Правда что цифры бесконечные
Бесконечность
Бесконечность — сложная для понимания штука. В обычной жизни мы не встречаемся с чем-то у чего нет начала и конца.
Тем удивительные, что такая абстракция встречается так часто и в физике, и в математике и, конечно, в религии с философией, где, это как раз очень оправдано. Ведь только полет фантазии и может быть по-настоящему бесконечным.
Что такое бесконечность простыми словами
Это понятие используется везде и постоянно, но означает «бесконечность» всегда немного разное.
Бесконечность в математике
Развитие математики началось с геометрии, а это целиком прикладная наука: измерять землю для посевов, проектировать строительную площадку. Откуда же в геометрии бесконечность может взяться?
Она просто не нужна. Здесь она не имеет практического смысла…
И вот, что удивительно, еще в 300 году до Нашей Эры в «Началах» Эвклида уже есть упоминание о бесконечной прямой. В том смысле, что продолжать прямую можно бесконечно. Значит ли это, что первый человек в истории написавший труд о математике, создавший «Эвклиову геометрию», описал в нем бесконечность? Не совсем.
Да, прямая — бесконечна, а вот отрезок прямой имеет свой размер. Но на практике бесконечность прямой означала лишь то, что ее длинна не важна. Когда дело доходило до реальных измерений, все величины в геометрии имели свой размер.
Бесконечность бывает двух видов:
Потенциальная бесконечность — что-то что можно в принципе продолжать бесконечно.
Актуальная бесконечность — действительно бесконечная величина.
Например, ряд натуральных чисел бесконечен (можете попробовать посчитать сами), к любому числу х всегда можно добавить +1.
Бесконечность, это не число!
Хотя мы иногда и осуществляем с ним операции так же как и с числами. Но нельзя сказать, что есть число больше бесконечности
В математике считают что:
Простыми словами, бесконечность в математике, это не какое-то очень большое число, а специальная абстракция которая применяется когда это необходимо.
Знак бесконечности впервые появился в 17 веке. По есть несколько вариантов его происхождения:
Бесконечность в физике
Если математика целиком состоит из абстракций, то физика, конечно же, наука которая изучает реальность. Есть ли бесконечность в физике?
Может ли быть бесконечной сила, ускорение или масса? Наверное — нет. А напряжение или сила тока? Тоже нет? Но все-таки место для бесконечного найдется.
Например, условно бесконечной может быть амплитуда колебаний. Если частота вынужденных колебаний будет равна собственной частоте системы, произойдет резонанс, амплитуда будет увеличиваться до бесконечности, а значит система разрушится.
В релятивистской физике все еще интереснее. При движении частицы с массой не равной нулю со скоростью света, ее энергия стремится к бесконечности. Скорость распространения гравитации — также считается бесконечной.
Но что интересно, в начальный момент Большого взрыва вселенная пребывала в состоянии сингулярности, когда температура вещества была бесконечной как и его плотность.
Но в большинстве случаев все зависит от решаемой задачи. Например, при расчетах орбит для спутников, массу земли считают бесконечной (потому, что она настолько больше массы спутника, что нет смысла учитывать эту разницу), а вот если рассматривать ту же массу в системе Земля — Луна, пренебречь ею уже не получится.
Бесконечна ли вселенная?
При этом мы не видим ничего, кроме счета направленного в сторону Земли. Если бы размер Вселенной был конечен, логично было бы ожидать, что свет обогнув конечное пространство вернулся бы назад. Но этого нет.
Мы действительно ограничены в наблюдениях и не можем видеть ничего за так называемым «горизонтом частиц» (его еще называют горизонтом космического света). Но это из-за того, что свет от самых дальних звезд еще не успел дойти до нас с момента Большого взрыва. А что за горизонтом? Бесконечность? Или все-таки существуют границы?
Есть несколько вариантов:
Что же говорит наука?
Критическая плотность
Ученые космологи знают как рассчитать конечность пространства. Для этого используется показатель «плотности реликтового излучения». И это 0,00001 массы протона в одном кубическом сантиметре вещества, очень немного. Для измерения этого значения в 2001 году был запущен специальный аппарат WMAP ( Wilkinson Microwave Anisotropy Probe), так что информация проверена.
В существующей модели нашего с вами пространства (Модели Фридмана) возможны три варианта. Средняя плотность может быть больше, меньше или равна критической.
Если объяснить это простыми словами, то — большая плотность означает большую массу вещества, которая в свою очередь искривит пространство-время до замкнутого состояния. Малая плотность, наоборот, не позволит замкнуться и намекает на бесконечность пространства времени.
*»плоская», здесь не означает, двухмерная, как лист бумаги, это математическая абстракция описывающая свойство кривизны пространства.
Итак, что же такое бесконечность на самом деле? Все зависит от точки зрения и обстоятельств. В одном случае — философская абстракция ничего не значащая в реальном мире, в другом, вполне понятная величина.
Неисчислимое: в поисках конечного числа
Древние греки — приверженцы концепций, имеющих строгий логический смысл — всячески избегали концепции бесконечности. Действительно, какое нам дело до бесконечного ряда чисел, если ни записать, ни представить его мы не можем.
В средние века логическую строгость отбросили ради математических результатов и разработали чрезвычайно эффективные алгоритмические методы, оперирующие в вычислениях бесконечностью.
В XX в. стала отчетливо проступать другая проблема. С бесконечностью мы можем разобраться при помощи одного символа (∞), но что делать с числами, которые меньше бесконечности, но при этом невообразимо огромны?
Мы вплотную подошли к числам, едва уступающим «уроборосу», но при этом все еще имеющим теоретическое и практическое значение. Вы, вероятно, могли слышать о числе Грэма, которое является верхней границей для решения определенной проблемы в теории Рамсея. Спустя 88 лет после появления теоремы Рамсея математики готовы отбросить старые методы и пойти еще дальше.
Добро пожаловать в кроличью нору без дна.
Вступление, в котором нужно вспомнить прошлое
В XVII в. математик и философ Блез Паскаль писал о своем страхе перед бесконечностью, о чувстве собственной незначительности при мысли о безбрежных просторах космоса. Интересно, что сказал бы Паскаль о числе Грэма, состоящем из башни чисел высотой от Земли до самой отдаленной звезды, в каждом числе которой прячется своя башня из чисел? Каждый изгиб числа в башне чисел, которая состоит из башни чисел, вмещает в себя башню других чисел — но даже с такой формулировкой мы и близко не подошли к открытию, сделанному Грэмом.
Истоки числа Грэма следует искать в 1928 г., когда молодой математик Фрэнк Рамсей во время работы над статьей о логике заметил удивительную вещь: полная неупорядоченность невозможна. Каждое достаточно большое множество чисел, точек или объектов обязательно содержит высокоупорядоченную структуру.
Догадка, которая была лишь небольшой частью работы о логике, положила начало совершенно новой области математики, называемой теорией Рамсея. Ее часто объясняют на примере вечеринки: предположим, вы хотите найти идеальный баланс между теми, кто знает друг друга, и незнакомцами. Вы рисуете карту отношений всех ваших друзей, связывая двух людей, если они являются друзьями, синей линией, и красной — если они не знакомы друг с другом. Тогда может получиться подобная иллюстрация:
Красота теории Рамсея заключается в том, что задачи в этой области всегда очень легко формулировать. Рассматривая пример с вечеринкой, очень интересно понять, какого количества людей достаточно для образования группы, в которой всегда окажется четверо людей либо знакомых, либо не знакомых друг с другом.
В группе из 17 точек, изображенных на рисунке выше, невозможно найти четыре точки, для которых сеть соединяющих их ребер была бы целиком красной или синей. Поэтому требуется более 17 человек, чтобы среди них обязательно оказалось четверо людей, знакомых или не знакомых друг с другом. На самом деле в группе из 18 человек всегда найдутся либо четверо знакомых, либо четверо не знакомых друг с другом.
Возьмем любое звездное скопление. В нем всегда можно найти группу, которая с очень большой точностью образует какую-нибудь заданную конфигурацию — прямую линию, прямоугольник, ковш.
Математики стараются вычислить, сколь велико должно быть множество звезд, чисел или каких-либо объектов, чтобы можно было гарантировать существование определенной желаемой подструктуры. На решение таких задач часто уходят десятилетия.
Теория Рамсея также имеет большое практическое значение — от организации хорошей вечеринки до построения более совершенных сетей коммуникации и систем передачи и поиска информации. На самом деле очень сложно представить, для каких целей могут послужить многие методы, разработанные для решения задач в теории Рамсея — это самый передовой край математики.
Как и почему Грэм пришел к своему числу
Американский математик Рональд Льюис Грэм (родился в 1935 г.) внес значительный вклад в дискретную математику. Грэм — личность разносторонняя. В свое время он даже был президентом международной ассоциации жонглеров, но прославился исключительно за счет большого положительного целого числа, которое служит верхней границей конкретной проблемы в теории Рамсея.
N-мерный куб всегда содержит 2n вершин. Несмотря на их размерность, n-мерные кубы — это просто графы, вершины которых связаны ребрами
Любой n-мерный куб мы можем превратить в полный граф, просто соединив все вершины. Остальные ребра, сформированные таким образом, находятся внутри или на одной из граней. Представим, что эти края имеют два цвета — красный и синий. Таким образом, Грэм сформулировал интересный вопрос, лежащий в плоскости классической теории Рамсея: при каком минимальном значении N двухцветного k-мерного куба каждая такая раскраска обязательно содержит раскрашенный в один цвет полный подграф с четырьмя вершинами, каждая из которых лежит в одной плоскости?
Полный граф на трехмерном кубе с раскраской ребер в два цвета
В 1971 г. Рональд Грэм и Брюс Ли Ротшильд доказали, что у этой задачи есть решение, и оно представляет собой число, которое больше 6 (нижняя граница), и меньше некоего N. Нижняя граница впоследствии была повышена до 13, а верхняя граница получила название малого числа Грэма. Малое число Грэма меньше числа, попавшего в Книгу рекордов Гиннесса, но это все равно невообразимо огромное число.
В общем-то, задача Грэма не звучит как нечто сверхъестественное — ее может понять и пятиклассник. Но на простые вопросы иногда очень трудно получить ответы. Если решение меньше, чем число Грэма, которое мы знаем, то каков же ответ? Число Грэма, как и некоторые другие большие числа, просто говорит нам, что у некоторой задачи в принципе есть решение, и это решение можно найти. Оптимизировав решение задачи, мы можем сдвинуть число Грэма ближе к 1, и двигать его до тех пор, пока не найдем реального решения.
Как число стало легендой
Итак, Рональд Грэм написал профессиональную математическую работу по теории Рамсея, которая привлекла внимание журналиста Мартина Гарднера. Именно Гарднер ипоспособствовал попаданию числа Грэма в Книгу рекордов Гиннесса, после чего число привлекло внимание широкой общественности.
Проблема, которую Грэм пытался решить, на самом деле была лишь одним конкретным примером применения теории Рамсея. Дальнейшие исследования в этой теории дали математикам бóльшие числа, чем даже число Грэма. Эти числа не являются точным решением проблем, а выступают верхней границей.
Чем же очаровал Грэм людей? Красотой и наглядностью.
Чтобы оперировать гигантскими числами, Грэм использовал быстрорастущие функции. Многие из этих функций знакомы всем — сложение, умножение и возведение в степень. Математики создали новые функции, которые масштабируются намного быстрее.
Для записи числа Грэм использовал стрелочную нотацию Кнута — расширение возведения в степень. Точно так же, как возведение в степень является повторным умножением и обозначается одной стрелкой, направленной вверх, две стрелки вверх обозначают итерационное возведение в степень, три стрелки — повторное итерационное возведение в степень и т.д.
3↑↑5 = 3↑3↑3↑3↑3 = три в степени три в степени 7 625 597 484 987.
Математики поняли, что, имея дело с большими числами, требуется каждый раз использовать новый оператор, который должен быть мощнее предыдущего. ↑↑ — следующий оператором от ↑, так же как ↑ — следующий оператор от умножения, и точно так же, как умножение — это один оператор от сложения. Таким образом, увеличение количества последовательных стрелок увеличивает способность работать с большими числами.
Если добавить еще одну стрелку, то скорость формирования новых чисел значительно возрастет:
3 ↑↑↑ 3 дает нам башню из степеней троек высотой в 7 трлн чисел.
Четыре стрелочки даст число, записать которое будет уже очень трудно. Обратимся к примеру из замечательной статьи «Число Грэма на пальцах»:
А вот оригинальная иллюстрация, которую Гарднер использовал для объяснения числа Грэма:
Самый верхний уровень равен 3 ↑↑↑↑ 3. Формулу вы видели выше. Под ним находится слой, в котором число стрелочек равно 3 ↑↑↑↑ 3. Далее идет слой, в котором число стрелочек равно числу стрелочек в предыдущем слое. И так до 64-го слоя.
Красота этого выражения в том, что если вы захотите превзойти число Грэма и напишите «супербольшое число = число Грэма + 1», то в математических масштабах ничего не изменится. Все равно что залезть на вершину Эвереста и прыгать на ней — Эверест все равно останется самой высокой горой, на вершину которой вы можете взобраться.
Но где-то в Солнечной системе есть и Олимп, не так ли?
Нотация Бауэрса: начало кроличьей норы
Дальнейшая работа с теорией Рамсея математиков Джозефа Краскала и Харви Фридмана привела к числу TREE(3), у которого даже самая нижняя граница решения является сверхогромной, не говоря о верхней.
Если число Грэма мы хотя бы можем записать, то число TREE(3) невозможно поместить в рамки нотации Кнута. Судите сами:
TREE (3) = … > A A(187196) (4), где даже A 2 (4) больше, чем число атомов во Вселенной, ведь А — функция Аккермана, которая определяется рекурсивно для неотрицательных целых чисел m и n следующим образом:
Используя функцию Аккермана, можно очень легко записать число Грэма ≈ A64(4).
Математики вычислили, что у TREE(3) есть теоретическая граница, которую можно записать с помощью массивной нотации, предложенной в 2002 г. Джонатаном Бауэрсом. В массивной нотации существует пять правил:
Функция возрастает невероятно быстро. Массив из трех элементов <10,100,2>в стрелочной нотации Кнута будет иметь следующий вид: 10 ↑ 2 100.
Тройные массивы Бауэрса полностью идентичны тройным цепочкам обозначения Конвея (еще один метод записи — соединенные горизонтальными стрелками (цепочками) числа, растут быстрее нотации Кнута):
<3,3,3>= 3 → 3 → 3 = 3 ^ (3 ^ (3 ^ (3 ^… 7 625 597 484 987 раз… ^ 3) ^ 3) ^ 3)
Массив из четырех элементов (например <10,100,1,2>) уже больше самого числа Грэма — благодаря хитрости, придуманной Бауэрсом: на четвертом элементе он «оптимизирует» формулу, как раньше мы оптимизировали умножение и возведение в степень, только теперь математик занимается удвоением скобок:
Более подробный разбор этой операции вы можете найти в статье «Bird’s Linear Array Notation».
При этом «самое больше число, использованное в серьезном математическом доказательстве», ограничено между <3,65,1,2>и <3,66,1,2>. Речь сейчас идет только о линейных массивах, а ведь они могут быть и гипермерными. В принципе массив Бауэрса из четырех элементов способен вместить в себя всю нотацию Конвея, а гипермерные массивы (на иллюстрации выше) уже становятся математической гиперигрой.
Красота математики в том, что мы можем работать с данными, которые даже представить невозможно. Любую сложную задачу можно облегчить до невероятно простых значений. Возможно, ответы на некоторые вопросы мы никогда не найдем, но методы, использованные для их решения, могут пригодиться в других областях знаний. Сама проработка этих методов построения иерархий по скорости роста функций совершенствует многие разделы математики.
Бауэрс сделал удачную попытку ответить на вопрос, как с помощью иерархии приемов расширить возможности формальной системы. Фактически мы записываем не само число иносказательным образом, а способ когда-нибудь прийти к этому числу хотя бы в теории.
Нотации Бауэрса стали отличной возможностью подобраться к пониманию функции TREE. Конечно, определить величину TREE(3) мы не можем, но с помощью итерационного «улучшения» нотации, проведенного английским математиком Крисом Бердом, удалось выяснить, что TREE(3) > <3,6,3[1[1¬1,2]2]2>.
TREE(3)
TREE — быстрорастущая функция в теории графов, разработанная математиком Харви Фридманом.
Предположим, что мы имеем последовательность k-пронумерованных деревьев T1, T2,… со следующими свойствами:
BIG FOOT является аналогом числа Райо — его определение почти идентично. BIG FOOT расширяет теорию множеств первого порядка, используя уникальную область дискурса, называемую oodleverse, с использованием языка, называемого first-orderoodletheory (FOOT), и обобщая теорию множеств n-го порядка сколь угодно большого n.
Пусть FOOT(n) обозначает наибольшее натуральное число, однозначно определяемое в языке FOOT не более чем в n символах. BIG FOOT определяется как FOOT 10 (10 100 ), где FOOT a (n) — это FOOT(n) (рекурсия).
BIG FOOT таким образом равен
Поиски конечного числа продолжаются. Будет ли оно когда-нибудь найдено?
Блез Паскаль так описал экзистенциальный ужас, охватывающий его при мысли о безграничности мира: «Вечная тишина этого бесконечного пространства пугает меня». Числа дают нам возможность установить рамки понимания и границы дозволенного, взять под контроль страх уробороса. Они — наше реликтовое излучение, возможность подойти к метафорическому краю мира. Но, как в космосе нельзя долететь до такого места, где будет висеть табличка «конец Вселенной», так и в математике невозможно достичь последнего рубежа. Впрочем, это нам еще предстоит проверить.
Виды бесконечностей и вынос мозга
Эта статья — продолжение статьи про громадные числа. Но сейчас мы пойдем еще дальше — в бесконечности бесконечностей.
Для этого нам понадобится ZFC — теория множеств Zermelo, Frenkel + Choice. Choice — это аксиома выбора, самая спорная аксиома теории множеств. Она заслуживает отдельной статьи. Предполагается, что вы знаете, что такое «мощность» множества. Если нет, то погуглите, наверняка это изложено лучше, чем смогу я. Здесь я лишь напомню некоторые
Известные факты
Малоизвестные факты
В ZFC не все собрания элементов могут быть множествами. Бывают коллекции столь широкие, что позволить им быть множествами нельзя, возникают парадоксы. В частности, «множество всех множеств» не есть множество. Впрочем, есть теории множеств, где такие множества разрешены.
Дальше. Теория множеств… Каких объектов? Чисел? Яблок? Апельсинов? Как ни странно, ZFС не нуждается ни в каких объектах. Возьмем пустое множество <> и договоримся, что оно означает 0. 1 обозначим с помощью <<>>, двойку как <<<>>> итд. <5,2>есть <<<<<<<>>>>>>, <<<>>>>. С помощью целых чисел мы можем создать вещественные, а коллекции вещественных создают любые фигуры.
Таким образом, теория множеств это… как бы сказать… пустотелая теория. Это теория ни о чем. Точнее, о том как можно нестить (nest, то есть вкладывать друг в друга) фигурные скобки.
Единственная операция, которая определена в теории множеств, это — символ принадлежности. А как же объединение, исключение, равенство итд.? Все это макросы, например:
То есть, в переводе на русский язык, два множества считаются одинаковыми, когда при тестировании любого элемента на принадлежность к им мы будем получать одинаковые результаты
Множества не упорядочены, но это можно исправить: пусть упорядоченная пара (p,v) это <
,
>. Неэлегантно с точки зрения программиста, но достаточно для математика. Теперь множество всех пар param-value задает функцию, которая теперь тоже множество! Et voila! весь математический анализ, который работает на уровне языков второго порядка, так как говорит не о существовании чисел, а существовании функций — коллапсирует в язык 1 порядка!
Таким образом, теория множеств — это убогая теория без объектов и с одним значком отношения, которая обладает совершенно чудовищной силой — без каких то новых допущений она порождает из себя формальную арифметику, вещественные числа, анализ, геометрию и многое другое. Это своеобразное TOE математики.
Гипотеза континуума — CH
Существует ли мощность между и ? Это проблему не мог решить Кантор, «король математиков» Гильберт высоко оценивал ее важность, но лишь позже было доказано что эту гипотезу нельзя ни доказать, ни опровергнуть. Она независима от ZFC.
Это означает, что вы можете создать две разных математики: одну с ZFC+CH, другая ZFC+(not CH). На самом деле даже больше, чем две. Допустим, мы отвергнем CH, то есть будем верить, что между и есть еще мощности. Сколько их может быть? Одна, две? Гедель верил, что только одна. Но, как оказалось, предположение о том, что их 2, 17, 19393493 не приводит к противоречиям. Любое число, но не бесконечное!
Когда в формальной арифметике мы сталкиваемся с недоказуемым утверждением, то в силу определенных причин мы знаем, что, тем не менее, это утверждение, хоть и не доказуемо, но на самом деле либо истинно, либо ложно. В теории множеств это не работает, мы реально получаем разные математики. Как к этому относиться? Есть три философских подхода:
Формализм: а чему, собственно, удивляться? Мы задаем правила игры в символы, разные правила — разный результат. Не надо искать проблему там, где ее нет
Платонизм: Но как тогда объяснить, что совершенно разные теории, например ZFC и New Foundations, построенные по совершенно разным принципам, дают почти всегда один и тот же результат? Не говорит ли это о том, что за формулами стоит какая то реальность, которую мы изучаем? Такой точки зрения придерживался, например, Гедель
Multiverse: У нас может быть много аксиоматик, иногда дающих одинаковый результат, иногда нет. Мы должны воспринимать картину в целом — если с разными системами аксиом ассоциировать цвет, то цветное дерево следствий и есть математика. Если что-то верное везде — это белый цвет, но есть и цветные ветви.
Все выше и выше.
Как далеко мы можем продвинуться? После бесконечного количества итераций мы дойдем до — бесконечная по порядку мощность! Кстати, ее существование было неочевидно Кантору. Но секунду! Ведь функция powerset всегда определена, поэтому не может быть последней!
Чтобы получить надо повторить powerset бесконечность и еще три раза. У вас уже начало сносить крышу? То ли еще будет. Потому что снова проитерировав powerset бесконечное число раз, мы дойдем до , после чего, естественно, идет
Дойдя до бесконечности бесконечное число раз, мы получим индекс . Как вам такая мощность, например: ? Пока мы итерировали powerset по списку ординалов, вот начальные ординалы:
но их значительно, значительно больше. Так что мы сразу все это пропустим и сделаем
Сразу большой шаг
Далее мы пойдем быстрее:
У последнего алефа индекс ноль, но местный latex не дает его поставить — слишком много уровней. Но главное вы поняли, какую бы новую чудовищную мощность мы бы не создали, мы можем сказать — ага, это всего лишь повторитель, и поставить всю эту конструкцию к новому алефу в виде индекса. Теперь мощности растут как снежный ком, нас не остановить, пирамида алефов все выше, и мы можем создать любую мощность… Или нет?
Недостижимые мощности
Что если есть мощность настолько большая, , что как бы мы ее ни пытались достичь «снизу», выстраивая конструкции из алефов, мы ее не достигнем? Оказывается, существование такой мощности независимо от ZFC. Вы можете принять ее существование или нет.
Я слышу шепот «бритва Оккама»… Нет, нет. Математики придерживаются противоположного принципа, который называется онтологический максимализм — пусть существует все, что возможно. Но существуют еще как минимум две причины, почему эту гипотезу хочется принять.
Второе: если отвергнуть аксиому бесконечности, то мы получим FinSet, простую игрушечную теорию множеств с конечными множествами. Давайте выпишем все эти множества (так называемая модель теории)
И получим… бесконечное множество конечных множеств… То есть, модель теории конечных множеств бесконечна, и играет в ней роль «множества всех множеств». Может быть, это поможет понять, почему теория не может говорить о «множестве всех множеств» — такое множество всегда существует как модель вне теории и обладает другими свойствами, чем множества внутри. Вы не можете добавить в теорию конечных множеств бесконечное.
И да, это «множество всех множеств» теории ZFC. В этом видео в конце очень красиво сказано про недостижимую мощность, но нам пора дальше.
Еще дальше.
Разумеется, мы можем пойти дальше, итерируя . Пройдя все описанные этапы, построив огромные башни повторителей, мы снова упремся в недостижимый кардинал (но теперь нам не нужны новые аксиомы, с аксиомой существования недостижимой мощности, которую мы только что добавили, это стало доказуемо). И снова и снова.
Заметьте, что теперь стрелка у нас имеет смысл не как выполнение функции Powerset(), а GetNextInaccessible(). В остальном все выглядит очень похоже, мы имеем:
Теперь то мы точно достигнем чего угодно… Или нет?
Иерархия больших мощностей.
Да, с помощью GetNextInaccessible мы упремся уже в гипер-недостижимую мощность. Существование ее требует принять еще одну аксиому. Есть и гипер-гипер-недостижимые мощности. И так далее. Но есть и другие способы определять мощности, не только через недостижимость:
За каждой ссылкой стоит, как правило, целая бесконечная иерархия с произвольным количеством приставок hyper- и повторителей. Однако, общее количество формул, определяющие недостижимые кардиналы, не такое уж большое — ведь количество формул счетно. Поэтому рано или поздно они кончатся. Там, где они кончаются, проведена красная черта. Все, что ниже этой черты, определяется более зыбко, хотя и формально.
Сама красная черта обозначает конец вселенной Геделя (но не забываем, что Гедель создал ДВЕ разные вселенные) — вселенная множеств, конструируемых «снизу» с помощью формул. Мощности выше красной черты называются хм, «малыми», а ниже — большими:
Главная идея в них в том, что вселенная множеств становится столь большой, что начинает повторять себя в разных смыслах. Каждая строчка, как всегда, требует отдельной аксиомы, и нескольких. И что еще интереснее, все это не настолько бесполезно, как вы могли подумать. Например, самая сильная аксиома (rank-into-rank), в самой нижней строчке, нужна, чтобы доказать факт о табличках.
Ниже опрос, последний вариант выбора расшифрован тут.