеней с одинаковыми основаниями
равно степени с тем же основанием и с показателем, равным
сумме показателей
.

Короче: при умножении степеней с одинаковыми основаниями показатели складываются. Это правило записывается в виде следующей формулы:

Преобразование выражений что это

Правило применимо не только к преобразованию произведения двух множителей, являющихся степенями одной буквы, но и к преобразованию произведения любого числа множителей этого вида. Например,

Преобразование выражений что это

Обратимся теперь к возведению степени в степень.

Пример:

Возвести Преобразование выражений что этов куб.

Решение:

Преобразование выражений что это

Правило. Результат возведения степени в степень равен степени с тем же основанием и с показателем, равным произведению показателей, участвующих в действии.

Короче: при возведении степени в степень показатели перемножаются. Правило записывается следующей формулой:

Преобразование выражений что это

Умножение одночленов

Пример:

Перемножить одночлены Преобразование выражений что это

Решение:

Преобразование выражений что это

Мы решили пример следующим образом. Сначала на основании переместительного закона умножения мы изменили порядок множителей так, что коэффициенты оказались рядом и степени одинаковых букв оказались рядом. После этого на основании сочетательного закона умножили коэффициенты и умножили степени с одинаковыми основаниями.

Таким же образом мы можем выполнить умножение любых одночленов.

Правило. Чтобы перемножить два (или больше) одночлена, нужно перемножить их коэффициенты и затем приписать каждую букву, входящую в умножаемые одночлены, с показателем, равным сумме показателей, с которыми эта буква входит в одночлены. Если какая-либо буква входит только в один одночлен, переписать ее с тем же показателем.

Возведение одночлена в степень

Пример:

Преобразование выражений что это

Решение:

Преобразование выражений что это

Так же производится возведение в степень с любым показателем произведения, составленного из любого числа множителей.

Именно, степень произведения нескольких чисел равна произведению степеней множителей с тем же показателем.

Это правило легко применяется к возведению в степень любого одночлена.

Пример:

Преобразование выражений что это

Конечно, при возведении одночлена в степень нет необходимости записывать промежуточный результат. Следует сразу писать ответ.

Пример:

Преобразование выражений что это

Умножение многочлена на одночлен

Пример:

Преобразование выражений что это

Решение:

Здесь нужно умножить сумму чисел Преобразование выражений что этои Преобразование выражений что этона числoПреобразование выражений что этоСогласно распределительному закону умножения, нужно каждое слагаемое умножить на это число и сложить результаты. Итак,

Преобразование выражений что это

Точно таким же образом можно поступать всегда при умножении многочлена на одночлен. Мы пришли к следующему правилу.

Для того чтобы умножить многочлен на одночлен, нужно каждый член многочлена умножить на этот одночлен и результаты сложить.

Конечно, после некоторой тренировки нет необходимости записывать промежуточный результат. Следует писать ответ сразу, выполняя умножение одночленов в уме.

Пример:

Преобразование выражений что это

Замечание:

Если многочлен не содержит подобных членов, то и при умножении его на любой одночлен получится многочлен, не содержащий подобных членов. Таким образом, при умножении многочлена на одночлен приведение подобных членов в результате умножения невозможно, если только его нельзя было сделать еще до умножения.

Умножение многочлена на многочлен

Пример:

Перемножить многочлены а+2b и За— 2b.

Решение:

Дальнейшие преобразования сводятся к знакомым для нас действиям— умножению многочлена на одночлен и сложению одночленов. Продолжая вычисления, получим

Преобразование выражений что это

Сделаем еще один пример, на этот раз не прерывая выкладки рассуждениями.

Пример:

Преобразование выражений что это

Мы приходим к следующему правилу:

Правило 1. Для того чтобы умножить многочлен на многочлен, нужно каждый член первого множителя умножить на второй множитель, и сложить получившиеся результаты.

Умножение членов первого многочлена на второй можно произведи сразу, и это действие сводится к умножению членов первого многочлена на все члены второго. Таким образом, мы приходим к следующему правилу.

