Пользуясь определением предела последовательности доказать что lim
Предел последовательности
п.1. Определение последовательности
С понятием «последовательность» мы уже познакомились, когда изучали прогрессии (см. §24 справочника для 9 класса). По определению:
Т.е., числовая последовательность – это некий набор чисел с присвоенными им порядковыми номерами. Это набор можно задать формулой, описанием или просто перечислением.
Например:
1) Формула \(y_n=\frac1n,\ n\in\mathbb
2) Формула \(y_n=(-1)^n,\ n\in\mathbb
3) Рекуррентная формула \(y_1=1,\ y_2=1,\ y_(n+2)=y_(n+1)+y_n\) задает бесконечную последовательность чисел Фибоначчи:
4) Описание «число π точностью до \(10^<-n>\)» задает бесконечную последовательность все более «подробных» значений числа π:
Этот ряд можно также задать формулой \(y_n=\frac<[\pi\cdot 10^n]><10^n>\), где квадратные скобки обозначают целую часть от числа.
п.2. Предел последовательности
Поведение последовательности «на длинных дистанциях» может быть неочевидным. Чтобы лучше понять, возрастает или убывает заданный ряд чисел, ограничен ли он какой-либо величиной или уходит на бесконечность, проще всего построить график.
1) \(y_n=\frac1n\) Последовательность сходится к 0 |
2) \(y_n=(-1)^n\) Последовательность ни к чему не сходится |
3) числа Фибоначчи \(y_1=1,\ y_2=1,\ y_ Последовательность уходит на бесконечность |
4) приближения числа π Последовательность сходится к π |
п.3. Как доказать сходимость последовательности к пределу?
\(\varepsilon\) | 0,1 | 0,01 | 0,001 | 0,0001 | 0,00001 | 0,000001 |
\(N_<\varepsilon>\) | 7 | 97 | 997 | 9997 | 99997 | 999997 |
\(\lg \varepsilon\) | -1 | -2 | -3 | -4 | -5 | -6 |
\(\lg N_<\varepsilon>\) | 0,845 | 1,987 | 2,999 | 4,000 | 5,000 | 6,000 |
И построим график (в логарифмическом масштабе):
Мы видим, что чем меньше ε, тем больше \(N_<\varepsilon>\). Но главное – мы всегда можем его указать.
Таким образом, мы доказали, что действительно \(\lim_
Ведь для любого сколь угодно малого \(\varepsilon\gt 0\) мы можем указать такой номер \(N_<\varepsilon>=\left[\frac1\varepsilon-4\right]+1\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_<\varepsilon>\) разность \(\left|\frac<1>
Построенный график интересен еще и тем, что показывает одно из важных практических применений логарифмов: если разбросы по шкалам очень велики, отличаются на порядки, то графики удобней строить в десятичных логарифмах.
Такие графики часто можно увидеть у физиков-ядерщиков, копающих вглубь, от нанометров до планковских длин; или у астрономов, всматривающихся вдаль, от тысяч километров до гигапарсек.
п.4. Ограниченные и неограниченные последовательности
п.5. Как доказать неограниченность последовательности?
Таким образом, мы доказали, что действительно \(\lim_
Ведь для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=[\sqrt
п.6. Примеры
ε | 0,1 | 0,01 | 0,001 | 0,0001 | 0,00001 | 0,000001 |
\(N_<\varepsilon>\) | 15 | 128 | 1253 | 12503 | 125003 | 1250003 |
Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\frac12\left(\frac<5><2\varepsilon>+3\right)\right]+1\), начиная с которого
\(\left|\frac
Что и требовалось доказать.
Показанный приём с усилением неравенства часто применяется в математическом анализе. Найденное \(N_<\varepsilon>\) немного больше «точного» значения, которое следует из исходной дроби \(\frac
Если найденный номер будет немного больше исходного – не страшно; главное, чтобы он 1) был обоснован; 2) гарантировал размещение всех последующих \(y_n,\ n\geq N_<\varepsilon>\) в ε окрестности предела b.
Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\frac<1><3\sqrt<\varepsilon>>\right]\), начиная с которого \(\left|\frac
Что и требовалось доказать.
Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[-\log_3\varepsilon\right]\), начиная с которого \(\left|\frac<3^n+1><3^n>-1\right|\lt\varepsilon,\ n\geq N_<\varepsilon>\).
Что и требовалось доказать.
ε | 0,1 | 0,01 | 0,001 | 0,0001 | 0,00001 | 0,000001 |
\(N_<\varepsilon>\) | 2 | 362 | 39602 | 3996002 | 4·10 8 | 4·10 10 |
Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\left(\frac<1><5\varepsilon>-1\right)^2\right]\), начиная с которого \(\left|\frac<\sqrt
Что и требовалось доказать.
Пример 2. Используя определения неограниченной последовательности, докажите, что:
a) \( \lim_
По условию: \(y_n=2^n\)
Записываем неравенство \(|y_n|\gt M\):
\begin
Таким образом, для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=\left[\log_2M\right]+1\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_M,\ y_n=2^n\gt M\).
Что и требовалось доказать.
M | 10 | 100 | 1 000 | 10 000 | 100 000 | 1 000 000 |
NM | 100 | 10 000 | 1 000 000 | 10 8 | 10 10 | 10 12 |
Таким образом, для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=\left[M^2\right]\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_M,\ y_n=\sqrt
Что и требовалось доказать.
Определение предела последовательности. Свойства сходящихся последовательностей.
Числовые последовательности.
Если каждому натуральному числу n сопоставлено в соответствие некое число xn, то говорят, что задана числовая последовательность
Как мы видим, xn — это функция, множеством определения которой является множество N всех натуральных чисел, а множество значенией этой функции, то есть значение всех xn, n∈N, называют множеством значений последовательности.
Множество значений последовательности может быть как конечным, так и бесконечным, но множество ее элементов всегда бесконечно, так как любые два разных элемента последовательности отличаются своими номерами.
Последовательность может быть задана формулой, которая позволяет вычислить каждый член последовательности по ее номеру. Например, если \(x_n=\frac<\left(-1\right)^n+1>2\), то каждый нечетный член последовательности будет равен 0, а каждый четный член равен 1.
Зачастую используют реккурентный способ записи формулы последовательности, когда каждый следующий член последовательности можно найти по известным предыдущим.
Определение предела последовательности.
Записать с помощью логических символов отрицания следующих утверждений:
Пользуясь определением: найти предел последовательности \(\
Пусть \(\displaystyle \lim_
$$
x_<1>,\ y_<1>,\ x_<2>,\ y_<2>\ldots,\ x_
$$
сходится и ее предел также равен a.
\(\triangle\) По определению предела для любого \(\varepsilon > 0\) существуют \(N_1=N_1(\varepsilon)\) и \(N_<2>=N_<2>(\varepsilon)\) такие, что для всех \(n\geq N_<1>\) выполняется неравенство \(|x_
Таким образом, а—предел последовательности \(\left\
С помощью логических символов данное определение можно записать следующим образом
Доказать, что последовательность \(\left\
Единственность предела последовательности.
Числовая последовательность может иметь только один предел.
Предположим, что \(\left\
Выберем ε > 0 таким, чтобы ε—окрестности точек a и b не пересекались, то есть не имели общих точек. Возьмем, например, ε = (b − a)/3. Так как число a—предел последовательности <xn>, то по заданному ε > 0 можно найти номер N такой, что \(x_n\in U_\varepsilon(a)\) для всех n > N. поэтому вне интервала \(U_\varepsilon(a)\) может оказаться лишь конечное число членов последовательности. В частности, интервал \(U_\varepsilon(b)\) может содержать лишь конечное число членов последовательности. Но это противоречит тому, что b—предел последовательности, так как согласно определению предела, любая окрестность точки b должна содержать бесконечное число членов последовательности. Данное противоречие показывает, что последовательность не может иметь два различных предела. Итак, сходящаяся последовательность имеет только один предел.
Ограниченность сходящейся последовательности.
Последовательность \(\left\
Последовательность \(\left\
Последовательность, ограниченная как сверху, так и снизу, называется ограниченной, то есть последовательность \(\left\
$$ \exists \ C_1 \ \exists \ C_2: \ \forall n \ \in\mathbb
Заметим, что условие \eqref
$$ \exists \ C > 0: \ \forall n\in\mathbb
Геометрически ограниченность последовательности означает, что все члены последовательности содержатся в С-окрестности точки нуль.
Если последовательность имеет предел, то она ограничена.
В силу теоремы 2 всякая сходящаяся последовательность является ограниченной. Обратное неверно: не всякая ограниченная последовательность является сходящейся. Например, последовательность \(\left\<\left(-1\right)^n\right\>\) ограничена, но не является сходящейся.
Доказать, что последовательность \(\left\<<\textstyle\frac1
Теорема о трех последовательностях или теорема о пределе «зажатой» последовательности.
Если последовательности \(\
$$x_n\leq y_n\leq z_n \ для \ всех \ n\geq N_0,\label
то последовательность \(\
По определению предела для любого \(\varepsilon > 0\) найдутся номера \(N_1=N_1(\varepsilon) \ и \ N_2=N_2(\varepsilon)\) такие, что \(x_n\in U_\varepsilon(a)\) при всех \(n\geq N_1\) и \(z_n\in U_\varepsilon(a)\) при всех \(n\geq N_2\).
Рис. 4.3
Отсюда и из условия \eqref
\(\triangle\,\)Заметим, что \(\sqrt[n]n-1=\alpha_n > 0\), при \(n > 1\), откуда \(n=(1+\alpha_n)^n > C_n^2\alpha_n^2,\) где\(\displaystyle C_n^2=\frac
Если \(a > 1\), то \(a=1+\alpha\), где \(\alpha > 0\), откуда \(a^n=\displaystyle \left(1+\alpha\right)^n > C_n^
\alpha^
\), при \(n > p\).
Пусть \(n > 2p\), тогда \(\displaystyle C_n^
=\frac
Если \(\displaystyle \lim_
\(\circ\) Предположим, что неравенство \eqref
В частности, если для сходящейся последовательности \(\
В следствии 2 утверждается, что если соответствующие члены двух сходящихся последовательностей связаны знаком нестрогого неравенства, то такое же неравенство справедливо и для пределов этих последовательностей. Короче: предельный переход сохраняет знак нестрогого неравенства. Однако знак строгого неравенства, вообще говоря, не сохраняется, то есть если \(x_n > у_n\) при \(n\geq N_0\) и последовательности \(\
Как доказать предел последовательности по определению
Здесь мы рассмотрим определение конечного предела последовательности. Случай последовательности, сходящейся к бесконечности, рассмотрен на странице «Определение бесконечно большой последовательности».
Определение предела последовательности
Определение, что число a не является пределом
Теперь рассмотрим обратное утверждение, что число a не является пределом последовательности.
Эквивалентное определение предела последовательности
Тогда эквивалентное определение предела будет следующим.
Это определение можно представить и в развернутом виде.
Доказательство равносильности определений
Докажем, что, представленные выше, два определения предела последовательности равносильны.
Примеры
Пример 1
Пример 2
Все примеры ⇑ С помощью определения предела последовательности доказать, что
.
Пример 3
Все примеры ⇑ Используя определение предела последовательности доказать, что
.
Пример 4
Все примеры ⇑ Используя определение предела последовательности доказать, что
.
Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.
Доброго времени суток!
Доказать через определение предела, подробнее, пожалуйста, т.к. не понимаю, что делать нужно.
задан 19 Ноя ’13 12:40
Нужно доказать, а не решить, вот в чем проблема, с помощью, как я поняла определения Коши.
Слово «доказать» означает вывести из известных положений: аксиом, опредлений, лемм, теорем. Все перечисленные утверждения выводятся из теорем о пределах. Если же этими теоремами пользоваться не разрешено, то в условии задачи такая вещь должна быть явно оговорена. Рассуждения при этом становятся несколько более сложными, но возможно доказательство, опирающееся только на определение предела и на элементарные свойства неравенств. Если нужно, я по каждому пункту могу продемонстрировать, как это делается.
1 ответ
отвечен 19 Ноя ’13 15:46
falcao
241k ● 1 ● 34 ● 48
Если вас не затруднит, то напишите, пожалуйста, как это же доказательство нужно сделать, но для лимита равного не конкретному числу, как в этом примере числу 2, а бесконечности. А будет ещё лучше, если для оставшихся двух моих примеров, чтоб уж наверняка понимать как и что делать. Заранее спасибо 🙂
Определение пределов последовательности и функции, свойства пределов, первый и второй замечательные пределы, примеры.
Постоянное число а называется пределом последовательности n>, если для любого сколь угодно малого положительного числа ε > 0 существует номер N, что все значения xn, у которых n>N, удовлетворяют неравенству
Последовательность, имеющая предел, называется сходящейся, в противном случае – расходящейся.
Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции xn = f(n) целочисленного аргумента n.
Пусть дана функция f(x) и пусть a – предельная точка области определения этой функции D(f), т.е. такая точка, любая окрестность которой содержит точки множества D(f), отличные от a. Точка a может принадлежать множеству D(f), а может и не принадлежать ему.
Определение 1. Постоянное число А называется предел функции f(x) при x→ a, если для всякой последовательности n> значений аргумента, стремящейся к а, соответствующие им последовательности n)> имеют один и тот же предел А.
Это определение называют определением предела функции по Гейне, или “на языке последовательностей”.
Определение 2. Постоянное число А называется предел функции f(x) при x→a, если, задав произвольное, как угодно малое положительное число ε, можно найти такое δ >0 (зависящее от ε), что для всех x, лежащих в ε-окрестности числа а, т.е. для x, удовлетворяющих неравенству
0 » 2.7 – основание натурального логарифма. Формулы (6.10) и (6.11) носят название первый замечательного предело и второй замечательный предел.
Используются на практике и следствия формулы (6.11):
(6.12)
(6.13)
(6.14)
в частности предел,
(6.15)
Условие (6.15) можно переписать в виде:
то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.
Если равенство (6.15) нарушено, то говорят, что при x = xo функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R, кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(xo)= f(0) не определено, поэтому в точке xo = 0 функция имеет разрыв.
Функция f(x) называется непрерывной справа в точке xo, если предел
и непрерывной слева в точке xo, если предел
Непрерывность функции в точке xo равносильна ее непрерывности в этой точке одновременно и справа и слева.
Для того, чтобы функция была непрерывна в точке xo, например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(xo). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.
1. Если предел существует и не равен f(xo), то говорят, что функция f(x) в точке xo имеет разрыв первого рода, или скачок.
Функция, непрерывная в каждой точке промежутка [a,b], называется непрерывной в [a,b]. Непрерывная функция изображается сплошной кривой.
Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины. К таким задачам, например, относятся: рост вклада по закону сложных процентов, рост населения страны, распад радиоактивного вещества, размножение бактерий и т.п.
Рассмотрим пример Я. И. Перельмана, дающий интерпретацию числа e в задаче о сложных процентах. Число e есть предел . В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример. Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед. Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 ×1,5 = 150, а еще через полгода – в 150× 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3) 3 ≈ 237 (ден. ед.). Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:
100×(1 +1/10) 10 ≈ 259 (ден. ед.),
100×(1+1/100) 100 ≈ 270 (ден. ед.),
100×(1+1/1000) 1000 ≈271 (ден. ед.).
При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что предел
Пример 3.1. Пользуясь определением предела числовой последовательности, доказать, что последовательность xn =(n-1)/n имеет предел, равный 1.
Пример 3.2. Найти предел последовательности, заданной общим членом .
Пример 3.3. . Найти .
Решение.
Здесь мы воспользовались теоремой о пределе степени: предел степени равен степени от предела основания.
Пример 3.4. Найти ().
Решение. Применять теорему предел разности нельзя, поскольку имеем неопределенность вида ∞-∞. Преобразуем формулу общего члена:
Пример 3.6. Доказать, что предел не существует.
Решение. Пусть x1, x2. xn. – последовательность, для которой
. Как ведет себя последовательность n)> = при различных xn→ ∞
Если xn= p n, то sin xn= sin ( p n) = 0 при всех n и предел Если же
xn=2 p n+ p /2, то sin xn= sin(2 p n+ p /2) = sin p /2 = 1 для всех n и следовательно предел . Таким образом, не существует.
Пример 3.7 Найти предел
Пример 3.8. Вычислить предел .
Решение. Обозначим y=π-x. Тогда при x→π, y→0. Имеем:
sin 3x = sin 3(π-y) = sin(3π-3y) = sin 3y.
sin 4x = sin 4(π-y) = sin (π4-4y)= – sin 4y.
Предел
Пример 3.9. Найти предел .
Решение. Обозначим arcsin x=t. Тогда x=sin t и при x→0, t→0. .
Пример 3.10. Найти 1) ;
2) ;
3) .
1) Применяя теорему 1 предел разности и предел произведения, находим предел знаменателя: .
Предел знаменателя не равен нулю, поэтому, по теореме 1 предел частного, получаем:
.
2) Здесь числитель и знаменатель стремятся к нулю, т.е. имеет место неопределенность вида 0/0. Теорема о пределе частного непосредственно неприменима. Для “раскрытия неопределенности” преобразуем данную функцию. Разделив числитель и знаменатель на x-2, получим при x ≠ 2 равенство:
Так как предел , то, по теореме предел частного, найдем
3. Числитель и знаменатель при x &rarr ∞ являются бесконечно большими функциями. Поэтому теорема предел частного непосредственно не применима. Разделим числитель и знаменатель на x 2 и к полученной функции применим теорему предел частного:
.
Пример 3.11. Найти предел .
Решение. Здесь числитель и знаменатель стремятся к нулю:, x-9→0, т.е. имеем неопределенность вида .
Преобразуем данную функцию, умножив числитель и знаменатель на неполный квадрат суммы выражения , получим
.
Пример 3.12. Найти предел .
Решение.