представить десятичное число 50 в двоичном коде

Перевести число 50 из десятичной системы в двоичную

Задача: перевести число 50 из десятичной системы счисления в двоичную

Для того, чтобы перевести число 50 из десятичной системы счисления в двоичную, необходимо осуществить последовательное деление на 2, то тех пор пока остаток не будет меньше чем 2.

502
50252
024122
11262
0632
021
1

Полученные остатки записываем в обратном порядке, таким образом:

Подробнее о том, как переводить числа из десятичной системы в двоичную, смотрите здесь.

Источник

Перевод чисел из одной системы счисления в другую

Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.

Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816

Кратко об основных системах счисления

Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.

Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.

Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.

Перевод в десятичную систему счисления

Перевод из десятичной системы счисления в другие

Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.

Переведем число 37510 в восьмеричную систему:

Перевод из двоичной системы в восьмеричную

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Перевод из двоичной системы в шестнадцатеричную

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тетрада0000000100100011010001010110011110001001101010111100110111101111
Цифра0123456789ABCDEF

Перевод из восьмеричной системы в двоичную

Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.

Используем таблицу триад:

Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.

Перевод из шестнадцатеричной системы в двоичную

Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.

Используем таблицу тетрад:

Цифра0123456789ABCDEF
Тетрада0000000100100011010001010110011110001001101010111100110111101111

Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.

Перевод из восьмеричной системы в шестнадцатеричную и наоборот

Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.

Источник

Перевод чисел из одной системы счисления в другую онлайн

С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку «Перевести». Теоретическую часть и численные примеры смотрите ниже.

Предупреждение

Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

число6372
позиция3210

Тогда число 6372 можно представить в следующем виде:

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

число1287.923
позиция3210-1-2-3

Тогда число 1287.923 можно представить в виде:

В общем случае формулу можно представить в следующем виде:

В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
102816
0000
1111
21022
31133
410044
510155
611066
711177
81000108
91001119
10101012A
11101113B
12110014C
13110115D
14111016E
15111117F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

представить десятичное число 50 в двоичном кодепредставить десятичное число 50 в двоичном кодепредставить десятичное число 50 в двоичном кодепредставить десятичное число 50 в двоичном коде

Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

представить десятичное число 50 в двоичном кодепредставить десятичное число 50 в двоичном кодепредставить десятичное число 50 в двоичном кодепредставить десятичное число 50 в двоичном кодепредставить десятичное число 50 в двоичном коде

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Пример 4. Переведем число 159 из десятичной СС в двоичную СС:

1592
158792
178392
138192
11892
1842
1422
021
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:

Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.

6158
608768
77298
481
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:

Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

1967316
19664122916
912167616
13644
12

Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x2
00.428
x2
00.856
x2
10.712
x2
10.424
x2
00.848
x2
10.696
x2
10.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0. 0011011.

Следовательно можно записать:

Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x2
00.25
x2
00.5
x2
10.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x16
30.424
x16
60.784
x16
120.544
x16
80.704
x16
110.264
x16
40.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x8
40.096
x8
00.768
x8
60.144
x8
10.152
x8
10.216
x8
10.728

Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:

Источник

Перевести число 625.50 из десятичной системы в двоичную

Задача: перевести число 625.50 из десятичной системы счисления в двоичную.

Для того, чтобы перевести число 625.50 из десятичной системы счисления в двоичную, необходимо перевести вначале целую часть, а затем дробную. Таким образом потребуется:

1. Для того, чтобы перевести число 625 из десятичной системы счисления в двоичную, необходимо осуществить последовательное деление на 2, до тех пор пока остаток не будет меньше чем 2.

6252
6243122
13121562
0156782
078392
038192
11892
1842
1422
021
0

Полученные остатки записываем в обратном порядке, таким образом:

2. Для перевода десятичной дроби 0.50 в двоичную систему, необходимо выполнить последовательное умножение дроби на 2, до тех пор, пока дробная часть не станет равной 0 или пока не будет достигнута заданная точность вычисления. Получаем:

Ответом станет прямая последовательность целых частей произведения. Т.е.

3. Осталось соединить переведенные части, таким образом:

Подробнее о том, как переводить числа из десятичной системы в двоичную, смотрите здесь.

Источник

Перевести число 50.10 из восьмеричной системы в двоичную

Задача: перевести число 50.10 из восьмеричной в двоичную систему счисления.

Для перевода 50.10 из восьмеричной в двоичную систему счисления, воспользуемся следующим алгоритмом:

1. Для перевода числа 50.10 в десятичную систему воспользуемся формулой:

2. Полученное число 40.125 переведем из десятичной системы счисления в двоичную. Т.к. полученное число содержит дробную часть, нам потребуется перевести вначале целую часть, а затем дробную. Таким образом необходимо:

2.1 Для того, чтобы перевести число 40 из десятичной системы счисления в двоичную, необходимо осуществить последовательное деление на 2, до тех пор пока остаток не будет меньше чем 2.

402
40202
020102
01052
0422
121
0

Полученные остатки записываем в обратном порядке, таким образом:

2.2 Для перевода десятичной дроби 0.125 в двоичную систему, необходимо выполнить последовательное умножение дроби на 2, до тех пор, пока дробная часть не станет равной 0 или пока не будет достигнута заданная точность вычисления. Получаем:

0.125 ∙ 2 = 0.25 (0)
0.25 ∙ 2 = 0.5 (0)
0.5 ∙ 2 = 1 (1)

Ответом станет прямая последовательность целых частей произведения. Т.е.

2.3. Осталось соединить переведенные части, таким образом:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *