Положительная корреляция означает что

Корреляция и коэффициент корреляции

Корреляция — степень связи между 2-мя или несколькими независимыми явлениями.

Корреляция бывает положительной и отрицательной.

Положительная корреляция (прямая) возникает при одновременном изменении 2-х переменных величин в одинаковых направлениях (в положительном или отрицательном). Например, взаимосвязь между количеством пользователей, приходящих на сайт из поисковой выдачи и нагрузкой на сервер: чем больше пользователей, тем больше нагрузка.

Корреляция отрицательна (обратная), если изменение одной величины приводит противоположному изменению другой. Например, с увеличением налоговой нагрузки на компании уменьшается их прибыль. Чем больше налогов, тем меньше денег на развитие.

Положительная корреляция означает что Типичные виды корреляции

Эффективность корреляции как статистического инструмента заключается в возможности выражения связи между двумя переменными при помощи коэффициента корреляции.

При значении КК равным 1, следует понимать, что при каждом изменении 1-й переменной происходит эквивалентное изменение 2-й переменной в том же направлении.

Положительная корреляция означает что Положительная корреляция концентраций этанола в синовии и крови

Положительная корреляция означает что Отрицательная корреляция между показателями результатов в беге на 100 м с барьерами и прыжками в длину

Интерпретация значений коэффициента корреляции

ЗначениеИнтерпретация
до 0,2Очень слабая
до 0,5Слабая
до 0,7Средняя
до 0,9Высокая
свыше 0,9Очень высокая корреляция

Данный метод обработки статистической информации популярен в экономических, технических, социальных и других науках в виду простоты подсчета КК, простотой интерпретации результатов и отсутствия необходимости владения математикой на высоком уровне.

Корреляционная зависимость отражает только взаимосвязь между переменными и не говорит о причинно-следственных связях: положительная или отрицательная корреляция между 2-мя переменными не обязательно означает, что изменение одной переменной вызывает изменение другой.

Например, есть положительная корреляция между увеличением зарплаты менеджеров по продажам и качеством работы с клиентами (повышения качества обслуживания, работа с возражениями, знание положительных качеств продукта в сравнении с конкурентами) при соответствующей мотивации персонала. Увеличившийся объем продаж, а следовательно и зарплата менеджеров, вовсе не означает что менеджеры улучшили качество работы с клиентами. Вполне вероятно, что случайно поступили крупные заказы и были отгружены или отдел маркетинга увеличил рекламный бюджет или произошло еще что-то.

Возможно существует некая третья переменная, влияющая на причину наличия или отсутствия корреляции.

Коэффициент корреляции не рассчитывается:

Источник

Что такое корреляция и что означает коррелировать — простыми словами о сложном

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Когда некоторые люди слышат слово «корреляция», то зачастую просто впадают в ступор. Оно и понятно: жуткий термин из мира высшей математики и статистики.

Сразу представляются унылые графики, многоэтажные формулы, при взгляде на которые хочется забиться в угол и плакать. На самом деле все гораздо проще.

Положительная корреляция означает что

Потратив несколько минут на прочтение этой статьи, вы узнаете, что такое корреляция и как ее использовать в повседневной жизни.

Определение корелляции — что это

Простыми словами корреляция – это взаимосвязь двух или нескольких случайных параметров. Когда одна величина растет или уменьшается, другая тоже изменяется.

Объясним на примере: существует корреляция между температурой воздуха и потреблением мороженого. Чем жарче погода, тем больше холодного лакомства покупают люди. И наоборот.

Положительная корреляция означает что

Такие закономерности устанавливаются путем исследования больших объемов статистических данных. Собираем информацию о потреблении мороженого за несколько лет и сведения о колебаниях температуры за тот же период. А дальше сопоставляем и ищем зависимость.

Коррелировать – это значит быть взаимосвязанным с чем-то. Существует положительная и отрицательная корреляции.

При положительной чем больше один параметр, тем больше и другой. Например, чем масштабнее траты фермера на удобрения, тем обильнее урожай. При обратной корреляции рост одной величины сопровождается уменьшением другой. Чем выше здание, тем хуже оно противостоит землетрясениям.

Корреляция — это взаимосвязь без гарантий

Рассмотрим пример прямой корреляции: чем выше уровень благосостояния человека, тем больше его продолжительность жизни. Обеспеченные люди питаются качественной пищей и своевременно получают врачебную помощь. В отличие от бедняков.

