Постройте умозаключение доказывающее что число 19 является простым число 22 является составным
1. Докажите что число 22?
1. Докажите что число 22.
Посчитаем сумму цифр этого числа :
Признак делимости на 3 : если сумма цифр числа делится на 3, то и само число делится на 3.
Докажите что числа 575 10053 3627 565656 являются составными?
Докажите что числа 575 10053 3627 565656 являются составными.
Докажите, что числа 49, 25, 36, 16 являются составными?
Докажите, что числа 49, 25, 36, 16 являются составными.
Докажите что числа 67925 67064 46521 являются составными?
Докажите что числа 67925 67064 46521 являются составными.
Докажите, что число 565656 является составным?
Докажите, что число 565656 является составным.
Докажите, что числа 575, 10053, 3627, 565656 является составными?
Докажите, что числа 575, 10053, 3627, 565656 является составными.
Докажите, что площадь квадрата, сторона которого является простым числом, является составным числом?
Докажите, что площадь квадрата, сторона которого является простым числом, является составным числом.
Докажите, что площадь квадрата, сторона которого является простым числом, является составным числом?
Докажите, что площадь квадрата, сторона которого является простым числом, является составным числом.
Докажите что числа 2968, 3600, 888888, 676767 являются составными?
Докажите что числа 2968, 3600, 888888, 676767 являются составными.
Докажите что числа 575, 10053, 3627, 565656 являются составными?
Докажите что числа 575, 10053, 3627, 565656 являются составными.
Используя пртзнаки делимости, докажите что число 7690 является составным?
Используя пртзнаки делимости, докажите что число 7690 является составным.
Отношение делимости и его свойства
Определение. Пусть даны натуральные числа а и b. Говорят, что число а делится на число b, если существует такое натуральное число q, что a = bq.
Из определения отношения делимости и равенства а = 1·а, справедливого для любого натурального а, вытекает, что 1 является делителем любого натурального числа.
Выясним, сколько вообще делителей может быть у натурального числа а. Сначала рассмотрим следующую теорему.
Теорема1. Делитель b данного числа а не превышает этого числа, т.е. если
Из данной теоремы следует, что множество делителей данного числа конечно. Назовем, например, все делители числа 36. образуют конечное множество <1,2,3,4,6,9,12,18,36>.
В зависимости от числа делителей среди натуральных чисел различают простые и составные числа.
Например, число 13- простое, поскольку, у него только два делителя: 1 и 13.
Определение. Составным числом называется такое натуральное число, которое имеет более двух делителей.
Так число 4 составное, у него три делителя: 1,2 и 4.
Число 1 не является ни простым, ни составным числом в связи с тем, что оно имеет только один делитель.
Нам известно, что отношение делимости обладает рядом свойств, в частности, оно рефлексивно, антисимметрично и транзитивно. Теперь, имея определение отношения делимости, мы можем доказать эти и другие его свойства.
Теорема 2. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя.
Доказательство. Для любого натурального а справедливо равенство а = а·1. Так как 1 Є N, то, по определению отношения делимости, а : . а.
то b ⁞͞ a.
Доказательство. Предположим противное, т.е. что b⁞a. Но тогда а ≤ b, согласно теореме, рассмотренной выше.
По условию и а ⁞. b и а ≠ b. Тогда, по той же теореме, b ≤ а.
Неравенства а ≤ b и b ≤ а будут справедливы лишь тогда, когда а = b, что противоречит условию теоремы. Следовательно, наше предположение неверное и теорема доказана.
Теорема 4. Отношение делимости транзитивно, т.е. если а⁞ b и b⁞ с, то а⁞ с.
а⁞ с.
Например, не производя вычислений, можно сказать, что 175 + 360 + 915 делится на 5, так как на 5 делится каждое слагаемое этой суммы.
Доказательство этой теоремы аналогично доказательству признака делимости суммы.
Теорема 7 (признак делимости произведения). Если число а делится на b, то произведениe вида ах, где х Є N, делитcя на b.
Из доказанной теоремы следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b. Например, произведение 24·976·305 делится на 12, так как на 12 делится множитель 24.
Рассмотрим еще три теоремы, связанные с делимостью суммы и произведения, которые часто используются при решении задач на делимость.
Теорема 8. Если в сумме одно слагаемое не делится на число b, а все остальные слагаемые делятся на число b, то вся cумма на число b не делится.
Теорема 9. Если в произведении ab множитель a делится на натуральное число т, а множитель b делится на натуральное число n,то ab делится на mn.
Справедливость этого утверждения вытекает из теоремы о делимости произведения.
1.Объясните, почему число 15 является делителем числа 60 и не является делителем числа 70.
2.Постройте граф отношения «быть делителем данного числа», заданного на множестве Х = <2, 6,. 12, 18, 24>. Как отражены на этом графе свойства данного отношения?
4. Запишите множество делителей числа.
5.На множестве X = <1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11; 12>задано отношение «иметь одно и то же число делителей». Является ли оно отношением эквивалентности?
6.Постройте умозаключение, доказывающее, что:
а) число 19 является простым;
б) число 22 является составным.
7.Докажите или опровергните следующие утверждения:
а) Если сумма двух слагаемых делится на некоторое число, то и каждое слагаемое делится на это число.
б) Если одно из слагаемых суммы не делится на некоторое число, то и сумма не делится на это число.
в) Если ни одно слагаемое не делится на некоторое число, то и сумма не делится на это число.
г) Если одно из слагаемых суммы делится на некоторое число, а другое не делится на это число, то и сумма не делится на это число.
Отношение делимости и его свойства
Определение. Пусть даны натуральные числа а и b. Говорят, что число а делится на число b, если существует такое натуральное число q, что a = bq.
Из определения отношения делимости и равенства а = 1·а, справедливого для любого натурального а, вытекает, что 1 является делителем любого натурального числа.
Выясним, сколько вообще делителей может быть у натурального числа а. Сначала рассмотрим следующую теорему.
Теорема1. Делитель b данного числа а не превышает этого числа, т.е. если
Из данной теоремы следует, что множество делителей данного числа конечно. Назовем, например, все делители числа 36. образуют конечное множество <1,2,3,4,6,9,12,18,36>.
В зависимости от числа делителей среди натуральных чисел различают простые и составные числа.
Например, число 13- простое, поскольку, у него только два делителя: 1 и 13.
Определение. Составным числом называется такое натуральное число, которое имеет более двух делителей.
Так число 4 составное, у него три делителя: 1,2 и 4.
Число 1 не является ни простым, ни составным числом в связи с тем, что оно имеет только один делитель.
Нам известно, что отношение делимости обладает рядом свойств, в частности, оно рефлексивно, антисимметрично и транзитивно. Теперь, имея определение отношения делимости, мы можем доказать эти и другие его свойства.
Теорема 2. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя.
Доказательство. Для любого натурального а справедливо равенство а = а·1. Так как 1 Є N, то, по определению отношения делимости, а : . а.
то b ⁞͞ a.
Доказательство. Предположим противное, т.е. что b⁞a. Но тогда а ≤ b, согласно теореме, рассмотренной выше.
По условию и а ⁞. b и а ≠ b. Тогда, по той же теореме, b ≤ а.
Неравенства а ≤ b и b ≤ а будут справедливы лишь тогда, когда а = b, что противоречит условию теоремы. Следовательно, наше предположение неверное и теорема доказана.
Теорема 4. Отношение делимости транзитивно, т.е. если а⁞ b и b⁞ с, то а⁞ с.
а⁞ с.
Например, не производя вычислений, можно сказать, что 175 + 360 + 915 делится на 5, так как на 5 делится каждое слагаемое этой суммы.
Доказательство этой теоремы аналогично доказательству признака делимости суммы.
Теорема 7 (признак делимости произведения). Если число а делится на b, то произведениe вида ах, где х Є N, делитcя на b.
Из доказанной теоремы следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b. Например, произведение 24·976·305 делится на 12, так как на 12 делится множитель 24.
Рассмотрим еще три теоремы, связанные с делимостью суммы и произведения, которые часто используются при решении задач на делимость.
Теорема 8. Если в сумме одно слагаемое не делится на число b, а все остальные слагаемые делятся на число b, то вся cумма на число b не делится.
Теорема 9. Если в произведении ab множитель a делится на натуральное число т, а множитель b делится на натуральное число n,то ab делится на mn.
Справедливость этого утверждения вытекает из теоремы о делимости произведения.
1.Объясните, почему число 15 является делителем числа 60 и не является делителем числа 70.
2.Постройте граф отношения «быть делителем данного числа», заданного на множестве Х = <2, 6,. 12, 18, 24>. Как отражены на этом графе свойства данного отношения?
4. Запишите множество делителей числа.
5.На множестве X = <1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11; 12>задано отношение «иметь одно и то же число делителей». Является ли оно отношением эквивалентности?
6.Постройте умозаключение, доказывающее, что:
а) число 19 является простым;
б) число 22 является составным.
7.Докажите или опровергните следующие утверждения:
а) Если сумма двух слагаемых делится на некоторое число, то и каждое слагаемое делится на это число.
б) Если одно из слагаемых суммы не делится на некоторое число, то и сумма не делится на это число.
в) Если ни одно слагаемое не делится на некоторое число, то и сумма не делится на это число.
г) Если одно из слагаемых суммы делится на некоторое число, а другое не делится на это число, то и сумма не делится на это число.
Что такое Простые числа
Простые числа — это натуральные числа, больше единицы, которые делятся без остатка только на 1 и на само себя. Например: 2, 3, 5, 7, 11, 13, 17, 19, 23. Единица не является ни простым числом, ни составным.
Последовательность простых чисел начинается с 2 и является бесконечной; наименьшее простое число — это 2 (делится на 1 и на самого себя).
Составные числа — это натуральные числа, у которых есть больше двух делителей (1, оно само и например, 2 и/или 3); это противоположность простым числам. Например: 4, 6, 9, 12 (все делятся на 2, на 3, на 1 и на само себя).
Все натуральные числа считаются либо простыми, либо составными (кроме 1).
Натуральные числа — это те числа, которые возникли натуральным образом при счёте предметов; например: 1, 2, 3, 4. (нет ни дробей, ни 0, ни чисел ниже 0).
Зачастую множество простых чисел в математике обозначается буквой P.
Простые числа до 1000
2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 |
71 | 73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 |
113 | 127 | 131 | 137 | 139 | 149 |