Посредством чего осуществляются многообразные жизненные процессы в человеческом организме
Основные закономерности метаболических процессов в организме человека. Часть 1.
Метаболизм – обмен веществ и энергии — представляет собой по классическим определениям, с одной стороны, обмен веществами и энергией между организмом и окружающей средой, а, с другой стороны, совокупность процессов превращения веществ и трансформации энергии, происходящих непосредственно в самих живых организмах. Как известно, обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи. В обмене веществ, контролируемом многоуровневыми регуляторными системами, участвует множество ферментных каскадов, обеспечивающих совокупность химических реакций, упорядоченных во времени и пространстве. Данные биохимические реакции, детерминированные генетически, протекают последовательно в строго определенных участках клеток, что, в свою очередь обеспечивается принципом компартментации клетки. В конечном итоге в процессе обмена поступившие в организм вещества превращаются в собственные специфические вещества тканей и в конечные продукты, выводящиеся из организма. В процессе любых биохимических трансформаций освобождается и поглощается энергия.
Клеточный метаболизм выполняет четыре основные специфические функции, а именно: извлечение энергии из окружающей среды и преобразование ее в энергию макроэргических (высокоэнергетических) химических соединений в количестве, достаточном для обеспечения всех энергетических потребностей клетки; образование из экзогенных веществ промежуточных соединений, являющихся предшественниками высокомолекулярных компонентов клетки; синтез из этих предшественников белков, нуклеиновых кислот, углеводов, липидов и других клеточных компонентов; синтез и разрушение специальных биомолекул, образование и распад которых связаны с выполнением специфических функций данной клетки.
Поскольку первоначальные представления об обмене веществ возникли в связи с изучением процессов обмена между организмом и внешней средой и лишь впоследствии эти представления расширились до понимания путей трансформации веществ и энергии внутри организма, до настоящего времени принято выделять соответственно внешний, или общий, обмен веществ и внутренний или промежуточный, обмен веществ. В свою очередь как во внутреннем, так и во внешнем обмене веществ различают структурный (пластический) и энергетический обмен. Под структурным обменом понимают взаимные превращения различных высоко- и низкомолекулярных соединений в организме, а также их перенос (транспорт) внутри организма и между организмом и внешней средой. Под энергетическим обменом понимают высвобождение энергии химических связей молекул, образующейся в ходе реакций и ее превращение в тепло (большая часть), а также использование энергии на синтез новых молекул, активный транспорт, мышечную работу (меньшая часть). В процессе обмена веществ часть конечных продуктов химических реакций выводится во внешнюю среду, другая часть используется организмом. В этом случае конечные продукты органического обмена накапливаются или расходуются в зависимости от условий существования организма, называясь запасными или резервными веществами.
Как указывалось выше совокупность химических превращений веществ, которые происходят непосредственно в организме, начиная с момента их поступления в кровь и до момента выделения конечных продуктов обмена из организма, называют промежуточным обменом (промежуточным метаболизмом). Промежуточный обмен может быть разделен на два процесса: катаболизм (диссимиляция) и анаболизм (ассимиляция). Катаболизмом называют ферментативное расщепление крупных органических молекул, осуществляемое у всех высших организмов, как правило, окислительным путем. Катаболизм сопровождается освобождением энергии, заключенной в химических связях органических молекул, и резервированием ее в форме энергии фосфатных связей молекулы аденозинтрифосфорной кислоты (АТФ). Анаболизм, напротив, представляет собой ферментативный синтез крупномолекулярных клеточных компонентов, таких, как полисахариды, нуклеиновые кислоты, белки, липиды, а также некоторых их биосинтетических предшественников из более простых соединений. Анаболические процессы происходят с потреблением энергии. Процессы катаболизма и анаболизма происходят в клетках одновременно, неразрывно связаны друг с другом и являются обязательными компонентами одного общего процесса — метаболизма, в котором превращения веществ теснейшим образом переплетены с превращениями энергии. Катаболические и анаболические реакции различаются, как правило, локализацией в клетке. Например, окисление жирных кислот до углекислого газа и воды осуществляется с помощью набора митохондриальных ферментов, тогда как синтез жирных кислот катализирует другая система ферментов, находящихся в цитозоле. Именно благодаря разной локализации катаболические и анаболические процессы в клетке могут протекать одновременно. При этом все превращения органических веществ, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии.
На второй стадии катаболизма продуктами химических реакций становятся еще более простые молекулы, унифицированные для углеводного, белкового и липидного обмена. по своему типу (гликолиз, катаболизм аминокислот, β-окисление жирных кислот соответственно). Принципиальным является то, что на второй стадии катаболизма образуются продукты, которые являются общими для обмена исходно разных групп веществ. Эти продукты представляют собой ключевые химические соединения, соединяющие разные пути метаболизма. К таким соединениям относятся, например, пируват (пировиноградная кислота), образующийся при распаде углеводов, липидов и многих аминокислот, ацетил-КоА, объединяющий катаболизм жирных кислот, углеводов и аминокислот, a-кетоглутаровая кислота, оксалоацетат (щавелевоуксусная кислота), фумарат (фумаровая кислота) и сукцинат (янтарная кислота), образующиеся при трансформации аминокислот. Продукты, полученные на второй стадии катаболизма, вступают в третью стадию, которая известна как цикл трикарбоновых кислот (терминальное окисление, цикл лимонной кислоты, цикл Кребса). На третьем этапе ацетил-КоА и некоторые другие метаболиты, например α-кетоглутарат, оксалоацетат, подвергаются окислению в цикле ди- и трикарбоновых кислот Кребса. Окисление сопровождается образованием восстановленных форм НАДН + Н+ и ФАДН2. Именно в ходе второй и третьей стадий катаболизма освобождается и аккумулируется в виде АТФ практически вся энергия химических связей подвергнутых диссимиляции веществ. При этом осуществляется перенос электронов от восстановленных нуклеотидов на кислород через дыхательную цепь, сопровождающийся образованием конечного продукта – молекулы воды. Транспорт электронов в дыхательной цепи сопряжен с синтезом АТФ в процессе окислительного фосфорилирования.
В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Энергия расходуется не только на поддержание температуры тела и выполнение работы, но и на воссоздание структурных элементов клеток, обеспечение их жизнедеятельности, роста и развития организма. Тем не менее, только часть получаемой при окислении белков, жиров и углеводов энергии используется для синтеза АТФ, другая, значительно большая, превращается в теплоту. Так, при окислении углеводов 22, 7% энергии химических связей глюкозы в процессе окисления используется на синтез АТФ, а 77, 3% в виде тепла рассеивается в тканях. Аккумулированная в АТФ энергия используемая в дальнейшем для механической работы, химических, транспортных, электрических процессов в конечном счете тоже превращается в теплоту. Следовательно, количество тепла, образовавшегося в организме, становится мерой суммарной энергии химических связей, подвергшихся биологическому окислению. Поэтому вся энергия, образовавшаяся в организме, может быть выражена в единицах тепла — калориях или джоулях.
Общий баланс энергии организма определяют на основании калорийности вводимых пищевых веществ и количества выделенного тепла, которое может быть измерено или рассчитано. При этом надо учитывать, что величина калорийности, получаемая при лабораторной калориметрии, может отличаться от величины физиологической калорической ценности, поскольку некоторые вещества в организме не сгорают полностью, а образуют конечные продукты обмена, способные к дальнейшему окислению. В первую очередь это относится к белкам, азот которых выделяется из организма главным образом в виде мочевины, сохраняющей некоторый потенциальный запас калорий. Очевидно, что калорическая ценность, дыхательный коэффициент и величина теплообразования для разных веществ различны. Физиологическая калорическая ценность (в ккал/г) составляет для углеводов — 4, 1; липидов — 9, 3; белков — 4, 1; величина теплообразования (в ккал на 1 литр потребленного кислорода) для углеводов составляет 5, 05; липидов — 4, 69; белков — 4, 49.
Процесс анаболизма по аналогии с катаболическими процессами также проходит три стадии. При этом исходными веществами для анаболических процессов служат продукты второй стадии и промежуточные соединения третьей стадии катаболизма. Таким образом вторая и третья стадии катаболизма являются в то же время первой, исходной стадией анаболизма и химические реакции, протекающие в данном месте и в данное время, выполняют по сути двойную функцию. С одной стороны, они являются основой завершающего этапа катаболизма, а с другой — служат инициацией для анаболических процессов, поставляя вещества-предшественники для последующих стадий ассимиляции. Подобным образом, например, начинается синтез белка. Исходными реакциями этого процесса можно считать образование некоторых a-кетокислот. На следующей, второй стадии в ходе реакций аминирования или трансаминирования эти кетокислоты превращаются в аминокислоты, которые на третьей стадии анаболизма объединяются в полипептидные цепи. В результате ряда последовательных реакций происходит также синтез нуклеиновых кислот, липидов и полисахаридов. Тем не менее следует подчеркнуть, что пути анаболизма не являются простым обращением процессов катаболизма. Это связано прежде всего с энергетическими особенностями химических реакций. Некоторые реакции катаболизма практически необратимы, поскольку их протеканию в обратном направлении препятствуют непреодолимые энергетические барьеры. Поэтому в ходе эволюции были выработаны другие, специфические для анаболизма реакции, где синтез олиго- и полимерных соединений сопряжен с затратой энергии макроэргических соединений, прежде всего – АТФ.
Статья добавлена 31 мая 2016 г.
7 основных причин старения
Старение есть сумма всех механизмов, которые изменяют функции живого существа, препятствуют поддержанию физиологического баланса и в конечном итоге приводят к смерти. Процесс старения это процесс сложный, постепенный, зависящий от многих биологических факторов. Ученые всегда проявляли особый интерес к старению и поиску подходов к изучению этого феномена.
Исследования показали, что старение контролируется генетическими факторами и биологическими процессами, присущими человечеству.
Чтобы замедлить этот естественный процесс и увеличить продолжительности жизни, первым шагом является понимание причин старения: как оно действует на живые организмы, и какие факторы влияют на продолжительность жизни.
Существует 7 основных причин: повреждение генома, эпигенетические факторы, укорочение теломер, развернутая реакция белка, дисфункция митохондрий, клеточное старение и истощение стволовых клеток.
Ошибки репарации ДНК
Геном — это сумма генетической информации человека или вида. Геном является картой для построения всего организма. Генетическая информация, в основном, хранится в ядре клетки в виде молекул ДНК. Участок ДНК, задающий последовательность определённого полипептида, либо функциональной РНК, представляет ген. Геном человека содержит от 25 000 до 30 000 генов.
Но молекулы ДНК не лежат в свободном виде в ядре клетки, они упакованы вместе с белками-гистонами в хромосомы. Хромосомы содержат всю генетическую информацию и реплицируются с каждым клеточным делением.
На протяжении всей жизни клетки делятся множество раз, в результате генетический материал постоянно воспроизводится в живых системах и передается вновь созданным дочерним клеткам. Во время клеточного деления довольно часто наблюдаются генетические ошибки, которые образуются во время репликации ДНК. Они называются ошибками репликации ДНК. Ошибки репликации приводят к нарушению функционирования клетки и могут повлиять на оставшуюся ткань, если клетка не будет устранена в результате запуска апоптоза (гибели клеток) или старения (ухудшения функций клетки).
В организме также существует система, которая восстанавливает молекулу ДНК, модифицированную во время репликации. Система использует белки и ферменты. PARP1 — участвует в репарации ДНК и сиртуинов, а также в регуляции экпрессии генов, ремоделировании хроматина и функционировании митохондрий. NAD+ является косубстратом PARP. С возрастом происходит увеличение экспрессии белков PARP, что говорит о частых ошибках репликации и необходимости их устранения. В ответ на повреждения ДНК из-за работы PARP в клетке также очень быстро истощаются запасы NAD+, что приводит к клеточной гибели.
Активация фермента PARP может индуцировать сверхэкспрессию белка P53. Белок Р53 представляет другую систему контроля жизненного цикла клетки. Р53 отвечает за элиминацию канцерогенных клеток и позволяет продлить жизнь органов, предотвращая развитие раковых клеток. Однако, чем больше белка активируется, тем больше он ускоряет процесс старения, приводя к усиленному разрушению клеток и потери гомогенности тканей.
Механизм укорочения теломерных повторов
Способность диплоидных клеток к пролиферации ограничена. Этот процесс регулируется теломерами. Теломеры оказывают защитное действие на ДНК. Теломеры являются той частью хромосомы, которая не содержит генетической информации, и разрушаются на протяжении всей жизни при каждой репликации до тех пор пока полностью не исчезнут. Поскольку ДНК больше не защищена, при репликации важная информация «разжевывается», что приводит к апоптозу клетки или созданию раковой клетки. Фермент теломераза обеспечивает полную репликацию теломер. Он обнаружен только в стволовых, эмбриональных и раковых клетках. Присутствие этого фермента в раковых клетках объясняет, почему они бессмертны: они могут делиться бесконечно, не останавливаясь на своих «биологических часах». Работа этого фермента представляет большой научный интерес, однако, его активация может быть связана с виндукцией злокачественной трансформации.
Сокращение теломер можно сравнить с биологическими часами, которые активируют старение клеток, как только время истекает. Этот механизм ограничивает продолжительность жизни всех клеток, поэтому является центральным.
Эпигенетические механизмы и старение
Эпигенетика занимается изучением механизмов, управляющих экспрессией генома. Экспрессия генов может варьировать в зависимости от факторов окружающей среды. Органы демонстрируют эту изменчивость: каждая клетка имеет сходную генетическую информацию, но разные функции, что показывает разницу в экспрессии генов в зависимости от окружающей среды.
Белки представлены полипептидной цепью, состоящей из последовательности аминокислот. Работают белки благодаря своей конформационной структуре: вторичной, третичной, четвертичной. Складывание белка представляет физический процесс-фолдинг, посредством которого белок становится функционально активным.
Исследования показали, что нарушение процесса фолдинга белка составляет патофизиологическую основу многих возрастных заболеваний различной этиологии, в том числе болезни Альцгеймера, болезнь Паркинсона и прочих.
Последствия нарушения конформационных структур связаны с накоплением агрегатов белков неправильной конформации.
Митохондриальная дисфункция и возраст
Митохондрии — это клеточные органеллы, ответственные за поддержание клеточного дыхания и синтез АТФ — основного источника энергии. Митохондрии обладают собственной ДНК, называемой мтДНК.
Дисфункция митохондрии является основной причиной старения из-за жизненно важной роли митохондрий в клетках. Возрастная дисфункция наблюдается с возрастом, может привести к гибели клетки. Ее причиной служит окислительный стресс, нарушение клеточно-митохондриальной связи.
Клеточное старение происходит, когда возраст клетки увеличивается и ее функция уменьшается. Клетка прекращает делиться и меняет свою активность. Стареющие клетки можно увидеть на всех этапах жизни. С возрастом их число увеличивается в некоторых тканях, вызывая их гетерогенность.
Механизм клеточного старения полезен в молодости. Он защищает организм от пролиферации раковых клеток, но требует эффективной работы иммунной системы для устранения стареющих клеток. При старении эффективность иммунной системы снижается, обновления стволовых клеток происходит реже.
Стволовые клетки — это недифференцированные клетки, которые не принадлежат к какому-либо конкретному органу и поэтому могут генерировать специализированные клетки посредством «клеточной дифференцировки».
Стволовые клетки позволяют обновлять клетки в органе, они хранятся в организме и используются при необходимости.
Некоторые клетки стареют и умирают регулярно и требуют замены. Срок жизни эритроцита в среднем 120 дней. Другие органы могут расти и требовать больше ткани (например, матка во время беременности). Некоторые органы не имеют стволовых клеток и поэтому не могут быть обновлены при повреждении, например, сердце, поджелудочная железа.
При старении ткани также не восстанавливаются из-за замедления деления клеток и отсутствия замены стволовых клеток. Это объясняется избыточной экспрессией белков, блокирующих клеточный цикл, или накоплением повреждений ДНК на стволовых клетках.
Истощение стволовых клеток является одной из основных причин старения, поскольку препятствует обновлению клеток и является причиной старения органов. Понимание работы стволовых клеток будет жизненно важным для регенеративной медицины в будущем.
Вышеуказанные причины потенциально ответственны за изменение функций организма. Некоторые из них лежат в основе полезных механизмов, которые становятся вредными с возрастом, как в случае с клеточным старением и системой репарации ДНК. Механизмы предотвращают развитие рака, но по мере того, как их активность становится слишком высокой, происходит сбой, дегенерация тела ускоряется.
Другими причинами являются простые механизмы, которые медленно развиваются во времени (митохондриальная дисфункция, укорочение теломер). Необходимо понимать их, если мы когда-нибудь захотим поработать над этим, чтобы потенциально замедлить старение, и увеличить продолжительность жизни человека.
Системы органов тела человека
организме — осуществляются посредством.
Текст статьи: Системы органов тела человека. — Многообразные жизненные процессы—функции в человеческом Основные закономерности метаболических процессов в организме человека. Часть 2.Рассматривая обмен веществ в условиях нормального функционирования организма, следует остановиться на безусловно взаимосвязанных, но в то же время достаточно специфичных составляющих метаболизма, а именно на углеводном, белковом, липидном и водно-электролитном обмене. Очевидно, что основная роль углеводов в метаболизме определяется их энергетической функцией. Именно глюкоза крови вследствие наличия простого и быстрого пути гликолитической диссимиляции и последующего окисления в цикле трикарбоновых кислот, а также возможности максимально быстрого извлечения ее из депо гликогена, обеспечивающей экстренную мобилизацию энергетических ресурсов, является наиболее востребованным источником энергии в организме. Использование циркулирующей в плазме глюкозы разными органами неодинаково: мозг задерживает 12% глюкозы, кишечник— 9%, мышцы — 7%, почки — 5%. При этом уровень глюкозы плазмы крови является одной из важнейших гомеостатических констант организма, составляя 3, 3—5, 5 ммоль/л. Как известно снижение уровня глюкозы ниже допустимого передела имеет своим незамедлительным следствием дискоординацию деятельности ЦНС, проявляющуюся соответствующей клинической симптоматикой: головной мозг содержит небольшие резервы углеводов и нуждается в постоянном поступлении глюкозы, поскольку энергетические расходы мозга покрываются исключительно за счет углеводов. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту. При полном отсутствии углеводов в пище они образуются в организме из продуктов трансформации жиров и белков. В печени возможно новообразование углеводов как из собственных продуктов их распада (пировиноградной или молочной кислоты), так и из продуктов диссимиляции жиров и белков (кетокислот и аминокислот), что обозначается как глюконеогенез. В результате трансформации аминокислот образуется пировиноградная кислота, при окислении жирных кислот — ацетилкоэнзим А, который может превращаться в пировиноградную кислоту — предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов. Между двумя основными источниками энергии — углеводами и жирами — существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. Поступление в кровь свободных жирных кислот уменьшается. В случае возникновения гипогликемии процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты. Гликогенез, гликогенолиз и глюконеогенез являются тесно взаимосвязанными процессами, обеспечивающими оптимальный уровень глюкозы крови сообразно степени функционального напряжения организма. Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы. Единственным гормоном, снижающим уровень гликемии, является инсулин — гормон, вырабатываемый β-клетками островков Ланхгерганса. Снижение гликемии происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый α-клетками островков Ланхгерганса, адреналин — гормон мозгового слоя надпочечников, глюкокортикоиды — гормоны коркового слоя надпочечников, соматотропный гормон гипофиза, тироксин и трийодтиронин — гормоны щитовидной железы. Данные гормоны в связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина часто объединяют понятием «контринсулярные гормоны». Таким образом биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией. Обладая энергетической ценностью в 16, 7 кДж (4, 0 ккал) на 1 грамм вещества, углеводы являются основным источником энергии для всех клеток организма, при этом выполняя еще пластическую и опорную функции. Суточная потребность взрослого человека в углеводах составляет около 500 г. — пластическая (структурная) функция заключается в том, что белки являются главной составной частью всех клеточных и межклеточных структур тканей; — ферментная (каталитическая, энзимная) функция состоит в обеспечении всех химических реакций, протекающих в ходе обмена веществ в организме (дыхание, пищеварение, выделение), деятельностью ферментов, являющихся по своей структуре белками; — транспортная функция белков заключается в их способности к соединению с целым рядом метаболитов и переносе последних в связанном состоянии в межтканевой жидкости и плазме крови к области их утилизации; — защитная функция белков проявляется реализацией иммунного ответа образованием иммуноглобулинов (антител) и системы комплемента при поступлении в организм чужеродного белка, а также способностью к непосредственному связыванию экзогенных токсинов; белки системы гемостаза обеспечивают свертывание крови и остановку кровотечения при повреждении кровеносных сосудов; — регуляторная функция, направленная на сохранение гомеостаза с поддержанием биологических констатнт организма, реализуется буферными свойствами молекулы протеинов, белковой структурой клеточных рецепторов, активируемых в свою очередь регуляторными полипептидами и гормонами, также имеющими белковую структуру; — двигательная функция, обеспечивается взаимодействием сократительных белков мышечной ткани актина и миозина; — энергетическая роль белков состоит в обеспечении организма энергией, образующейся при диссимиляции белковых молекул; при окислении 1 г белка в среднем освобождается энергия, равная 16, 7 кДж (4, 0 ккал). При катаболизме почти все природные аминокислоты сначала передают аминогруппу на а-кетоглутарат в реакции трансаминирования с образованием глутамата и соответствующей кетокислоты. Затем глутамат подвергается прямому окислительному дезаминированию под действием глутаматдегидрогеназы, в результате чего получаются а-кетоглутарат и аммиак. При необходимости синтеза аминокислот и наличии необходимых а-кетокислот обе стадии непрямого дезаминирования протекают в обратном направлении. В результате восстановительного аминирования а-кетоглутарата образуется глутамат, который вступает в трансаминирование с соответствующей а-кетокислотой, что приводит к синтезу новой аминокислоты. В случае использования белков в качестве источника энергии большинство аминокислот окисляются в конечном счёте через цикл лимонной кислоты до углекислого газа и воды. Прежде, чем эти вещества вовлекаются в заключительный этап катаболизма, их углеродный скелет превращается в двухуглеродный фрагмент в форме ацетил-КоА. Именно в этой форме большая часть молекул аминокислот включается в цикл лимонной кислоты. Таблица 1. 1. Аминокислоты, входящие в состав белков человека. 1. Незаменимые 2. Частично заменимые 3. Условно заменимые 4. Заменимые Таблица 1. 2. Классификация липидов организма человека. 1. Гликолипиды. Содержат углеводный компонент. 2. Жиры. 3. Минорные липиды. 4. Стероиды. А. Стерины (спирты). Наиболее важен холестерин. В. Стериды. Эфиры стеринов и высших жирных кислот. Наиболее распространены эфиры холестерина. 5. Фосфолипипы. Одним из продуктов катаболизма жиров, имеющем важное значения для метаболизма в целом являются кетоновые тела. Кетоновые тела — группа органических соединений, являющихся промежуточными продуктами жирового, углеводного и белкового обменов. К кетоновым телам относят β-оксимасляную и ацетоуксусную кислоты и ацетон, имеющие сходное строение и способные к взаимопревращениям. Главным путем синтеза кетоновых тел, происходящего в основном в печени, считается реакция конденсации между двумя молекулами ацетил-КоА, образовавшегося при β-окислении жирных кислот или при окислительном декарбоксилировании пирувата (пировиноградной кислоты) в процессе обмена глюкозы и ряда аминокислот. Данный путь синтеза кетоновых тел более других зависит от характера питания и в большей степени страдает при патологических нарушениях обмена веществ. Из печени кетоновые тела поступают в кровь и с нею во все остальные органы и ткани, где они включаются в универсальный энергообразующий цикл — цикл трикарбоновых кислот, в котором окисляются до углекислоты и воды. Кетоновые тела используются также для синтеза холестерина, высших жирных кислот, фосфолипидов и заменимых аминокислот. При голодании, однообразном безуглеводистом питании и при недостаточной секреции инсулина использование ацетил-КоА в цикле трикарбоновых кислот подавляется, так как все метаболически доступные ресурсы организма превращаются в глюкозу крови. В этих условиях увеличивается синтез кетоновых тел. Следует подчеркнуть важную роль кетоновых тел в поддержании энергетического баланса. Кетоновые тела – поставщики «топлива» для мышц, почек и действуют, возможно, как часть регуляторного механизма с обратной связью, предотвращая чрезвычайную мобилизацию жирных кислот из жировых депо. Печень в этом смысле является исключением, она не использует кетоновые тела в качестве энергетического материала. Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами и тесно связаны с углеводным обменом. Так, повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот, тормозит синтез триглицеридов и усиливает их расщепление. Таким образом, взаимосвязь жирового и углеводного обменов направлена на обеспечение энергетических потребностей организма. При избытке углеводов в пище триглицериды депонируются в жировой ткани, при нехватке углеводов происходит расщепление триглицеридов с образованием неэтерифицнрованных жирных кислот, служащих источником энергии. В обмене жиров одна из важнейших ролей принадлежит печени. Печень — основной орган, в котором происходит образование кетоновых тел (бета-оксимасляная, ацетоуксусная кислоты, ацетон), используемых как альтернативный глюкозе источник энергии. Как указывалось выше метаболизм жиров контролируется нервной и эндокринной системами. Мобилизация жиров из депо происходит под влиянием гормонов мозгового слоя надпочечников — адреналина и норадреналина. Соматотропный гормон гипофиза также обладает жиромобилизирующим действием. Аналогично действует тироксин — гормон щитовидной железы. Тормозят мобилизацию жира глюкокортикоиды — гормоны коркового слоя надпочечника, вероятно, вследствие того, что они несколько повышают уровень глюкозы в крови. Действие инсулина связано с повышением активности внутриклеточной фосфодиэстеразы, что приводит к снижению концентрации цАМФ и угнетению липолиза. Таким образом, инсулин усиливает синтез жира и уменьшает скорость его мобилизации. Имеются данные, свидетельствующие о возможности прямых нервных влияний на обмен жиров. Симпатические влияния тормозят синтез триглицеридов и усиливают их распад. Парасимпатические влияния, напротив, способствуют отложению жира в депо. Статья добавлена 31 мая 2016 г.
|