Однако нельзя с уверенностью сказать, что определенный олигарх проживет дольше вот этого нищего.

Это лишь статистическая вероятность, которая может не сработать для одного конкретного случая. Этим корреляция отличается от линейной зависимости, где исход известен со 100-процентной вероятностью.

Но если мы возьмем выборку из сотни тысяч богачей и такого же числа малоимущих, сравним их продолжительность жизни, то общая тенденция будет верна.

Коэффициент корреляции

Величина коэффициента корреляции рассчитывается по формуле:

Положительная корреляция означает что

Если внезапно потемнело в глазах и возникло непреодолимое желание закрыть статью (синдром гуманитария), то есть вариант попроще. Microsoft Exel все выполнит сам при помощи функции «КОРРЕЛ». Делается это так:

Положительная корреляция означает что

Судя по расчетам, рост человека практически никак не влияет на уровень зарплаты.

Реальные причины корреляции и возможные гипотезы

Курс доллара и стоимость нефти отрицательно коррелируют. Можем выдвинуть гипотезу: повышение цен на черное золото вызывает падение стоимости американской валюты. Но почему так происходит? Откуда взялась связь между этими явлениями?

Определение причины корреляции – это очень сложная задача. Переплетаются тысячи различных факторов, часть из которых скрыта.

Возможно, дело в том, что США – крупнейший потребитель нефти в мире. Каждый день они импортируют около 7,2 миллиона баррелей. Снижение цены на черное золото – хорошо для американской экономики, ведь позволяет тратить меньше денег. Следовательно, доллар растет.

Положительная корреляция означает что

Корреляция предоставляет возможность сделать вывод из статистических данных.

Например, мы выяснили, что существует отрицательная взаимосвязь между доходом персонала и его эффективностью в работе. Наша гипотеза: «Лентяи и бездельники получают больше, чем ответственные сотрудники». Тогда мы пересмотрим систему мотивации и избавимся от бесполезных людей.

Гипотеза – это лишь статистический вывод, предположение. Она вполне может оказаться ошибочной.

Согласно статистике, чем больше пожарных участвует в тушении огня, тем существенней размер ущерба. Какую гипотезу можем сделать отсюда? Пожарные приносят вред, давайте сократим их! Но если разобраться, то настоящая причина повреждения – это огонь. А увеличение числа лиц, задействованных в его тушении, – следствие масштаба пожара.

Наша вселенная бесконечна, а значит всегда можно найти несколько переменных, которые будут коррелировать между собой, несмотря на полное отсутствие причинно-следственных связей. Даже самое буйное воображение не сможет объяснить, что объединяет сыр и одеяло-убийцу:

Положительная корреляция означает что

Более подробно на эту тему смотрите в видео:

Как при помощи корреляции люди становятся богаче

Главное правило любого инвестора: не класть все яйца в одну корзину. Вложения рекомендуется диверсифицировать (что это?) – распределять. Поэтому люди покупают акции не одной компании, а десятка разных, формируя инвестиционные портфели. Если котировки какой-то фирмы упадут, то оставшиеся девять смогут отыграть падение или хотя бы уменьшить убытки.

Но это в теории, а на практике все портит корреляция. Проблема в том, что стоимости акций разных компаний внутри отрасли или даже всей страны могут сильно коррелировать. Проблемы огромной корпорации провоцируют панику на рынке, снижают стоимость иных активов, на первый взгляд не связанных между собой. В 2008 году случился крах Lehman Brothers, который вызвал цепную реакцию и обвал на мировых рынках.

Поэтому при инвестировании нужно стараться выбирать направления, которые не связаны между собой (r стремится к 0).

Территориальное приближение активов друг к другу усиливает корреляцию. Значит, нужно рассматривать варианты в разных точках мира, максимально удаленных друг от друга.

В жизни этот принцип тоже действует. Если ваши навыки и знания позволяют трудиться программистом, таксистом, сантехником и журналистом – вы хорошо защищены от риска безработицы.

Памятка

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (12)

Отличная статья! Спасибо! Все доступно к пониманию.

Скажите, пожалуйста, если некий факт N напрямую обусловлен фактом М, то есть без M не было бы N вообще, то корректно ли говорить о том, что N коррелирует с M?

Спасибо за статью. Кратко, четко, ясно.

«Корреляция — это взаимозависимость СЛУЧАЙНЫХ факторов. Она отображает ПРИБЛИЖЕННУЮ взаимосвязь и не дает точных ответов»

Выше цитата для Анны, т.е. «если некий факт N напрямую обусловлен фактом М,» то ИМХО это противоречит «взаимозависимости СЛУЧАЙНЫХ факторов» и «ПРИБЛИЖЕННОЙ взаимосвязи»

Все люди должны иметь хотя бы поверхностные знания об экономике, хотя многие ошибочно полагают, что их это не касается. В том числе важно понимать взаимосвязи между факторами, чтоб эффективно вести даже маленькое домохозяйство.

Не обязательно понимать сложные формулы корреляции, чтоб знать что безработица и стагнация сказываются на жизни всех граждан страны.

Это слово я слышала всего несколько раз за всю жизнь и каждый раз приходится гуглить. Ну почему нельзя давать определение проще? Напридумывают же сложных слов, а ты голову ломай.

Статья — супер! Спасибо большое.

Благодарю за статью. Доступно и понятно. Даже для тех у кого « синдром гуманитария»

Источник

Положительная корреляция

Что такое Положительная корреляция?

Положительная корреляция – это взаимосвязь между двумя переменными, в которой обе переменные движутся в тандеме, то есть в одном направлении. Положительная корреляция существует, когда одна переменная уменьшается по мере уменьшения другой переменной или когда одна переменная увеличивается, а другая увеличивается.

Краткая справка

Корреляция между переменными не (обязательно) подразумевает причинно-следственную связь.

Как работает положительная корреляция

Совершенно положительная корреляция означает, что в 100% случаев рассматриваемые переменные движутся вместе в одном и том же проценте и в одном направлении. Можно увидеть положительную корреляцию между спросом на продукт и связанной с ним ценой. В ситуациях, когда доступное предложение остается неизменным, цена вырастет, если возрастет спрос.

Кроме того, прибыли или убытки на определенных рынках могут привести к аналогичным движениям на связанных рынках. По мере роста цен на топливо растут и цены на авиабилеты. Поскольку для работы самолетов требуется топливо, увеличение этой стоимости часто перекладывается на потребителя, что приводит к положительной корреляции между ценами на топливо и ценами на авиабилеты.

Положительная корреляция не гарантирует роста или выгоды. Вместо этого он используется для обозначения любых двух или более переменных, которые вместе движутся в одном направлении, поэтому, когда одна увеличивается, увеличивается и другая. Хотя корреляция существует, причинно-следственная связь может отсутствовать; таким образом, хотя некоторые переменные могут двигаться вместе, может быть неизвестно, почему это движение происходит.

Корреляция – это форма зависимости, где сдвиг в одной переменной означает, что изменение вероятно в другой, или что определенные известные переменные дают определенные результаты. Общий пример можно увидеть в спросе на дополнительные продукты. Если спрос на автомобили вырастет, возрастет и спрос на связанные с ними услуги, такие как шины. Увеличение в одной области влияет на дополнительные отрасли.

В некоторых ситуациях положительные психологические реакции могут вызвать положительные изменения в определенной области. Это можно продемонстрировать на финансовых рынках, когда общие положительные новости о компании приводят к повышению курса акций.

Ключевые моменты

Особые соображения

Положительная корреляция в финансах

Простой пример положительной корреляции включает использование процентного сберегательного счета с установленной процентной ставкой. Чем больше денег добавляется на счет, будь то новые депозиты или заработанные проценты, тем больше процентов может быть начислено. Точно так же повышение процентной ставки будет коррелировать с увеличением генерируемых процентов, в то время как снижение процентной ставки вызывает уменьшение фактически начисленных процентов.

Инвесторы и аналитики также смотрят на то, как движения акций коррелируют друг с другом и с рынком в целом. Большинство акций имеют корреляцию между движениями цен друг друга где-то в середине диапазона, причем коэффициент 0 указывает на отсутствие какой-либо связи между двумя ценными бумагами. Например, акции в онлайн-магазине, скорее всего, мало коррелируют с запасами шин и автомастерских, тогда как у двух аналогичных розничных компаний корреляция будет выше. Это связано с тем, что предприятия, которые ведут очень разные операции, будут производить разные продукты и услуги с использованием разных ресурсов.

С другой стороны, обычный книжный ритейлер, скорее всего, будет иметь отрицательную корреляцию с акциями Amazon.com, поскольку популярность онлайн-ритейлера обычно является плохой новостью для традиционных книжных магазинов. Акции популярного платежного процессора PayPal, вероятно, будут положительно коррелировать с запасами интернет-магазинов, которые пользуются его услугами. Если акции eBay, Amazon и Best Buy вырастут из-за увеличения онлайн-доходов, вполне вероятно, что PayPal испытает такой же рост, поскольку его доход, связанный с комиссионными сборами, возрастет, а положительные отчеты о прибылях будут поощрять инвесторов.

Бета и корреляция

Бета – это обычная мера того, насколько цена отдельной акции коррелирует с более широким рынком, часто с использованием индекса S&P 500 в качестве ориентира. Если у акции есть бета 1.0, это означает, что ее ценовая активность сильно коррелирована с рынком. Акция с бета-коэффициентом 1.0 имеет систематический риск, но расчет бета-версии не может обнаружить какой-либо несистематический риск. Добавление акций в портфель с бета-версией 1.0 не увеличивает риск для портфеля, но также не увеличивает вероятность того, что портфель обеспечит избыточную доходность.

Бета меньше 1,0 означает, что ценная бумага теоретически менее волатильна, чем рынок, а это означает, что портфель менее рискован с включенными акциями, чем без них. Например, акции коммунальных предприятий часто имеют низкие бета-ставки, потому что они имеют тенденцию двигаться медленнее, чем среднерыночные.

Бета, превышающая 1.0, указывает на то, что цена ценной бумаги теоретически более волатильна, чем рыночная. Например, если бета акции составляет 1,2, предполагается, что она на 20% более волатильна, чем рынок. Акции технологических компаний и компании с малой капитализацией, как правило, имеют более высокие значения бета, чем рыночный эталон. Это указывает на то, что добавление акций в портфель увеличит риск портфеля, но также увеличит его ожидаемую доходность.

Разница между положительной корреляцией и обратной корреляцией

В статистике положительная корреляция описывает взаимосвязь между двумя переменными, которые изменяются вместе, тогда как обратная корреляция описывает взаимосвязь между двумя переменными, которые изменяются в противоположных направлениях. Обратную корреляцию иногда называют отрицательной корреляцией. Примеры положительной корреляции встречаются в повседневной жизни большинства людей. Например, чем больше часов работает сотрудник, тем больше будет его зарплата в конце недели. Чем больше денег тратится на рекламу, тем больше клиентов покупают у компании.

Обратные корреляции описывают два фактора, которые колеблются относительно друг друга. Примеры включают уменьшение баланса в банке по сравнению с увеличением привычки тратить и сокращение расхода бензина по сравнению с увеличением средней скорости движения. Одним из примеров обратной корреляции в мире инвестиций является взаимосвязь между акциями и облигациями. По мере роста цен на акции рынок облигаций имеет тенденцию к снижению, так же как рынок облигаций чувствует себя хорошо, когда акции не работают.

Важно понимать, что корреляция не обязательно подразумевает причинную связь. Переменные A и B могут расти и падать вместе, или A может возрастать, когда B падает, но не всегда верно, что рост одного фактора напрямую влияет на рост или падение другого. И то и другое может быть вызвано лежащим в основе третьим фактором, например ценами на сырьевые товары, или очевидная взаимосвязь между переменными может быть совпадением.

Например, количество людей, подключенных к Интернету, росло с момента его появления, и цена на нефть в целом за тот же период росла.1  Это положительная корреляция, но эти два фактора почти наверняка не имеют значимого отношения. То, что как количество пользователей Интернета, так и цена на нефть увеличились, можно объяснить третьим фактором, а именно общим ростом в связи с прошедшим временем.

Источник

Корреляции в дипломных работах по психологии

Термин «корреляция» активно используется в гуманитарных науках, медицине; часто мелькает в СМИ. Ключевую роль корреляции играют в психологии. В частности, расчет корреляций выступает важным этапом реализации эмпирического исследования при написании ВКР по психологии.

В этой статье мы простым языком объясним суть корреляционной связи, виды корреляций, способы расчета, особенности использования корреляции в психологических исследованиях, а также при написании дипломных работ по психологии.

Что такое корреляция

Корреляция – это связь. Но не любая. В чем же ее особенность? Рассмотрим на примере.

Представьте, что вы едете на автомобиле. Вы нажимаете педаль газа – машина едет быстрее. Вы сбавляете газ – авто замедляет ход. Даже не знакомый с устройством автомобиля человек скажет: «Между педалью газа и скоростью машины есть прямая связь: чем сильнее нажата педаль, тем скорость выше».

Это зависимость функциональная – скорость выступает прямой функцией педали газа. Специалист объяснит, что педаль управляет подачей топлива в цилиндры, где происходит сжигание смеси, что ведет к повышению мощности на вал и т.д. Это связь жесткая, детерминированная, не допускающая исключений (при условии, что машина исправна).

Теперь представьте, что вы директор фирмы, сотрудники которой продают товары. Вы решаете повысить продажи за счет повышения окладов работников. Вы повышаете зарплату на 10%, и продажи в среднем по фирме растут. Через время повышаете еще на 10%, и опять рост. Затем еще на 5%, и опять есть эффект. Напрашивается вывод – между продажами фирмы и окладом сотрудников есть прямая зависимость – чем выше оклады, тем выше продажи организации. Такая же это связь, как между педалью газа и скоростью авто? В чем ключевое отличие?

Правильно, между окладом и продажами заисимость не жесткая. Это значит, что у кого-то из сотрудников продажи могли даже снизиться, невзирая на рост оклада. У кого-то остаться неизменными. Но в среднем по фирме продажи выросли, и мы говорим – связь продаж и оклада сотрудников есть, и она корреляционная.

В основе функциональной связи (педаль газа – скорость) лежит физический закон. В основе корреляционной связи (продажи – оклад) находится простая согласованность изменения двух показателей. Никакого закона (в физическом понимании этого слова) за корреляцией нет. Есть лишь вероятностная (стохастическая) закономерность.

Численное выражение корреляционной зависимости

Итак, корреляционная связь отражает зависимость между явлениями. Если эти явления можно измерить, то она получает численное выражение.

Полученное число называется коэффициентом корреляции. Для его правильной интерпретации важно учитывать следующее:

Прямая и обратная

Сильная и слабая

Чем ниже численное значение коэффициента, тем взаимосвязь между явлениями и показателями меньше.

Рассмотрим пример. Взяли 10 студентов и измерили у них уровень интеллекта (IQ) и успеваемость за семестр. Расположили эти данные в виде двух столбцов.

Испытуемый

Успеваемость (баллы)

Посмотрите внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. Но также растет и уровень успеваемости. Из любых двух студентов успеваемость будет выше у того, у кого выше IQ. И никаких исключений из этого правила не будет.

Перед нами пример полного, 100%-но согласованного изменения двух показателей в группе. И это пример максимально возможной положительной взаимосвязи. То есть, корреляционная зависимость между интеллектом и успеваемостью равна 1.

Рассмотрим другой пример. У этих же 10-ти студентов с помощью опроса оценили, в какой мере они ощущают себя успешными в общении с противоположным полом (по шкале от 1 до 10).

Испытуемый

Успех в общении с противоположным полом (баллы)

Смотрим внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. При этом в последнем столбце последовательно снижается уровень успешности общения с противоположным полом. Из любых двух студентов успех общения с противоположным полом будет выше у того, у кого IQ ниже. И никаких исключений из этого правила не будет.

А как понять смысл корреляции равной нулю (0)? Это значит, связи между показателями нет. Еще раз вернемся к нашим студентам и рассмотрим еще один измеренный у них показатель – длину прыжка с места.

Испытуемый

Длина прыжка с места (м)

Не наблюдается никакой согласованности между изменением IQ от человека к человеку и длинной прыжка. Это и свидетельствует об отсутствии корреляции. Коэффициент корреляции IQ и длины прыжка с места у студентов равен 0.

Мы рассмотрели крайние случаи. В реальных измерениях коэффициенты редко бывают равны точно 1 или 0. При этом принята следующая шкала:

Приведенная градация дает очень приблизительные оценки и в таком виде редко используются в исследованиях.

Чаще используются градации коэффициентов по уровням значимости. В этом случае реально полученный коэффициент может быть значимым или не значимым. Определить это можно, сравнив его значение с критическим значением коэффициента корреляции, взятым из специальной таблицы. Причем эти критические значения зависят от численности выборки (чем больше объем, тем ниже критическое значение).

Корреляционный анализ в психологии

Корреляционный метод выступает одним из основных в психологических исследованиях. И это не случайно, ведь психология стремится быть точной наукой. Получается ли?

В чем особенность законов в точных науках. Например, закон тяготения в физике действует без исключений: чем больше масса тела, тем сильнее оно притягивает другие тела. Этот физический закон отражает связь массы тела и силы притяжения.

Пример исследования на студентах из предыдущего раздела хорошо иллюстрирует использование корреляций в психологии:

Вот как могли выглядеть краткие выводы по результатам придуманного исследования на студентах:

Таким образом, уровень интеллекта студентов выступает позитивным фактором их академической успеваемости, в то же время негативно сказываясь на отношениях с противоположным полом и не оказывая значимого влияния на спортивные успехи, в частности, способность к прыгать с места.

Как видим, интеллект помогает студентам учиться, но мешает строить отношения с противоположным полом. При этом не влияет на их спортивные успехи.

Неоднозначное влияние интеллекта на личность и деятельность студентов отражает сложность этого феномена в структуре личностных особенностей и важность продолжения исследований в этом направлении. В частности, представляется важным провести анализ взаимосвязей интеллекта с психологическими особенностями и деятельностью студентов с учетом их пола.

Коэффициенты Пирсона и Спирмена

Рассмотрим два метода расчета.

Коэффициент Пирсона – это особый метод расчета взаимосвязи показателей между выраженностью численных значений в одной группе. Очень упрощенно он сводится к следующему:

Коэффициент ранговой корреляции Спирмена рассчитывается похожим образом:

В случае Пирсона расчет шел с использованием среднего значения. Следовательно, случайные выбросы данных (существенное отличие от среднего), например, из-за ошибки обработки или недостоверных ответов могут существенно исказить результат.

В случае Спирмена абсолютные значения данных не играют роли, так как учитывается только их взаимное расположение по отношению друг к другу (ранги). То есть, выбросы данных или другие неточности не окажут серьезного влияния на конечный результат.

Если результаты тестирования корректны, то различия коэффициентов Пирсона и Спирмена незначительны, при этом коэффициент Пирсона показывает более точное значение взаимосвязи данных.

Как рассчитать коэффициент корреляции

Коэффициенты Пирсона и Спирмена можно рассчитать вручную. Это может понадобиться при углубленном изучении статистических методов.

Однако в большинстве случаев при решении прикладных задач, в том числе и в психологии, можно проводить расчеты с помощью специальных программ.

Расчет с помощью электронных таблиц Microsoft Excel

Вернемся опять к примеру со студентами и рассмотрим данные об уровне их интеллекта и длине прыжка с места. Занесем эти данные (два столбца) в таблицу Excel.

Переместив курсор в пустую ячейку, нажмем опцию «Вставить функцию» и выберем «КОРРЕЛ» из раздела «Статистические».

Формат этой функции предполагает выделение двух массивов данных: КОРРЕЛ (массив 1; массив»). Выделяем соответственно столбик с IQ и длиной прыжков.

Положительная корреляция означает что

В таблицах Excel реализована формула расчета только коэффициента Пирсона.

Расчет с помощью программы STATISTICA

Заносим данные по интеллекту и длине прыжка в поле исходных данных. Далее выбираем опцию «Непараметрические критерии», «Спирмена». Выделяем параметры для расчета и получаем следующий результат.

Положительная корреляция означает что

Как видно, расчет дал результат 0,024, что отличается от результата по Пирсону – 0,038, полученной выше с помощью Excel. Однако различия незначительны.

Использование корреляционного анализа в дипломных работах по психологии (пример)

Большинство тем выпускных квалификационных работ по психологии (дипломов, курсовых, магистерских) предполагают проведение корреляционного исследования (остальные связаны с выявлением различий психологических показателей в разных группах).

Сам термин «корреляция» в названиях тем звучит редко – он скрывается за следующими формулировками:

Рассмотрим кратко этапы его проведения при написании дипломной работы по психологии на тему: «Взаимосвязь личностной тревожности и агрессивности у подростков».

1. Для расчета необходимы сырые данные, в качестве которых обычно выступают результаты тестирования испытуемых. Они заносятся в сводную таблицу и помещаются в приложение. Эта таблица устроена следующим образом:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *