Попарно пересекающиеся прямые что это такое

Сколько точек пересечения могут иметь четыре попарно пересекающиеся прямые?

Сразу говорю, что задачу решать НЕ НАДО. Оставьте это мне. Я просто хочу разобраться, что означает «попарное пересекающиеся прямые».

У меня есть такая интерпретация: Имеется в виду, что все прямые «собраны» в пары. И каждая такая «сладкая парочка» пересекается другой такой же парой или «одиночной» прямой. Правда в этом конкретном случае «одиночек» нет, ибо количество прямых четное.

Я правильно все понимаю, или моя интерпретация неверна? Если неверна, то что тогда имеется в виду?

задан 23 Май ’13 13:26

I_Robot
183 ● 4 ● 17 ● 38
92&#037 принятых

Здесь имеется в виду, что какие бы две прямые из четырёх мы ни взяли, они будут пересекаться.

«они будут пересекаться.» Может быть, более точным будет сказать «они ДОЛЖНЫ пересекаться»?

Кстати, преобразуйте пожалуйста свой комментарий в ответ, дабы я мог закрыть вопрос.

3 ответа

Можно сказать «они пересекаются», «они должны пересекаться», «они будут пересекаться». Это всё одна и та же мысль. Суть в том, что любые две прямые из четырёх имеют точку пересечения. Фактически, это означает, что среди прямых нет параллельных (хотя в принципе такие прямые могли бы быть в какой-то другой ситуации, и тогда ответ был бы другим). Слово «попарно» вообще очень часто используется в математике. Например, «даны три попарно различных числа». Это значит, что первое число не равно второму, а также не равно третьему, а второе число не равно третьему.

отвечен 23 Май ’13 13:57

Если речь идет об одной паре прямых, то в одной точке, а ежели о двух парах и более, то рассматриваютя разные варианты расположения уже самих пересекающихся пар прямых.

отвечен 13 Сен ’15 13:02

Можете ли дать ссылку на определение «попарно пересекающиеся прямые» из учебника? Например как построить 5 попарно пересекающихся прямых? Можно-ли из этого сделать вывод, что одна прямая может пересекать лишь 2 других?

отвечен 22 Сен ’17 19:18

Здравствуйте

Источник

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок №5. Взаимное расположение прямых в пространстве

Перечень вопросов, рассматриваемых в теме

Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.

Два отрезка называются параллельными, если они лежат на паралельных прямых.

Открытый электронный ресурс:

Теоретический материал для самостоятельного изучения

Мы уже знаем, что прямы в пространстве могут располагаться параллельно или пересекаться. Существует еще один вид- скрещивающиеся прямые. С ним мы мимолетно познакомились на предыдущем уроке. А сегодня нам предстоит разобраться с этой темой более подробно.

Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости. (рис. 1)

Попарно пересекающиеся прямые что это такое

Рисунок 1 – скрещивающиеся прямые

На прошлом уроке в качестве наглядного примера нами был приведен куб.

Сегодня предлагаем вам обратить внимание на окружающую вас обстановку и найти в ней скрещивающиеся прямые.

Примеры скрещивающихся прямых вокруг нас:

Одна дорога проходит по эстакаде, а другая под эстакадой

Попарно пересекающиеся прямые что это такое

Попарно пересекающиеся прямые что это такое

Горизонтальные линии крыши и вертикальные линии стен

Попарно пересекающиеся прямые что это такое

Разберем и докажем теорему, которая выражает признак скрещивающихся прямых.

Теорема. Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости).

Доказательство.
Рассмотрим прямую AB лежащую в плоскости и прямую CD, которая пересекает плоскoсть в точке D, не лежащей на прямой AB (рис. 2).

Попарно пересекающиеся прямые что это такое

Рисунок 2 – скрещивающиеся прямые АВ и СD

Итак, возможны три случая расположения прямых в пространстве:

Попарно пересекающиеся прямые что это такое

Попарно пересекающиеся прямые что это такое

Попарно пересекающиеся прямые что это такое

Разберем и докажем еще одну теорему о скрещивающихся прямых.

Теорема. Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

Доказательство
Рассмотрим скрещивающиеся прямые AB и CD.(рис. 3)

1. Через точку D можно провести прямую DE параллельную AB.
2. Через пересекающиеся прямые CD и DE можно провести плоскость α
3. Так как прямая АB не лежит в этой плоскости и параллельна прямой DE, то она параллельна плоскости.

4. Эта плоскость единственная, так как любая другая плоскость, проходящая через CD, будет пересекаться с DE и AB, которая ей параллельна.
Теорема доказана.

Попарно пересекающиеся прямые что это такое

Рисунок 3 – прямые АВ, СD, DЕ

Любая прямая, например ОО1, рассекает плоскость на две полуплоскости. Если лучи ОА и О1А1 параллельны и лежат в одной полуплоскости, то они называются сонаправленными.

Лучи О1А1 и ОА не являются сонаправленными. Они параллельны, но не лежат в одной полуплоскости. (рис. 4)

Попарно пересекающиеся прямые что это такое

Рисунок 4 – сонаправленные лучи

Теорема.Если стороны двух углов соответственно сонаправленны, то такие углы равны. (рис. 5)

Доказательство:

при доказательстве ограничимся случаем, когда углы лежат в разных плоскостях.

Отметим на сторонах угла O произвольные точки A и B.

На соответствующих сторонах угла O1 отложим отрезки OA1 и O₁B₁ равные соответственно ОA и OB.

2. В плоскости рассмотрим четырехугольник OAA1O1.

Так как противолежащие стороны OA и O1A1 этого четырехугольника равны и параллельны по условию, то этот четырехугольник– параллелограмм и, следовательно, равны и параллельны стороны AA1 и OO1.

3. В плоскости, аналогично можно доказать, что OBB1O1 параллелограмм, поэтому равны и параллельны стороны ВВ1 и OO1.

4. Если две отрезка AA1 и BB1 равны параллельны третьему отрезку OO1, значит, они равны и параллельны, т. е. АА1||BB1 и AA1 = BB1.

По определению четырехугольник АВВ1А1 – параллелограмм и из этого получаем АВ=А1В1.

5.Из выше построенного и доказанного АВ=А1В1, ОA =O1A1 и OB =O1B1 следует, что треугольники AOB и A1 O1 B1. равны по трем сторонам, и поэтому О= О1.

Попарно пересекающиеся прямые что это такое

Рисунок 5 – равные углы с сонаправленными сторонами

Источник

Пересекающиеся прямые

Пересекающиеся прямые — это в евклидовой геометрии пересечение двух прямых может быть пустым множеством, точкой или прямой. Различение этих случаев и поиск точки пересечения используется, например, в компьютерной графике, при планировании движения и для обнаружения столкновений.

Содержание:

Понятие пересекающихся прямых

Определение. Если две прямые имеют только одну общую точку, то такие прямые называют пересекающимися.

Попарно пересекающиеся прямые что это такое

На рисунке 2.291 прямые Попарно пересекающиеся прямые что это такоепересекаются в точке О.

Можно доказать такую теорему.

Теорема 1. Через две пересекающиеся прямые можно провести плоскость, и только одну.

Несколько прямых могут пересекаться не в одной точке, а, например, попарно. На рисунке 2.292 изображено пересечение трех прямых, каждые две из которых пересекаются только в одной точке. При этом образуется треугольник и вся эта фигура всегда лежит в одной плоскости.

Четыре прямые, каждые две из которых имеют только одну общую точку, образуют четырехугольник (рис. 2.293).

Попарно пересекающиеся прямые что это такое

Попарно пересекающиеся прямые что это такое

На рисунках 2.294, 2.295 изображены куб и тетраэдр, у которых продолжены их ребра. Мы видим, что в каждой вершине куба и тетраэдра пересекаются три прямые.

Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:

Смотрите также дополнительные лекции по предмету «Математика»:

Присылайте задания в любое время дня и ночи в ➔ Попарно пересекающиеся прямые что это такоеПопарно пересекающиеся прямые что это такое

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *