Предвидение предсказание о развитии чего либо основанное на определенных данных

Значение слова «прогноз»

Предвидение предсказание о развитии чего либо основанное на определенных данных

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

Прогно́з — это научно обоснованное суждение о возможных состояниях объекта в будущем и (или) об альтернативных путях и сроках их осуществления.

Прогнози́рование — это разработка прогноза; в узком значении — специальное научное исследование конкретных перспектив дальнейшего развития какого-либо процесса.

Необходимость прогноза обусловлена желанием знать события будущего, что невозможно на 100 % в принципе, исходя из статистических, вероятностных, эмпирических, философских принципов.

Точность любого прогноза обусловлена:

объёмом истинных (верифицированных) исходных данных и периодом их сбора;

объёмом неверифицированных исходных данных, периодом их сбора;

свойствами системы, объекта, подвергающихся прогнозированию;

методиками и подходами прогнозирования.

При возрастании совокупности факторов, влияющих на точность прогноза, он практически замещается рутинным расчётом с некоторой установившейся погрешностью.

Прогнозы делятся (условно)

по срокам: краткосрочные, среднесрочные, долгосрочные, дальнесрочные;

по масштабу: частные, местные, региональные, отраслевые, страновые, мировые (глобальные).

по ответственности (авторству): личные, на уровне предприятия (организации), на уровне государственных органов.

К основным методам прогнозирования относят:

экспертные оценки (например, метод Дельфи);

интуитивные (то есть выполненные без применения технических средств, экспромтом, «в уме» специалистом, имеющим опыт ранее применяемых научных методов в данном типе прогнозов).

↑ Светуньков И.С., Светуньков С.Г. Методы социально-экономического прогнозирования. Том 1. Теория и методология. — 1. — Москва: Юрайт, 2015. — С. 30. — 351 с. — ISBN 978-5-9916-4903-2, 978-5-9916-4905-6.

ПРОГНО’З, а, м. [греч. prognōsis — предузнавание] (книжн.). Предсказание о развитии и исходе каких-н. событий, явлений на основании имеющихся данных. П. политического положения. П. погоды. || Предсказание об исходе болезни, основанное на учете всех данных о ее течении (мед.). Благоприятный п. Неутешительный п.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

прогно́з

1. книжн. предсказание, суждение о дальнейшем течении, развитии чего-либо на основании имеющихся данных ◆ Прогнозы специалистов по поводу динамики цен на страховые услуги также неоднозначны. Л. А. Орланюк-Малицкая, «Страховые компании в корпоративном секторе экономики // «Финансы и кредит» (цитата из НКРЯ)

Фразеологизмы и устойчивые сочетания

Делаем Карту слов лучше вместе

Предвидение предсказание о развитии чего либо основанное на определенных данныхПривет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: бомбочка — это что-то нейтральное, положительное или отрицательное?

Источник

Словари

103 Предвидение предсказание о развитии чего либо основанное на определенных данныхпрогноз

Предвидение развития и исхода каких-либо событий, явлений на основании имеющихся данных.

|| Предсказание об исходе болезни, основанное на учете всех данных о ее течении (мед.). Благоприятный прогноз. Неутешительный прогноз.

Предсказание, суждение о дальнейшем течении, развитии чего-л. (событий, явлений и т. д.) на основании имеющихся различных данных.

Вскоре Припотень получил из Москвы последний прогноз; ледоход ожидается послезавтра. Галактионов и Аграновский, Утро великой стройки.

Научные прогнозы на большие отрезки времени особенно нужны для рационального размещения производительных сил. А. Румянцев, Проблемы современной науки об обществе.

Врачебное предсказание дальнейшего течения и исхода болезни, основанное на учете всех данных о ней.

Это подергивание [в ногах больной] было указанием на благоприятное действие лечения и позволило мне поставить хороший прогноз. Гамалея, Воспоминания.

Но, видимо, это не всем ясно, потому что то и дело приходится слышать: прогноз на будущее. Тем, кому такое выражение не режет слух, зададим вопрос: а бывает прогноз на прошлое? Не нуждается это слово ни в каких дополнительных разъяснениях; прогноз в известном смысле слово самодостаточное.

Избавляйтесь от излишеств, они не только не украшают язык, но и свидетельствуют о пробелах в образовании.

прогно́з, прогно́зы, прогно́за, прогно́зов, прогно́зу, прогно́зам, прогно́зом, прогно́зами, прогно́зе, прогно́зах

сущ., кол-во синонимов: 14

предсказание, пророчество, прорицание, сценарий, предсказывание, мониторинг, предвидение

Syn: предсказание, пророчество (усил.), прорицание

дать прогноз => действие

делать прогнозы => действие

прогноз подготовить => существование / создание

прогноз предназначить => модальность, планирование

сделать прогноз => действие

— Научно обоснованные предсказания, предположения о дальнейшем ходе событий.

— Мысленное забегание вперёд.

— Заключение о предстоящем развитии и исходе.

— Российский искусственный спутник.

сущ., кол-во синонимов: 1

сущ., кол-во синонимов: 2

прил., кол-во синонимов: 3

прил., кол-во синонимов: 1

Метод исследования, представляющий собой научное предсказание хода и результатов каких-л. событий, мероприятий, процессов, выработку вероятностного суждения о будущем, о перспективах развития какого-л. явления.

Действие по знач. глаг. прогнозировать.

Прогнозирование погоды. Прогнозирование научно-технического развития. Комплексное прогнозирование.

прогнози́рование, прогнози́рования, прогнози́рований, прогнози́рованию, прогнози́рованиям, прогнози́рованием, прогнози́рованиями, прогнози́ровании, прогнози́рованиях

Источник

Значение слова «предвидение»

Предвидение предсказание о развитии чего либо основанное на определенных данных

1. Действие и состояние по знач. глаг. предвидеть. Предвидение событий.От рощи, от речной излуки Не отвести порою глаз. О, как в предвиденье разлуки Взор обостряется у нас! Шефнер, С годами. || Способность, умение предвидеть. [Комиссар:] Ну, как — выдержит полк испытание? [Командир:] К сожалению, даром предвидения не обладаю, Вишневский, Оптимистическая трагедия. Ватутин, опытный генерал, обладал творческим воображением — полководческим предвидением событий. Брагин, Ватутин.

2. То, что предвидено, предположение. — Что я говорил?! — крикнул он в трубку. В этом восклицании слились воедино и торжество от сознания сбывшегося предвидения, и тревога в связи с новой опасностью. Чаковский, Блокада.

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

Предвидение возникло из донаучных форм — пророчеств и предсказаний, известных ещё в древности. С развитием науки в XV—XVII вв. стало появляться научное предвидение, основой которого является научный метод, определяющий цепочку логически взаимосвязанных причинно-следственных связей, из которых можно сделать определённый вывод относительно будущего.

Научное предвидение основывается на выявлении закономерностей развития явления или события, когда известны причины его зарождения, формы функционирования и ход развития. Достаточно локализованное по времени предвидение, основанное на достаточно полной информации обычно называется предсказанием, например такие предсказания делались относительно свойств ещё не открытых химических элементов, на основе периодического закона. В случаях большого временного периода, при недостатке исходных данных или большой сложности системы используется вероятностно-статистический, а не детерминистический метод предвидения. Детерминистические методы обычно применяются в таких науках, как классическая физика, химия, механика, ряд разделов астрономии и т. п. Вероятностно-статистические методы прогнозирования для научного предвидения используются в таких областях, как квантовая физика, экономика, политика, психология и др., для предсказания явлений в сложных системах, подвергающихся воздействию многочисленных факторов.

ПРЕДВИ’ДЕНИЕ, я, ср. (книжн.). Способность, уменье предвидеть будущее, предугадать то, что должно произойти, наступить. Известно, что это революционное предвидение Ленина сбылось впоследствии с невиданной точностью. Сталин (о Великой Октябрьской социалистической революции). П. на основе точного знания. Обладать даром предвидения событий. Поступите решительно в предвидении дальнейших событий.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

предви́дение

1. действие по значению гл. предвидеть

2. книжн. способность, умение предвидеть будущее, предугадать то, что должно произойти, наступить ◆ На первый взгляд физическое объяснение и обоснование такого явления как ясновидение, то есть предвидение (точное предсказание) будущих, ещё не состоявшихся событий ― неосуществимо в принципе. В. Н. Комаров, «Тайны пространства и времени», 2000 г. (цитата из НКРЯ)

Делаем Карту слов лучше вместе

Предвидение предсказание о развитии чего либо основанное на определенных данныхПривет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: национал-социалисты — это что-то нейтральное, положительное или отрицательное?

Источник

Предвидение

Предвидение возникло из донаучных форм — пророчеств и предсказаний, известных ещё в древности. С развитием науки в XV—XVII вв. стало появляться научное предвидение, основой которого является научный метод, определяющий цепочку логически взаимосвязанных причинно-следственных связей, из которых можно сделать определённый вывод относительно будущего.

Научное предвидение основывается на выявлении закономерностей развития явления или события, когда известны причины его зарождения, формы функционирования и ход развития. Достаточно локализованное по времени предвидение, основанное на достаточно полной информации обычно называется предсказанием, например такие предсказания делались относительно свойств ещё не открытых химических элементов, на основе периодического закона. В случаях большого временного периода, при недостатке исходных данных или большой сложности системы используется вероятностно-статистический, а не детерминистический метод предвидения. Детерминистические методы обычно применяются в таких науках, как классическая физика, химия, механика, ряд разделов астрономии и т. п. Вероятностно-статистические методы прогнозирования для научного предвидения используются в таких областях, как квантовая физика, экономика, политика, психология и др., для предсказания явлений в сложных системах, подвергающихся воздействию многочисленных факторов.

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Контринтуитивное высказывание — такое высказывание, которое не кажется истинным при его оценке на основе интуиции, здравого смысла или эмоций.

Источник

Прогноз

Прогноз (от греч. πρόγνωσις — предвидение, предсказание) — предсказание будущего с помощью научных методов, а также сам результат предсказания.

К основным методам прогнозирования относятся

Содержание

Основные понятия прогностики

Прогностика — научная дисциплина, изучающая общие принципы и методы прогнозирования развития объектов любой природы, закономерности процесса разработки прогнозов. Как наука прогностика сформировалась в 70 — 80 годы ХХ столетия. Кроме понятия «прогностика», в литературе используют термин футурология. Как любая наука прогностика имеет набор своих терминов, употребляемых для обозначения определенных понятий. Определения понятий прогностики были зафиксированы в 1978 году.

Прогноз — обоснованное суждение о возможном состоянии объекта в будущем или альтернативных путях и сроках достижения этих состояний.

Прогнозирование — процесс разработки прогноза. Этап прогнозирования — часть процесса разработки прогнозов, характеризующаяся своими задачами, методами и результатами. Деление на этапы связано со спецификой построения систематизированного описания объекта прогнозирования, сбора данных, с построением модели, верификацией прогноза.

Прием прогнозирования — одна или несколько математических или логических операций, направленных на получение конкретного результата в процессе разработки прогноза. В качестве приема могут выступать сглаживание динамического ряда, определение компетентности эксперта, вычисление средневзвешенного значения оценок экспертов и т. д.

Модель прогнозирования — модель объекта прогнозирования, исследование которой позволяет получить информацию о возможных состояниях объекта прогнозирования в будущем и (или) путях и сроках их осуществления.

Метод прогнозирования — способ исследования объекта прогнозирования, направленный на разработку прогноза. Методы прогнозирования являются основанием для методик прогнозирования.

Методика прогнозирования — совокупность специальных правил и приемов (одного или нескольких методов) разработки прогнозов.

Прогнозирующая система — система методов и средств их реализации, функционирующая в соответствии с основными принципами прогнозирования. Средствами реализации являются экспертная группа, совокупность программ и т. д. Прогнозирующие системы могут быть автоматизированными и неавтоматизированными.

Прогнозный вариант — один из прогнозов, составляющих группу возможных прогнозов.

Объект прогнозирования — процесс, система, или явление, о состоянии которого даётся прогноз.

Характеристика объекта прогнозирования — качественное или количественное отражение какого-либо свойства объекта прогнозирования.

Переменная объекта прогнозирования — количественная характеристика объекта прогнозирования, которая является или принимается за изменяемую в течение периода основания и (или) периода упреждения прогноза.

Сложность объекта прогнозирования — характеристика объекта прогнозирования, определяющая разнообразие его элементов, свойств и отношений.

Период основания прогноза — промежуток времени, за который используют информацию для разработки прогноза. Этот промежуток времени называют также периодом предыстории.

Период упреждения прогноза — промежуток времени, на который разрабатывается прогноз.

Прогнозный горизонт — максимально возможный период упреждения прогноза заданной точности.

Точность прогноза — оценка доверительного интервала прогноза для заданной вероятности его осуществления.

Достоверность прогноза — оценка вероятности осуществления прогноза для заданного доверительного интервала.

Ошибка прогноза — апостериорная величина отклонения прогноза от действительного состояния объекта.

Источник ошибки прогноза — фактор, способный привести к появлению ошибки прогноза. Различают источники регулярных и нерегулярных ошибок.

Верификация прогноза — оценка достоверности и точности или обоснованности прогноза.

Эксперт — квалифицированный специалист по конкретной проблеме, привлекаемый для вынесения оценки по поставленной задаче прогноза.

При разработке социальных прогнозов в ряде случаев производится выявление мнения представителей различных групп населения, условно приравниваемых к экспертам.

Компетентность эксперта — способность эксперта выносить на базе профессиональных знаний, интуиции и опыта достоверные суждения об объекте прогнозирования. Количественная мера компетентности эксперта называется коэффициентом компетентности.

Экспертная группа — коллектив экспертов, сформированный по определенным правилам для решения поставленной задачи прогноза. Частным случаем экспертной группы выступает экспертная комиссия.

Компетентность группы экспертов — способность экспертной группы выносить суждения об объекте прогнозирования, адекватные мнению генеральной совокупности экспертов. Компетентность экспертной группы определяется различными методиками.

Экспертная оценка — суждение эксперта или экспертной группы относительно поставленной задачи прогноза. В первом случае используется термин «индивидуальная экспертная оценка», во втором — «коллективная экспертная оценка».

Статистические методы прогнозирования

Статистические методы прогнозирования — научная и учебная дисциплина, к основным задачам которой относятся разработка, изучение и применение современных математико-статистических методов прогнозирования на основе объективных данных; развитие теории и практики вероятностно-статистического моделирования экспертных методов прогнозирования; методов прогнозирования в условиях риска и комбинированных методов прогнозирования с использованием совместно экономико-математических и эконометрических (как математико-статистических, так и экспертных) моделей. Научной базой статистических методов прогнозирования является прикладная статистика и теория принятия решений.

Простейшие методы восстановления используемых для прогнозирования зависимостей исходят из заданного временного ряда, т. е. функции, определённой в конечном числе точек на оси времени. Временной ряд при этом часто рассматривается в рамках той или иной вероятностной модели, вводятся другие факторы (независимые переменные), помимо времени, например, объем денежной массы. Временной ряд может быть многомерным. Основные решаемые задачи — интерполяция и экстраполяция. Метод наименьших квадратов в простейшем случае (линейная функция от одного фактора) был разработан К. Гауссом в 1794—1795 гг. Могут оказаться полезными предварительные преобразования переменных, например, логарифмирование. Наиболее часто используется метод наименьших квадратов при нескольких факторах. Метод наименьших модулей, сплайны и другие методы экстраполяции применяются реже, хотя их статистические свойства зачастую лучше.

Оценивание точности прогноза (в частности, с помощью доверительных интервалов) — необходимая часть процедуры прогнозирования. Обычно используют вероятностно-статистические модели восстановления зависимости, например, строят наилучший прогноз по методу максимального правдоподобия. Разработаны параметрические (обычно на основе модели нормальных ошибок) и непараметрические оценки точности прогноза и доверительные границы для него (на основе Центральной Предельной Теоремы теории вероятностей). Применяются также эвристические приемы, не основанные на вероятностно-статистической теории: метод скользящих средних, метод экспоненциального сглаживания.

Многомерная регрессия, в том числе с использованием непараметрических оценок плотности распределения — основной на настоящий момент статистический аппарат прогнозирования. Нереалистическое предположение о нормальности погрешностей измерений и отклонений от линии (поверхности) регрессии использовать не обязательно; однако для отказа от предположения нормальности необходимо опереться на иной математический аппарат, основанный на многомерной Центральной Предельной Теореме теории вероятностей, технологии линеаризации и наследования сходимости [4]. Он позволяет проводить точечное и интервальное оценивание параметров, проверять значимость их отличия от 0 в непараметрической постановке, строить доверительные границы для прогноза.

Весьма важна проблема проверки адекватности модели, а также проблема отбора факторов. Априорный список факторов, оказывающих влияние на отклик, обычно весьма обширен, желательно его сократить, и крупное направление современных исследований посвящено методам отбора «информативного множества признаков». Однако эта проблема пока еще окончательно не решена. Проявляются необычные эффекты. Так, установлено, что обычно используемые оценки степени полинома имеют в асимптотике геометрическое распределение [1, 3]. Перспективны непараметрические методы оценивания плотности вероятности и их применения для восстановления регрессионной зависимости произвольного вида. Наиболее общие результаты в этой области получены с помощью подходов статистики нечисловых данных.

К современным статистическим методам прогнозирования относятся также модели авторегрессии, модель Бокса-Дженкинса, системы эконометрических уравнений, основанные как на параметрических, так и на непараметрических подходах.

Для установления возможности применения асимптотических результатов при конечных (т. н. «малых») объемах выборок полезны компьютерные статистические технологии. Они позволяют также строить различные имитационные модели. Отметим полезность методов размножения данных (бутстреп-методов). Системы прогнозирования с интенсивным использованием компьютеров объединяют различные методы прогнозирования в рамках единого автоматизированного рабочего места прогнозиста.

Прогнозирование на основе данных, имеющих нечисловую природу, в частности, прогнозирование качественных признаков основано на результатах статистики нечисловых данных. Весьма перспективными для прогнозирования представляются регрессионный анализ на основе интервальных данных, включающий, в частности, определение и расчет нотны и рационального объема выборки, а также регрессионный анализ нечетких данных, разработанный в [5]. Общая постановка [1] регрессионного анализа в рамках статистики нечисловых данных и ее частные случаи — дисперсионный анализ и дискриминантный анализ (распознавание образов с учителем), давая единый подход к формально различным методам, полезна при программной реализации современных статистических методов прогнозирования.

Основными процедурами обработки прогностических экспертных оценок являются проверка согласованности, кластер-анализ и нахождение группового мнения. Проверка согласованности мнений экспертов, выраженных ранжировками, проводится с помощью коэффициентов ранговой корреляции Кендалла и Спирмена, коэффициента ранговой конкордации Кендалла и Бэбингтона Смита. Используются параметрические модели парных сравнений — Терстоуна, Бредли-Терри-Льюса — и непараметрические модели теории люсианов [1, 3]. Полезна процедура согласования ранжировок и классификаций путем построения согласующих бинарных отношений. При отсутствии согласованности разбиение мнений экспертов на группы сходных между собой проводят методом ближайшего соседа или другими методами кластерного анализа (автоматического построения классификаций, распознавания образов без учителя). Классификация люсианов осуществляется на основе вероятностно-статистической модели.

Используют различные методы построения итогового мнения комиссии экспертов. Своей простотой выделяются методы средних арифметических и медиан рангов. Компьютерное моделирование [3] позволило установить ряд свойств медианы Кемени, часто рекомендуемой для использования в качестве итогового (обобщенного, среднего) мнения комиссии экспертов. Интерпретация закона больших чисел для нечисловых данных в терминах теории экспертного опроса такова: итоговое мнение устойчиво, то есть мало меняется при изменении состава экспертной комиссии, и при росте числа экспертов приближается к «истине». При этом в соответствии с принятым в [4] подходом предполагается, что ответы экспертов можно рассматривать как результаты измерений с ошибками, все они — независимые одинаково распределенные случайные элементы, вероятность принятия определенного значения убывает по мере удаления от некоторого центра — «истины», а общее число экспертов достаточно велико.

Многочисленны примеры ситуаций, связанных с социальными, технологическими, экономическими, политическими, экологическими и другими рисками. Именно в таких ситуациях обычно и необходимо прогнозирование. Известны различные виды критериев, используемых в теории принятия решений [2] в условиях неопределенности (риска). Из-за противоречивости решений, получаемых по различным критериям, очевидна необходимость применения оценок экспертов.

В конкретных задачах прогнозирования необходимо провести классификацию рисков, поставить задачу оценивания конкретного риска, провести структуризацию риска, в частности, построить деревья причин (в другой терминологии, деревья отказов) и деревья последствий (деревья событий). Центральной задачей является построение групповых и обобщенных показателей, например, показателей конкурентоспособности и качества. Риски необходимо учитывать при прогнозировании экономических последствий принимаемых решений, поведения потребителей и конкурентного окружения, внешнеэкономических условий и макроэкономического развития России, экологического состояния окружающей среды, безопасности технологий, экологической опасности промышленных и иных объектов.

Современные компьютерные технологии прогнозирования основаны на интерактивных статистических методах прогнозирования с использованием баз эконометрических данных, имитационных (в том числе на основе применения метода статистических испытаний) и экономико-математических динамических моделей, сочетающих экспертные, математико-статистические и моделирующие блоки.

Основные виды прогнозов

Относится к уровню технологического развития в прогнозируемой сфере, помогая проанализировать будущие веяния технологий.

Анализ будущего состояния экономических факторов, влияющих на развитие деятельности организации.

Прогнозирование факторов, влияющих на будущий спрос.

Предсказание возможных изменений и дальнейшей стратегии деятельности конкурентов

Прогноз изменения социальных установок людей, а также настроения общества, в целом.

Приложения (компьютерные) для прогнозирования

Для прогнозирования по временному ряду используют компьютерные программы — инструменты прогнозирования. Это позволяет автоматизировать большую часть операций при построении прогноза, а также позволяет избежать ошибок, связанных с вводом данных. Такие приложения могут быть как локальными (для использования на одном компьютере), так и интернет-приложениями (доступными в виде веб-сайта, например). В качестве локальных приложений следует выделить такие программы, как SPSS, Statistica, Forecast Expert.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *