Сколько точек пересечения могут иметь четыре попарно пересекающиеся прямые?
Сразу говорю, что задачу решать НЕ НАДО. Оставьте это мне. Я просто хочу разобраться, что означает «попарное пересекающиеся прямые».
У меня есть такая интерпретация: Имеется в виду, что все прямые «собраны» в пары. И каждая такая «сладкая парочка» пересекается другой такой же парой или «одиночной» прямой. Правда в этом конкретном случае «одиночек» нет, ибо количество прямых четное.
Я правильно все понимаю, или моя интерпретация неверна? Если неверна, то что тогда имеется в виду?
задан 23 Май ’13 13:26
I_Robot 183 ● 4 ● 17 ● 38 92% принятых
Здесь имеется в виду, что какие бы две прямые из четырёх мы ни взяли, они будут пересекаться.
«они будут пересекаться.» Может быть, более точным будет сказать «они ДОЛЖНЫ пересекаться»?
Кстати, преобразуйте пожалуйста свой комментарий в ответ, дабы я мог закрыть вопрос.
3 ответа
Можно сказать «они пересекаются», «они должны пересекаться», «они будут пересекаться». Это всё одна и та же мысль. Суть в том, что любые две прямые из четырёх имеют точку пересечения. Фактически, это означает, что среди прямых нет параллельных (хотя в принципе такие прямые могли бы быть в какой-то другой ситуации, и тогда ответ был бы другим). Слово «попарно» вообще очень часто используется в математике. Например, «даны три попарно различных числа». Это значит, что первое число не равно второму, а также не равно третьему, а второе число не равно третьему.
отвечен 23 Май ’13 13:57
Если речь идет об одной паре прямых, то в одной точке, а ежели о двух парах и более, то рассматриваютя разные варианты расположения уже самих пересекающихся пар прямых.
отвечен 13 Сен ’15 13:02
Можете ли дать ссылку на определение «попарно пересекающиеся прямые» из учебника? Например как построить 5 попарно пересекающихся прямых? Можно-ли из этого сделать вывод, что одна прямая может пересекать лишь 2 других?
IP76 > Пересечение прямых, угол и координаты пересечения
Не такая тривиальная задача, скажу я вам. Всякий раз, когда возникает необходимость посчитать координату пересечения пары прямых, каждая из которых задана парой точек, снова беру блокнот и вывожу пару формул. И всякий раз – блин, ну это уже когда-то было, опять надо что-то делать с параллельными прямыми, опять появляется пакостная строго вертикальна линия, когда на (x1-x2) никак не разделить и т.д.
Поэтому – в подборку теории и практики, пригодится, сэкономим блокнот, спасем дерево.
Коэффициенты А, B, C
Все помним со школы формулу:
Тоже самое, но с претензией на образование (некоторые индивидуумы утверждают, что существует такая, и только такая, и никакая другая, формулировка):
Те же фаберже, только сбоку.
В теории надо составить и решить систему уравнений для первой и второй линии, где переменными будут X и Y точки пересечения.
Загвоздка в том, что мы не знаем коэффициенты для обеих линий.
В нашем случае известны координаты двух точек, по которым проходит линия. Поэтому мне, как последователю геометрического агностицизма, более привлекательная следующая формула:
Путем несложных операций приходим к следующей записи:
Глядя на вариант в исполнении высшего образования, получаем следующие формулы для нахождения коэффициентов:
Пока все идет отлично, нигде вероятного деления на ноль не встретилось.
Итак, мы можем легко найти два набора коэффициентов для первой и второй прямых. Переходим к системе уравнений.
Система уравнений
Как правило, подобная система уравнений решается путем выражения одной переменной через другую, подстановкой во второе уравнение, получая таким образом уравнение одной переменной. Далее переменная находится, подставляется, решается. Или определяется, что система решения не имеет.
Но нас интересует метод Крамера. Потому что с помощью этого метода можно получить сразу значения для обеих переменных, без дополнительных телодвижений.
Сразу же запишем метод под нашу систему.
Имеем следующую систему:
Исходя из метода, решение выглядит так:
Ага! Вот и возможное деление на ноль, скажете вы. И правильно! В этой, в высшей степени непозволительной ситуации, когда знаменатель равен нулю, решения нет, прямые либо параллельны, либо совпадают (что, впрочем, частный случай параллельности). В коде, естественно, этот момент надо учитывать.
Практика 1
Частные случаи
Принадлежность точки отрезку
В общем случае, чтобы определить принадлежность точки отрезку, надо установить две вещи:
Займемся пунктом 2. Данный факт можно установить двумя способами:
Практика показывает, что арифметический способ быстрее примерно в 3 раза. Когда-то я считал, что операции сравнения самые быстрые. Это давно уже не так.
Угол пересечения прямых
Угол пересечения прямых — это угол пересечения направляющих векторов. Т.е., взяв уже знакомые ранее точки p1 и p2, получим направляющий вектор V(p1,p2), и аналогично второй вектор M(p3,p4). В теории мы должны вычислить достаточно «затратную» функцию, с корнями, квадратами, дробями и арккосинусом.
Давайте не будем останавливаться на ней, она долгая, нудная и в нашем случае ненужная. Рассмотрим вектор:
Рис.4. Вектор V(p1,p2)
α — угол наклона вектора к оси X, который можно найти, как:
Что-то знакомое? Да это ни что иное, как коэффициенты в уравнении прямой от образованных фанатов. Может они и правы в своем испепеляющем фанатизме…
Одним словом, коэффициенты (расстояния) у нас уже есть по обеим прямым.
Рис.5. Пересекающиеся вектор V(p1,p2) и вектор M(p3,p4)
Судя по рисунку, угол между векторами, это сумма углов наклона векторов к оси X. Ммм… не совсем так, на самом деле это разность.
Рис.6. Пересекающиеся векторы в положительной Y
По рисунку явно видно, что угол между векторам это γ = (β — α).
В предыдущем примере все правильно, просто знаки углов разные, т.к. находятся по разные стороны от оси X, а формула работает та же.
От теории к практике
Теперь в плане практического применения. Мне нужно точно знать, откуда, куда и в каком направлении этот угол. В теории, углом между прямыми считается наименьший из пары γ и (180-γ). Так вот, нам это не надо. Какой угол получится – такой нам и нужен.
Поэтому, под углом между векторами понимаем угол от вектора V(p1,p2) к вектору M(p3,p4). Если знак угла – отрицательный, понимаем, что он против часовой стрелки, иначе – по часовой стрелке.
Следует заметить, что, зная коэффициенты, для нахождения угла пересечения, координаты уже не нужны. Листинг таков:
Из школьного курса геометрии каждому человеку известно, что параллельными именуются прямые, которые не имеют общей точки. Однако это простое утверждение почему-то изредка опровергается различными знакомыми, которые доказывают, что коллинеарные линии могут пересекаться. В реальности, геометрия Евклида, которую преподают в школе не единственный вариант этой науки. При более конкретном исследовании выясняется, что пересечение параллельных прямых зависит от формы поверхности, на которой они проведены. Рассмотрим несколько различных вариантов геометрий, принципиально отличающихся друг от друга.
Это привычная всем геометрия, имеющая историю в не одну тысячу лет. Ее начала были известны еще в Древнем Египте, а аксиомы (постулаты, утверждения) были сформулированы в Древней Греции выдающимся математиком древности Евклидом. Все его утверждения не вызывали сомнений, кроме пятого. Это утверждение показывало, что через точку, лежащую вне прямой, есть возможность провести единственную прямую коллинеарную заданной. Коллинеарные прямые в этом случае не пересекаются. Сумма внутренних углов треугольника равна двум прямым углам. Однако попытки математически доказать 5 постулат Евклида упирались в порочный круг.
Приведенные выше рассуждения дали возможность создать проективную геометрию, которая дополняет привычную Евклидову прямую бесконечно удаленной точкой, а на плоскости появляется прямая бесконечно удаленных точек. Вот на этой прямой и пересекаются все коллинеарные прямые.
В 19 веке Николай Иванович Лобачевский, а также немец Гаусс и венгр Больяи, предложили геометрию, в которой имеются минимум 2 прямые коллинеарные заданной. Эти прямые пересекаются между собой и приближаются к заданной прямой с двух различных направлений. Место их пересечения с заданной прямой находится в бесконечно удаленной точке. Прямые, которые пересекаются с заданной прямой еще дальше, называются сверхпараллельными.
Наглядно это можно представить, если изобразить плоскость, как овал, и провести внутри него прямую. Линия границы овала будет представлять в таком варианте прямую бесконечно удаленных точек. Затем вне данной прямой зафиксируем точку и проведем через нее 2 прямые, пересекающие заданную на границе овала (то есть на прямой бесконечно удаленных точек). Эти 2 прямые и будут называться параллельными. Те же прямые, которые пересекаются с данной прямой за пределами овала окажутся сверхпараллельными.
Согласно последним научным данным, геометрия Лобачевского имеет место в реальной природе вблизи крупных тяготеющих масс, где само пространство перестает быть плоским и получает кривизну. Сумма углов треугольника в этом варианте не достигает 180 градусов.
Сферическая геометрия и геометрия Римана
Тоже в 19 веке немец Риман по-своему проанализировал 5 утверждение Евклида и предположил, что коллинеарных прямых нет в принципе. На основании своего предположения Риман создал геометрию, в которой у всех прямых имеется общая точка, а сумма углов треугольника превышает 180 градусов. Нет в геометрии Римана и понятия, что точка лежит между двумя другими точками. Но это вполне реальная с математической точки зрения геометрия.
Объяснить римановскую геометрию на доступном примере сложно, поэтому имеет смысл обратиться к близкой к ней по множеству характеристик сферической геометрии (правда, здесь параллельные прямые пересекаются сразу в 2 точках).
Рассмотрим в качестве сферы нашу планету Земля. Как одну из прямых возьмем экватор, а в качестве коллинеарных между собой прямых будем считать меридианы. Они коллинеарны друг относительно друга, поскольку пересекают экватор под прямым углом (углом между пересекающимися линиями в математике является угол между их касательными, проведенными в точке пересечения данных линий). Однако известно, что меридианы пересекаются на полюсах.
Общим выводом, ради которого была написана статья, является утверждение, что нельзя достоверно сказать, пересекаются параллельные прямые или нет, если дополнительно не указывать, какой из видов геометрии имеется в виду.
Про смартфон — цены, обзоры и реальные отзывы покупателей
На сайте Pro-Smartfon найдёте отзывы и обзоры топовых смартфонов 2017 года. Всё о плюсах и минусах мобильных телефонов. Свежие фотографии, цены и реальные отзывы покупателей о лучших смартфонах
Что значит попарно пересекаются
Решебник по геометрии за 10 класс (Л.С.Атанасян, 2001 год), задача №15 к главе «Введение».
Каждая из трех точек принадлежит одновременно прямым.
Через три точки по аксиоме А1 можно провести единственную плоскость α. Поэтому отрезки АВ,
ВС и АС лежат в плоскость α
(по аксиоме А2), значит, прямые, которым принадлежат эти отрезки, тоже лежат в α.
Рассмотрим второй случай:
но и пересекается с l2 и l1 в точке М.
То есть прямые имеют общую точку, но не лежат в одной плоскости.
ПОПА́РНО, нареч. По двое, парами. Лебеди прилетают почти всегда попарно. С. Аксаков, Записки ружейного охотника. [Солдаты] стояли попарно, в полной караульной форме. Катаев, Белеет парус одинокий.
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
ПОПА’РНО, нареч. По-двое, парами. Ученики шли п.
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
попарно
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.
Насколько понятно значение слова сонливый(прилагательное):
Синонимы к слову «попарно»
Предложения со словом «попарно»
Цитаты из русской классики со словом «попарно»
Понятия, связанные со словом «попарно»
Отправить комментарий
Дополнительно
Предложения со словом «попарно»:
Мы проследим эту фазу до следующей ступени развития, когда, под влиянием крепостного права, община примет ещё новую форму: это уже будет самоуправление каторги, коллективизм цепи, сковывающий людей попарно.
После этого стойки попарно перекрещивают между собой, а чтобы удержать их в таком состоянии, скрепляют места пересечения скрепкой.
Тотчас за телом шли двенадцать пар лилипутов, держась попарно за руки, одетые в чёрные кафтаны, с длинными, волочившимися по земле мантиями, обшитыми флёром.
Можете ли дать ссылку на определение «попарно пересекающиеся прямые» из учебника? Например как построить 5 попарно пересекающихся прямых, сколько точек пересечения у них может быть? Можно-ли из этого сделать вывод, что одна прямая может пересекать лишь 2 других?
задан 22 Сен ’17 19:30
2 ответа
Каждая из 5-ти прямых должна пересечь остальные 4 прямые. Нужную конфигурацию образуют, например, продолжения сторон правильного 5-угольника.
отвечен 22 Сен ’17 19:35
@Анатолий75: это чисто языковой оборот. Имеется в виду, что любая пара прямых пересекается (то есть среди них нет параллельных). Вопрос о том, сколько точек пересечения при этом может образоваться, требует разбора случаев.
Если все 5 прямых проходят через одну точку, то точка пересечения одна. Если нет тройных и более точек пересечения, то ответом будет 5*4/2=10 точек пересечения. Если 4 прямые проходят через одну точку, а пятая их отдельно пересекает, то точек получается 5. Если есть ровно одна тройная точка пересечения, то всего точек получится 8. Наконец, могут быть две тройные точки пересечения, и тогда точек 6.
«Современная профориентация педагогов и родителей, перспективы рынка труда и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Описание слайда:
Упражнение 1 Проведите прямые, проходящие через различные пары из данных точек. Сколько всего таких прямых? Ответ: 6.
Описание слайда:
Упражнение 2 Проведите прямые, проходящие через различные пары из данных точек. Сколько всего таких прямых? Ответ: 10.
Описание слайда:
Упражнение 3 Проведите прямые, проходящие через различные пары из данных точек. Сколько всего таких прямых? Ответ: 10.
Описание слайда:
Упражнение 4 Сколько точек попарных пересечений могут иметь две прямые? Изобразите различные случаи. Ответ: а) ни одной; б) одну.
Описание слайда:
Упражнение 5 Сколько точек попарных пересечений могут иметь три прямые? Изобразите различные случаи. Ответ: 0, 1, 2, 3.
Описание слайда:
Упражнение 6 Изобразите четыре прямые так, чтобы у них было шесть точек попарных пересечений. Ответ:
Описание слайда:
Упражнение 7 Изобразите пять прямых так, чтобы у них было десять точек попарных пересечений. Ответ:
Описание слайда:
Упражнение 8 На сколько частей могут делить плоскость две прямые? Изобразите различные случаи. Ответ: а) 3; б) 4.
Описание слайда:
Упражнение 9 На сколько частей могут делить плоскость три прямые? Изобразите различные случаи. Ответ: а) 4; б) 6; в) 7.
Описание слайда:
Упражнение 10 На сколько частей разбивают плоскость прямые, изображенные на рисунке? Ответ: 16.
Описание слайда:
Упражнение 11 Через точку C проведите прямую, параллельную прямой AB. Ответ:
Описание слайда:
Упражнение 12 Через точку C проведите прямую, параллельную прямой AB. Ответ:
Описание слайда:
Упражнение 13 Через точку C проведите прямую, параллельную прямой AB. Ответ:
Описание слайда:
Упражнение 14 Через точку C проведите прямую, параллельную прямой AB. Ответ:
Описание слайда:
Упражнение 15 Укажите пары параллельных прямых. Ответ: a и f, b и e, c и g, d и h, p и q.
Описание слайда:
Упражнение 16 Через точку C проведите прямую, перпендикулярную прямой AB. Ответ:
Описание слайда:
Упражнение 17 Через точку C проведите прямую, перпендикулярную прямой AB. Ответ:
Описание слайда:
Упражнение 18 Через точку C проведите прямую, перпендикулярную прямой AB. Ответ:
Описание слайда:
Упражнение 19 Через точку C проведите прямую, перпендикулярную прямой AB. Ответ:
Описание слайда:
Упражнение 20 Укажите пары перпендикулярных прямых. Ответ: a и r, b и g, b и c, c и e, e и g, f и r.
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Курс повышения квалификации
Охрана труда
Курс профессиональной переподготовки
Библиотечно-библиографические и информационные знания в педагогическом процессе
Курс профессиональной переподготовки
Охрана труда
Ищем педагогов в команду «Инфоурок»
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
также Вы можете выбрать тип материала:
Общая информация
Похожие материалы
HDTV и 3DTV вещание через Интернет
ИНИСТ Банк Клиент Новое в генерации ключей
«Электричество и растения».
SMSDirect управляй рассылками легко!
Современное состояние страхового рынка, проблемы и инновационные пути развития
Оплата товаров и услуг без регистрации в системе WebMoney Transfer Через Терминалы оплаты.
Фармацевтические кластеры – мост через «долину смерти» для инновационных разработок
Не нашли то что искали?
Воспользуйтесь поиском по нашей базе из 5394315 материалов.
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Костромская область разработала программу привлечения педагогических кадров
Время чтения: 2 минуты
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
В России утвердили новый порядок формирования федерального перечня учебников
Время чтения: 1 минута
Рособрнадзор объявил сроки и формат ЕГЭ
Время чтения: 1 минута
ВПР для школьников в 2022 году пройдут весной
Время чтения: 1 минута
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.