Правило 2. Для того чтобы перемножить два многочлена, нужно каждый член первого многочлена умножить на каждый член второго многочлена и результаты сложить.

Преобразование выражений что это

Второе правило умножения многочленов сокращает запись по сравнению с первым. Рекомендуется, однако, сначала пользоваться первым правилом и переходить ко второму, когда первое правило уже освоено.

Правила умножения многочленов можно применять и к умножению равных многочленов, т. е. к возведению многочлена в квадрат.
Например,

Преобразование выражений что это

Умножение нескольких многочленов

Умножение нескольких многочленов следует производить постепенно, объединяя множители каким-либо способом по два. Пример:

Преобразование выражений что это

Расстановку квадратных скобок можно было, конечно, не делать, а сразу приступить к умножению первых двух множителей.

Пример:

Преобразование выражений что это

Выполним умножение, объединив первый множитель со вторым, третий с четвертым:

Преобразование выражений что это

Можно сразу производить умножение нескольких многочленов, руководствуясь следующим правилом:

Чтобы умножить несколько многочленов, нужно составить всеми возможными способами произведения членов, взятых по одному из всех перемножаемых многочленов, и сложить полученные результаты.

Приведем один пример на это правило с подробной записью:

Преобразование выражений что это

Однако при пользовании этим правилом легко ошибиться, пропустив какую-нибудь комбинацию членов перемножаемых многочленов. Поэтому этим правилом следует пользоваться только в самых простых случаях, например при перемножении двучленов.

Умножение многочленов, содержащих одну букву

Члены многочлена, содержащего одну букву, целесообразно располагать в порядке убывания показателей степеней, с которыми эта буква в него входит. При этом если многочлен содержит так называемый свободный член, т. е. слагаемое, не содержащее букв, то его следует поставить на последнем месте. Например, многочлен Преобразование выражений что этопосле расположения его членов по
убывающим степеням принимает вид

Преобразование выражений что это

Член многочлена, содержащий наибольшую степень буквы, называется старшим членом многочлена. Показатель степени в старшем члене называется степенью многочлена. Так, старший член многочлена Преобразование выражений что этои этот многочлен есть многочлен четвертой степени. Считается условно, что «многочлены»,
состоящие только из свободного члена, т. е. числа, выраженные цифрами, являются многочленами нулевой степени.

Очевидно, что при умножении многочлена, расположенного по
убывающим степеням, на какой-либо одночлен, зависящий от
той же буквы, получается в результате многочлен, также расположенный по убывающим степеням.

При умножении двух расположенных многочленов целесообразно подписывать результаты умножения отдельных членов одного
многочлена на другой друг под другом, сдвигая начало записи так, чтобы подобные члены оказывались в одном столбце. В случае, если степени идут не подряд, следует оставлять между соответствующими одночленами пустые места, так как может оказаться, что, хотя в первой строке одночлен, содержащий некоторую степень буквы, отсутствует, в других строках появятся одночлены этой степени. Пример:

Преобразование выражений что это

При такой записи умножение многочленов становится похожим на умножение многозначных чисел.

Заметим, что из правила умножения многочленов следует, что старший член произведения двух многочленов равен произведению старших членов множителей. Следовательно, степень произведения двух многочленов равна сумме степеней множителей. Так, при умножении многочлена пятой степени на многочлен третьей степени мы получим многочлен восьмой степени.

При умножении многочленов не очень высокой степени рекомендуется еще один способ, при котором, результат можно писать сразу, без записи промежуточных результатов. При пользовании этим способом некоторые несложные вычисления приходится производить в уме.

Рассмотрим один пример с подробным объяснением порядка действий.

Пример:

Преобразование выражений что это

Решение:

Старший член произведения данных многочленов равен произведению их старших членов Преобразование выражений что это

Далее, в произведение могут входить члены, содержащие Преобразование выражений что этои свободный член.

Члены, содержащие Преобразование выражений что этополучаются по следующей схеме:

Преобразование выражений что это

Здесь соединены скобками все те слагаемые данных многочленов, при умножении которых получаются члены, содержащие Преобразование выражений что этоСледовательно, коэффициент Преобразование выражений что этов произведении равен 1 • 5 + 3 • 1 =8.

Члены, содержащие Преобразование выражений что этополучаются так:

Преобразование выражений что это

Следовательно, коэффициент при Преобразование выражений что эторавен равенПреобразование выражений что это

Коэффициент при Преобразование выражений что этов произведении

Преобразование выражений что это

Итак, произведение равно Преобразование выражений что это

Ответ. Преобразование выражений что это

Конечно, при пользовании этим приемом не нужно переписывать произведение Преобразование выражений что этонесколько раз, как мы это сделали при объяснении. Нужно прямо выписывать члены результата умножения один за другим, каждый раз сосредоточивая внимание на том, какие члены нужна перемножить, для того чтобы получить х в данной степени, и выполняя все необходимые вычисления в уме.

В особенно простых случаях описанный прием можно применять и при умножении нескольких многочленов.

Пример:

Преобразование выражений что это

В последнем примере мы сразу записали результат умножения, воспользовавшись общим правилом умножения многочленов (§ 10): чтобы умножить многочлены, нужно составить всеми возможными способами произведения их членов, взятых по одному из каждого множителя, и сложить полученные результаты. Старший член произведения равен произведению старших членов множителей и, следовательно, равен Преобразование выражений что это. Далее смотрим, какие члены нужно умножить, чтобы получить одночлены, содержащие Преобразование выражений что это. Очевидно, что для этого- нужно из двух скобок взять первое слагаемое, а из третьей — второе и сделать этот выбор всеми возможными способами. Следовательно, коэффициент при Преобразование выражений что эторавен 2 + 3 + 5 = 10.

Далее, х в первой степени получается при умножении первого слагаемого из одной скобки на вторые слагаемые из остальных двух. Поэтому коэффициент при x равен Преобразование выражений что этоНаконец свободный член равен просто произведению свободных членов Преобразование выражений что это

Сокращенное умножение по формулам

При умножении многочленов часто повторяются некоторые типичные случаи, которые следует запомнить.

Формула 1.Преобразование выражений что этот. е. квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе, плюс квадрат второго числа.

Доказательство:

Преобразование выражений что это

Формула 2. Преобразование выражений что этот. е. квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого числа на второе, плюс квадрат второго числа.

Доказательство:

Преобразование выражений что это

Формула 3. Преобразование выражений что этот. е. произведение
суммы двух чисел на их разность равно разности квадратов этих чисел.

Доказательство:

Преобразование выражений что это

Рассмотрим несколько примеров на применение этих формул к умножению многочленов. При пользовании формулами следует помнить, что А и В в формулах обозначают любые числа, и в частности, эти числа могут быть выражены в виде одночленов или многочленов.

Пример:

Преобразование выражений что этоЗдесь можно применить формулу 2, принимая Преобразование выражений что этоПрименяя эту формулу, получим

Преобразование выражений что это

Выписывать промежуточный результат с такой подробностью нет необходимости. По мере развития навыков в пользовании формулами нужно привыкать к возможно более краткой записи. Преобразование выражений что это

Пример:

Преобразование выражений что этоПрименяя формулу 1, положивПреобразование выражений что этоПреобразование выражений что этополучим Преобразование выражений что это

Пример:

Преобразование выражений что этоЗдесь применена формула 3 при А = 5х, В = 4у.

Рассмотрим теперь более сложный пример.

Пример:

(За + 2b + 4c — d) (За+ 2b — 4с +d). Здесь прежде всего можно применить формулу 3, полагая А = 3а+2b;В = 4с — d. Сделав это, получим

Преобразование выражений что это

А теперь можно применить формулы 1 и 2 для дальнейших преобразований. Получим

Преобразование выражений что это

Несколько реже, но все же достаточно часто приходится пользоваться еще следующими формулами.

Формула4. Преобразование выражений что этот.е. куб суммы двух чисел равен кубу первого числа, плюс утроенное произведение квадрата первого числа на второе, плюс утроенное произведение первого числа на квадрат второго, плюс куб второго числа.

Формула 5. Преобразование выражений что этот. е. куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе, плюс утроенное произведение первого числа на квадрат второго, минус куб второго числа.

Преобразование выражений что это

Доказательства этих формул необходимо произвести самим учащимся.

Формула 6 читается так: произведение суммы двух чисел на неполный квадрат их разности равно сумме кубов этих чисел. Здесь «неполным квадратом разности» чисел А и В названо выражение Преобразование выражений что этоНазвание это не точное, но образное и связано с внешним сходством выражения Преобразование выражений что этос выражением Преобразование выражений что этоявляющимся квадратом разности чисел A и В.

Таким же образом выражение Преобразование выражений что этоучаствующее в формуле 7, называется неполным квадратом суммы чисел A и В на основании внешнего сходства с выражением Преобразование выражений что это

Так что формула 7 читается так: произведение разности двух чисел на неполный квадрат их суммы равно разности кубов этих чисел.

Наконец формула 8 читается так: квадрат суммы нескольких чисел равен сумме их квадратов плюс всевозможные удвоенные произведения этих чисел, взятых по два.

Рассмотрим несколько примеров на. применение формул 4—8.

Пример:

Преобразование выражений что это

Пример:

Преобразование выражений что это

Пример:

Преобразование выражений что это

Здесь результат пишется сразу, как только обнаружено, что второй множитель Преобразование выражений что этоесть «неполный квадрат разности» чисел 5x и .

Пример:

Преобразование выражений что это

Здесь применена формула 8.

Пример:

Преобразование выражений что это

Решение:

Решим этот пример тремя способами:

Преобразование выражений что это

Здесь мы сначала преобразовали Преобразование выражений что этокак квадрат суммы, а затем умножили многочлены по общему правилу умножения многочлена на многочлен.

Преобразование выражений что это

Здесь мы разбили квадрат суммы Преобразование выражений что этона «неполный квадрат суммы» Преобразование выражений что этои одночлен 2ab, а затем воспользовались распределительным законом и формулой 7.

Способ 3.

Преобразование выражений что это

В заключение обзора формул сделаем следующее, общее замечание. Всякое преобразование произведения многочленов, которое совершается при помощи формул 1—8, может быть проведено и без применения формул, посредством общих правил умножения многочлена на многочлен. Формулы 1—8 позволяют только в некоторых случаях упростить и сократить вычисления. Поэтому, формулы 1—8 называют формулами сокращенного умножения.

Применение формул сокращенного умножения к устным вычислениям

Формулы сокращенного умножения применяются не только к умножению многочлена на многочлен. Они с успехом могут быть применены к многим вычислениям над числами. Рассмотрим несколько таких примеров.

Пример:

Решение:

Достаточно заметить, что 19 = 20 — 1 и 21 = 20+1, чтобы, воспользовавшись формулой 3, сразу сказать результат. Именно, Преобразование выражений что это

Пример:

Преобразование выражений что этоКак получен этот результат?

Решение:

При помощи формулы 1

Преобразование выражений что это

Пример:

Преобразование выражений что это

Пример:

Преобразование выражений что это

Таким образом, формулы сокращенного умножения удобно применять:

Покажем некоторые другие применения. Часто приходится возводить в квадрат числа, очень близкие к единице, причем результат нужно знать приближенно с тем же числом знаков после запятой, с которым дано число, возводимое в квадрат. Например,

Преобразование выражений что это

Обобщая эти два примера, приходим к следующему выводу. Если а есть очень маленькое по абсолютной величине число, положительное или отрицательное, то

Преобразование выражений что это

Точное равенство имеет вид Преобразование выражений что этоНо число Преобразование выражений что это

меньше абсолютной величины а во столько же раз, во сколько абсолютная величина а меньше 1. Поэтому, если а очень мало по абсолютной величине, то Преобразование выражений что этобудет исчезающе малым по сравнению с остальными слагаемыми.

Таким же образом из формулы для куба суммы мы получим приближенную формулу для куба числа, близкого к единице. Именно,

Преобразование выражений что это

Посмотрим на примере, насколько эта формула точна.

Пример:

Преобразование выражений что это

Последние два слагаемых исчезающе малы по сравнению с первыми, так что действительно Преобразование выражений что эточто соответствует указанной приближенной формуле.

Наконец,, формула 3 дает при малых а следующий результат:

Преобразование выражений что это

Преобразование выражений что это

Например, Преобразование выражений что это

Некоторые выводы

Мы условились рассматривать одночлены как частный случай многочленов, именно как многочлены, составленные из одного члена. Воспользуемся этим соглашением и сделаем следующие выводы:

А из этих выводов непосредственно следует такая общая теорема:

Всякое целое алгебраическое выражение равно некоторому многочлену.

Или, что то же самое:

Всякое целое алгебраическое выражение может быть преобразовано к виду многочлена.

Действительно, целое алгебраическое выражение есть запись действий сложения, вычитания и умножения (в том числе и умножения равных множителей, т. е. возведения в степень) над числами, часть которых обозначена буквами. Как заданные числа, так и отдельные буквы представляют собой одночлены.

Произведя над ними одно за другим указанные действия, мы будем получать результаты в виде многочленов в силу сформулированных выше выводов. И, наконец, окончательный результат тоже будет иметь вид многочлена, что и требовалось доказать. Например,

Преобразование выражений что это

Заметим еще, что всякий многочлен равен некоторому
приведенному многочлену, т. е. многочлену, не содержащему подобных членов. Действительно, если многочлен содержит подобные члены, то их можно привести. В силу этого всякое целое алгебраическое выражение можно преобразовать к виду приведенного многочлена.

Цепочка тождественных преобразований называется алгебраической выкладкой. Таким образом, в настоящей главе даны правила проведения выкладки, посредством которой всякое целое алгебраическое выражение может быть преобразовано к виду приведенного многочлена.

Очевидно, что если два приведенных многочлена составлены из одинаковых одночленов, то они равны тождественно, т. е. их значения равны при всех численных значениях входящих в них букв. Верна также и обратная теорема:

Теорема о тождестве. Если два приведенных
многочлена равны тождественно, та они составлены из oдинаковых одночленов.

Доказательство теоремы о тождестве довольно сложно и выходит за рамки курса элементарной алгебры.

Эти две теоремы дают возможность ответить на такой вопрос. Пусть даны два целых алгебраических выражения. Равны они тождественно или нет? Для решения этого вопроса достаточно привести каждое из выражений к виду приведенного многочлена. Если при этом окажется, что полученные многочлены составлены из одинаковых одночленов, то данные выражения тождественно равны. Если же полученные многочлены окажутся различными, т. е. составленными из неодинаковых одночленов, то данные выражения не равны тождественно.

Пример:

Преобразование выражений что это

Решение:

Преобразование выражений что это

После преобразований выражение, находящееся в левой части равенства, оказалось равным Преобразование выражений что этои выражение, находящееся в правой части равенства, тоже равно Преобразование выражений что это. Тождество доказано.

Пример:

Рассмотрим два выражения

Преобразование выражений что это

Они имеют ряд одинаковых значений. Действительно, при х = 0 они оба равны нулю; при х = 1 каждое из них равно 4 • 2 = 8; при х = 2 первое равно 10 • 8 = 80, второе равно 16 • 5 = 80; при х = 3 первое равно 18 • 20 = 360,
второе 36 • 10 = 360. Может быть они равны тождественно? Для выяснения этого вопроса раскроем скобки:

Преобразование выражений что это

Таким образом, данные выражения преобразуются в различные приведенные многочлены, и следовательно, они не могут равняться тождественно. И действительно, они принимают различные значения, например при Преобразование выражений что этопервое выражение равно Преобразование выражений что этовторое — равно Преобразование выражений что это

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Преобразование выражений что это

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *