Предикат что это в логике
Предикат
Что такое предикат
Предикат (с латинского praedicatum означает «заявленное, упомянутое, сказанное») — понятие в логике, которым называют утверждение, высказанное о том или ином субъекте. Субъект высказывания — это та вещь или явление, о котором или которой делается утверждение.
Одна из важнейших особенности логики предикатов в том, что все общие имена (такие, как «цветок», «деревня»), знаки свойств («розовый», «большая») и знаки отношений («красивее», «роднее») рассматриваются как относящиеся к одной категории знаков: категории предикаторов (иначе говоря, предметно-истинных функторов).
Предикаторы, в свою очередь, показывают функции, у которых вероятные аргументы — это универсальные в рассмотрении объекты, а значения — истинные оценки. В классической логике они называются «истина» и «ложь». К примеру, возьмем предикатор «человек», который представляет функцию, определяемую как истина каждым отдельным человеком, а каждым отличным от человека существом — как ложь.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Другой пример : функция, которая соответствует предикатору «больше», сопоставляет истину каждой паре объектов или субъектов, один из которых больше. Например, такая пара, как «слон, мышь». Но всем остальным парам, по типу «мышь, слон» и «мышь, мышь», такая функци будет сопоставлять оценку «ложь».
Предикаторы могут быть:
Логические операции над предикатами
Так как предикаты принимают два значения, «истина» и «ложь» (1 и 0), к ним можно применить все операции алгебры логики.
Представим, что в неком множестве N определены два предиката P(x) и Q(x). Рассмотрим все операции с ними по-отдельности.
Область истины в этом случае — объединение областей истинности обоих утверждений.
Область истины здесь — дополнение множества истинности утверждения P(x) до множества N, иначе говоря \(I_overline
=N\I_P=CI_P.\)
Кванторные операции над предикатами
Прежде чем изучить квантовые операции, нужно разобраться, что из себя представляет сам квантор.
Квантор — общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих высказывание.
Кванторы впервые были определены немецким математиком Готлобом Фреге. Он упомянул их в своей работе «Begriffsschrift» («Исчисление понятий», 1879 года). Однако сам термин был изобретен английским логиком Чарльзом Пирсом в 1885 году. Вместе со словом «квантор» он ввел также и термин «квантификация», который означает измерение качеств признаков.
Обозначение кванторов
Символическое обозначение кванторов придумал итальянский математик Дж. Пеано в 90-е годы XIX века. Выглядят эти символы так:
\(\forall\) — «для любого», «для каждого», «для всех»;
\(\exists\) — «существует», «найдётся».
! – «единственный»;
: – «такой, что»;
| – «такой, что».
Знак «:» обычно используется в формулировках определений или теорем, которые записываются с помощью кванторов. Знак «|» применяется в определениях множеств.
Виды кванторов
Квантор общности \(\forall\)
Оно истинно только в том случае, когда \(P(x)\) — тождественно истинен. В ином случае данное высказывание ложно.
Оно истинно только в том случае, когда одноместный предикат \(P(x, a_2, …, a_n)\) на множестве \(N_1\) тождественно истинен. В противном случае оно ложно.
Квантор существования \( \exists\)
Примеры применения
Использование предикатов
Использование кванторов
Пусть предикат «x кратно 5». Тогда с помощью квантора общности можно записать ложные высказывания:
В этом случае решение будет выглядеть так:
Чтобы обозначить истинные высказывания, используем квантор существования:
В записи оно будет выглядеть так:
На множестве x простых чисел существует предикат: «Простое число является нечетным». Если мы поставим перед предикатом слово «любое», то получим ложное высказывание «Любое простое число является нечетным». Если мы поставим перед предикатом слово «существует», то получим истинное высказывание «Существует простое число, которое является нечетным».
Так, предикат можно превратить в высказывание, если поставить перед ним квантор.
Лекция 3. Логика предикатов. Логические операции над предикатами
3.1. Понятие предиката
«Предикат» с английского переводится как сказуемое. Формально предикатом называется функция, аргументами которой могут быть произвольные объекты из некоторого множества, а значения функции «истина» или «ложь». Предикат можно рассматривать как расширение понятия высказывания.
Средства, предоставляемые логикой высказываний, оказываются недостаточными для анализа многих математических рассуждений. В алгебре логики не рассматриваются ни структура высказываний, ни, тем более, их содержание. В то же время и в науке, и в практике используются заключения, существенным образом зависящие как от структуры, так и от содержания используемых в них высказываний.
3.2. Логика предикатов
Логика предикатов, как и традиционная формальная логика, расчленяет элементарное высказывание на субъект (буквально – подлежащее, хотя оно может играть и роль дополнения) и предикат(буквально – сказуемое, хотя оно может играть и роль определения).
Субъект – это то, о чем что-то утверждается в высказывании, а предикат – это то, что утверждается о субъекте.
Логика предикатов – это расширение логики высказываний за счет использования предикатов в роли логических функций.
Например, в высказывании «7 – простое число», «7» – субъект, «простое число» – предикат. Это высказывание утверждает, что «7» обладает свойством «быть простым числом».
Если в рассмотренном примере заменить конкретное число 7 переменной х из множества натуральных чисел, то получим высказывательную форму «х – простое число». При одних значениях х (например, х = 13, х = 17) эта форма дает истинные высказывания, а при других значениях х (например, х = 10, х = 18) эта форма дает ложные высказывания.
Определение 1. Одноместным предикатом Р(х) называется всякая функция одного переменного, в которой аргумент x пробегает значения из некоторого множества M, а функция при этом принимает одно из двух значений: истина или ложь.
Множество M, на котором задан предикат, называется областью определения предиката.
Множество , на котором предикат принимает только истинные значения, называется областью истинности предиката Р(х).
Определение 2. Предикат Р(х), определённый на множестве M, называется тождественно истинным (тождественно ложным), если
Определение 3. Двухместным предикатом P(x, у) называется функция двух переменных х и у, определённая на множестве М=М1×М2 и принимающая значения из множества <1,0>.
В качестве примеров двухместных предикатов можно назвать предикаты: Q(x, у) – «х = у» предикат равенства, определённый на множестве R 2 =R×R; F(x, у) – «х || у» прямая х параллельна прямой у, определённый на множестве прямых, лежащих на данной плоскости.
Говорят, что предикат Р(х) является следствием предиката Q(х) , если ; и предикаты Р(х) и Q (х) равносильны , если .
Пример 1. Среди следующих предложений выделить предикаты и для каждого из них указать область истинности:
Пусть на некотором множестве М определены два предиката Р(х) и Q(х).
Определение 4. Конъюнкциейдвух предикатов Р(х) и Q(х) называется новый предикат Р(х)&Q(х), который принимает значение «истина» при тех и только тех значениях , при которых каждый из предикатов Р(х) и Q(х) принимает значение «истина» и принимает значение «ложь» во всех остальных случаях. Очевидно, что областью истинности предиката Р(х)&Q(х) является общая часть областей истинности предикатов Р(х) и Q(х), т.е. пересечение .
Так, например, для предикатов Р(х): «х – четное число» и Q(х): « х кратно 3» конъюнкцией Р(х)&Q(х) является предикат «х – четное число и х кратно 3», то есть предикат «х делится на 6».
Определение 5. Дизъюнкцией двух предикатов Р(х) и Q(х) называется новый предикат , который принимает значение «ложь» при тех и только тех значениях , при которых каждый из предикатов принимает значение «ложь» и принимает значение «истина» во всех остальных случаях. Ясно, что областью истинности предиката является объединение областей истинности предикатов Р(х) и Q(х), то есть объединение .
Определение 6. Отрицаниемпредиката Р(х) называется новый предикат , который принимает значение «истина» при всех значениях , при которых предикат Р(х) принимает значение «ложь», и принимает значение «ложь» при тех значениях , при которых предикат Р(х) принимает значение «истина». Очевидно, что, .
Определение 7. Импликацией предикатов Р(х) и Q(х) называется новый предикат , который является ложным при тех и только тех значениях , при которых одновременно Р(х) принимает значение «истина», а Q(х) – значение «ложь» и принимает значение «истина» во всех остальных случаях.
Ясно, что при выполнении логических операций над предикатами к ним применимы и равносильности алгебры логики. Для детального изучения темы необходим курс «Дискретной математики».
Логика: предикатная, формальная и сентенциальная. Кванторы и возникновение информатики
1 | Введение
Логика, как эпистемологический инструмент, — исследующий знание как таковое, — изобретена независимо в трёх отдельных государствах: Греции (Аристотелем), Китае (до правления Цинь Шихуанди) и Индии. В последних двух государствах логика не распространилась настолько, чтобы получить полноценное развитие. В античной же Греции логика сформировалась в своих основах столь определённо, что дополнилась только через 2 тысячелетия.
Значительные изменения в греческую логику, помимо Буля, Моргана и Рассела, внёс Фреге — самая важная фигура основателей формальной семантики. Он разработал логику предикатов и 2 вида кванторов, попытавшись создать «логически совершенный язык» о котором мечтал Лейбниц. Значимой личностью является также Гёдель, который открыл знаменитые две теоремы о неполноте, описывающие невозможность объединения множества доказуемых утверждений со множеством истинных. Он утверждал, что доказательства математики зависят от начальных предположений, а не фундаментальной истины, из которой происходят ответы. Одна из главных идей его работ состоит в том, что ни один набор аксиом, — в том числе математических, — не способен доказать свою непротиворечивость.
На этом этапе некоторые заметят влияние платонизма на австрийского логика. Совершенно верно, ведь Гёдель не раз заявлял о влиянии метафизики Платона на собственную деятельность. Но сам Платон развитию формальной логики способствовал лишь косвенно: в истории он вносит вклад в развитие другого направления — философской логики. Платоном созданы вопросы, на которых основывается вся западная академическая философия вплоть до наших дней. Философия, в том виде, котором она известна, возникла только благодаря учителю Аристотеля.
Платон — учитель Аристотеля
В другие периоды в логику также вносили дополнения:
античной школой стоицизма введены термины «модальности», «материальной импликации», «оценки смысла и истины», которые являются задатками логики высказываний;
также средневековыми схоластами введены несколько понятий;
Но главное, что сами логические операции не изменились. «Органон» Аристотеля, как сборник из 6 книг — первоисточник, где подробно описаны главные логические законы. «Органон» (с древнегреческого ὄργανον), означает — инструмент. Аристотель считал, что логика является инструментом к познанию. Он объединяет методом получения информации такие науки:
Физика — наука о природе;
Метафизика — наука о природе природы;
Биология — раздел физики, наука о жизни;
Психология — раздел физики, наука о душе;
Кинематика — раздел физики, наука о движении;
2 | Терминология
У каждой из наук должен быть идентичный фундамент в способе получения гнозисов (знаний), который позволит упорядочить информацию и вывести новые силлогизмы (умозаключения). Только таким образом получится прогресс в познании истины. Без логики наука была бы похожа на коллекционирование фактов, ибо информация бы не поддавалась анализу.
Сам Аристотель находит логике как средству убеждения иное применение: в риторике, спорах, дебатах, выступлениях и т.д., описывая это в труде «Риторика». В западной философии принято давать чёткие определения перед рассуждениями, поэтому определимся с терминами. Логика — наука о правильном мышлении.
В языковой зависимости возникают трудности трактовки термина «наука», но даже в оригинальном названии труда Фридриха Гегеля «Наука логики» — «Wissenschaft der Logik», употребляется слово «наука» (Wissenschaft). Поэтому придём к консенсусу и будем считать, что научной можно назвать ту дисциплину, в которой возможны открытия, исследование и анализ. Логика в таком случае — наука, ибо внутри неё возможно совершать открытия. Яркий пример — комбинаторика Лейбница.
Слово «правильный» веет нормативными коннотациями: правильное поведение, правильное выражение лица, и т.д. Перечисленное соответствует некоторым критериям и логика выставляет их (критерии) для правильного мышления.
Слово «мышление» понимается на интуитивном уровне, но чёткое объяснение затруднительно, обширно и иногда не объективно.
Бюст Аристотеля
3 | Формальная и неформальная логика
Первоначально, деление логики происходит на формальную и неформальную. Формальная логика отличается тем, что, в отличие от неформальной, записывается уравнениями. Неформальная же логика пишется выражениями в форме языка, поэтому она подходит для риторики, а формальная логика для абстрактных наук.
Формальная логика равным образом делится на дедуктивную и индуктивную. Они различаются тем, что в дедуктивном аргументе истинность условий гарантирует истинность умозаключения или вывода. В индукции же, при истинности условий одинаково возможен ложный и истинный вывод.
Законы формальной логики:
1. Закон тождества (А = А): эквивокация или двусмысленность недопустимы. Нельзя подменять одно понятие, другим.
2. Закон непротиворечия (А ∧ ¬А = 0): одно и то же утверждение не может быть истинным и ложным одновременно.
3. Закон исключения третьего или бивалентности (А ∨ ¬А = 1): утверждение может быть либо истинным, либо ложным — третьего не дано.
Принципы формальной логики:
1. Принцип достаточного обоснования: достаточными являются такие фактические и теоретические обоснования, из которых данное суждение следует с логической необходимостью.
4 | Сентенциальная логика (алгебра высказываний)
Базовые операции сентенциальной логики — логики высказываний, где заглавная буква означает предложение:
Отрицание (Утверждение ¬A истинно тогда и только тогда, когда A ложно): если имеем утверждение «А» и имеем утверждение «не А», то, когда утверждение «А» будет истинным — утверждение «не А» будет ложным. Также и когда утверждение «А» будет ложным — утверждение «не А» будет истинным.
Конъюнкция (Утверждение A ∧ B истинно, если и A, и B — истинны. Ложно в противном случае): в английском языке — союз «and/&»; в русском — «и». В утверждении «А и В», между «А» с «В» стоит знак конъюнкции — «∧». Утверждение «А и В» является истинным, если «А» с «В» являются истинными одновременно. Если хоть один элемент ложен, то всё утверждение ложно. «А и В» подразумевает, во-первых: истинность «А», во-вторых: истинность «В».
Дизъюнкция (Утверждение A ∨ B верно, если A или B (или оба) верны. Если оба не верны — утверждение ложно): в английском языке — союз «or»; в русском — «или». Существует два типа дизъюнкции — включающая и исключающая (в логике используется включающее «или»). Условия таковы, что утверждение «А или В» будет истинным, когда один или оба элемента истинны, но никогда — когда оба элемента ложны. Это противоречит нашему обыденному мышлению, т.к. когда спрашивают: «Чай или кофе?» мы выбираем один элемент, но в логике подразумевается выбор не только одного, а нескольких возможных.
Импликация (Утверждение A ⇒ B ложно, только когда A истинно, а B ложно): в английском языке — «therefore»; в русском языке — «следовательно». Подразумевает истинность одного элемента при истинности другого. Потому что условия истинности соблюдаются всегда, кроме случая, когда «А» истинно, а «B» ложно. Поэтому утверждение: «А» ложно, следовательно «B» ложно — истинно. Покажется, что когда «А» ложно, а «В» истинно — не соблюдаются условия, но это не так. Если вы скажете, что после дождя промокните — это утверждение будет истинным вне зависимости от того, пошёл дождь или нет.
Эквивалентность (Утверждение A ⇔ B истинно, только если оба значения A и B ложны, либо оба истинны): если истинно утверждение «А, следовательно В» и истинно утверждение «В, следовательно А», то истинными являются выражения «А эквивалентно В» и соответственно «В эквивалентно А». Условия истинности соблюдаются в случаях, когда оба элемента истинны или оба ложны.
Значение переменных
5 | Предикатная логика первого порядка
В XX веке, после добавлений в область логики работ Лейбница и Фреге, на основе этой дисциплины создаётся новая — информатика. Программирование сохраняет преемственность с видоизменённой логикой Аристотеля — предикатной логикой, описательная способность которой выше, чем у логики высказываний (сентенциальной).
Прежде чем разобрать этот новый тип логики, поговорим об её отличии от сентенциальной. Главная особенность предикатной логики, что заглавными буквами обозначаются предикаты, а не целые высказывания. Можно сказать, что предикат — это математическая функция, которая «накладывает» множество субъектов на множество утверждений.
Высказывание «Я пошёл в зоопарк» — состоит из субъекта и предиката. В нём субъект — «Я», а предикат — то, что остаётся кроме субъекта («пошёл в зоопарк»). Субъект — тот, кто совершает действие в предложении или имеет выраженное свойство; предикат — всё оставшееся. Таким образом, если в сентенциальной логике высказывание «Я пошёл в зоопарк» выражалось бы одной заглавной буквой, то в логике предикатов использовались бы две буквы (заглавная и подстрочная): «P» — для предиката; «x» — для субъекта. Субъекты обозначаются переменной («x»), потому что в предикатной логике появляются две относительно новые операции: универсальный и экзистенциальный кванторы. Особенность кванторов заключается в том, что ими возможно записать выражение истинное при всех возможных переменных «х» или хотя бы при одном.
Универсальный квантор (квантор всеобщности) обозначается символом — «∀», с указанием переменной под ним. Возьмём утверждение «Все пингвины чёрно-белые». В логике высказываний оно бы выражалось как «X ⇒ P», где «X» — нечто являющееся пингвином, а «P» — нечто являющееся чёрно-белым. В предикатной логике же используются субъекты и предикаты, поэтому нечто являющееся пингвином (субъект), обозначалось бы переменной «х» снизу под предикатом. «»х» — является пингвином, следовательно, является чёрно-белым». Записывается так: P(х) ⇒ B(х), где P(х): х — пингвин; B(х): x — чёрно-белый.
Однако этого недостаточно, ведь непонятно, один субъект «х» чёрно-белый или больше одного, а может вообще все. Поэтому утверждение «»х» — является пингвином, следовательно, является чёрно-белым», берётся в скобки и перед скобками используется символ «∀» с переменной «х» под ним — которые вместе и будут универсальным квантором.
Универсальный квантор переводится как: «Для всех «х» истинно, что …». Теперь утверждение «х — является пингвином, следовательно, является чёрно-белым» с универсальным квантором перед ним, расшифровывается так: «Для всех «х» истинно, что «х» — является пингвином, следовательно, является чёрно-белым». Это означает, что чем бы ни был объект во вселенной, если этот объект пингвин — он является чёрно-белым. Полная запись будет выглядеть так:
Экзистенциальный квантор (квантор существования) обозначается символом — «∃» с указанием переменной под ним. Возьмём утверждение «Некоторые пингвины серые». Как и в прошлый раз, выражение «»x» — является пингвином и «х» — является серым» возносим в скобки и ставим перед ними квантор, в этом случае экзистенциальный с указанной переменной. «»x» — является пингвином и «х» — является серым» записывается так: P(х) ∧ C(х), где P(х): х — пингвин; C(х): x — серый.
Экзистенциальный квантор можно перевести так: «Есть такой «х», для которого будет истинно, что …». Подразумевается, что есть как минимум один «х», для которого выполняются условия выражения. Если вам говорят, что ДНК не существует, достаточно показать одну молекулу дезоксирибонуклеиновой кислоты для опровержения этого утверждения. Также и с кванторами, если существует хотя бы один серый пингвин, то утверждение об отсутствии серых пингвинов будет ложно. Полная запись экзистенциального квантора для выражения «Есть такой «х», для которого будет истинно, что «x» — является пингвином и «х» — является серым», будет выглядеть так:
6 | Заключение
Примечательно, что есть возможность перевода одного вида квантора в другой. Возьмём утверждение «Все пингвины не являются серыми». Для универсального квантора текстовая запись будет такая: «Для всех «х», будет истинным утверждение о том, что если «х» — является пингвином, то «х» — не является серым объектом». Но утверждение изменяется и для экзистенциального квантора, используя знак отрицания: «Нет такого «х», для которого бы было истинным утверждение о том, что «x»— является пингвином и «х»— является серым».
В середине XIX века, Готлоб Фреге дополнил логику Аристотеля двумя этими операциями, которые позже сформировались в отдельную дисциплину — предикатную логику. С введением в логику экзистенциального квантора (после универсального) — предикатная логика, в основе своей, завершилась как система…
Источники:
1 — Аристотель: «Органон» — «Первая аналитика» и «Вторая аналитика»;
2 — Аристотель: «Риторика»;
3 — Готлоб Фреге: «Исчисление понятий»;
4 — «Monatshefte für Mathematik und Physik» 1931 г.: Курт Гёдель «О принципиально неразрешимых положениях в системе Principia Mathematica и родственных ей системах»;
5 — The Early Mathematical Manuscripts of Leibniz;
6 — Мельников Сергей: «Введение в философию Аристотеля»;
7 — Гильмутдинова Нина: «Логика и теория аргументации»;