Политермический температурный предполагает что реактор работает
Политермический температурный предполагает что реактор работает
Температура существенно влияет на результат химико-технологического процесса в целом и особенно на химическую реакцию. В зависимости от температурного режима различают следующие основные типы реакторов: адиабатический, изотермический и политермический.
Адиабатическими называются реакторы идеального вытеснения, работающие без подвода и отвода теплоты в окружающую среду через стенки реактора или при помощи теплообменных элементов. Вся теплота в этом случае, выделяемая (поглощаемая) в реакторе, аккумулируется реакционной смесью.
Изотермическими называются реакторы, в которых процесс протекает при постоянной температуре во всем объеме реактора. Изотермичность достигается интенсивным перемешиванием реагентов. Необходимая температура устанавливается или благодаря подводу или отводу теплоты реакции, или за счет регулирования температуры поступающей реакционной смеси. Данный режим может быть достигнут и в реакторе идеального вытеснения при проведении процессов с малыми тепловыми эффектами.
Политермическими называются реакторы, которые характеризуются частичным подводом теплоты или отводом теплоты из зоны реакции в соответствии с заданной программой изменения температуры по длине (высоте) реактора идеального вытеснения или неполного смешения. Политермическими реакторами во времени являются реакторы полного смешения периодического действия. При изучении и количественной оценке процессов, происходящих в реакторе, для вывода уравнений температурного режима используют тепловые балансы.
Температурный режим реактора
Температура Т 0 существенно влияет на результат химического процесса => при расчете и выборе моделей реакторов необходимо учитывать влияние теплового эффекта Qr реакции (или энтальпии ΔHr).
В зависимости от температурного режима выделяют 3 основных типа реакторов:
1) адиабатический;
2) изотермический;
3) политермический.
Пример:В основном РИВ– реакторы идеального вытеснения.
2. Изотермические(Т° = const)
реакторы, в которых процесс протекает при постоянной температуре (T°=const, или ΔT°=0) во всем объеме V реактора.
Это условие может быть достигаемо одним из следующих способов:
1) интенсивным перемешиванием реагентов (при незначительном тепловом эффекте Qr);
2) благодаря подводу или отводу тепла;
3) за счет регулирования температуры Т° поступающей реакционной смеси.
Политермические
— реакторы, характеризующиеся частичным отводом тепла реакции или подводом тепла извне в соответствии с заданной программой изменения температуры T° по высоте реактора («программно-регулируемые реакторы»).
Пример:Реакторы смешения РИС— периодического действия.
При изучении и количественной оценке процессов в реакторе для вывода расчетных формул температурного режима используют тепловые балансы.
Тепловой балансоснован на законе сохранения энергии Е :
Приход тепла в данной производственной реакции должен быть равен его расходу в той же операции: Qприх. =Qрасх.
Тепловые балансы составляют по данным материального баланса процесса и тепловых эффектов химических реакций, а также физических превращений, происходящих в реакторе, с учетом подвода тепла извне, а также отвода тепла с продуктами реакции и через стенки реактора.
I. Адиабатический реактор (чаще РИВ)
По идеальной модели в адиабатическом реакторе отсутствует теплообмен с окружающей средой. В реальных условиях приближение к отсутствию теплообмена достигается за счет хорошей изоляции стенок реактора от окружающей среды (двойные стенки, изоляционный материал)
Изменение температуры Т 0 в адиабатическом реакторе ΔT° = T°кон.— T°нач. пропорционально
— степени превращения реагента ХА
— концентрацииосновного реагента ,
— тепловому эффекту Qr реакции
и обратно пропорционально
— средней теплоемкости реакционной смеси.
Для экзотермической реакции ΔН О (знак+)
Эта модель применима также для расчета камерных реакторов для гомогенных реакций, для прямоточных абсорбентов с изолирующей футеровкой (облицовкой), в которых газ движется навстречу разбрызгиваемой жидкости.
Адиабатический РИВ-Н целесообразны для проведения экзотермических реакций. Если не подводить тепло из вне, то процесс идет в автотермическом режиме (за счет тепла самой химической реакции).
В адиабатическом режиме проводят и эндотермические реакции, но в этом случае реакционную массу подают вместе с паром.
II. Изотермический реактор
Анализ уравнения адиабаты
ΔT° = T°кон.— T°нач=
показывает, что к изотермическим реакторам
ΔT°
могут приближаться реакторы с малыми значениями:
— qх.р.— удельного теплового эффекта (на единицу вещества);
— — начальной концентрации реагента;
— XА — степени превращения
при больших значениях
— — теплопроводностиреакционной смеси.
Применение
Практически изотермичны реакторы :
— для переработки низко концентрированных(↓ СА) газов ( → 0),и
— реакторы, в которых экзо- и эндотермическиеэффекты практически
уравновешиваются (qх.р →0). Т.е. изотермический режим наблюдается в том случае, когда тепловой эффект основного процесса компенсируется равным по величине, но противоположным по знаку тепловыми эффектами побочных реакций, либо физических процессов (испарение, растворение)
При моделировании к полностью изотермическимреакторам относят жидкостные реакторы
смеханическими, пневматическими и струйно-циркуляционными перемешивающими устройствами.
Изотермический режим наблюдается на полках пенного и барботажного аппаратов не больших размеров, в некоторых контактных аппаратах с неподвижным катализатором.
Близким к изотермическому может быть режим аДсорбционных и аБсорбционных аппаратов, в которых тепло, выделяемое при аДсорбции или аБсорбции, расходуется на испарение воды или другого растворителя.
Изотермического режима можно достичь за счет теплообменных устройств подводя или отводя тепло из реактора. Отвод тепла для экзотермической реакции пропорционален тому сколько должно выделится. Подвод для эндо – поглотиться.
Политермический температурный предполагает что реактор работает
к списку предметов
Химические реактора для проведения различных процессов отличаются друг от друга конструктивными особенностями, размерами, внешним видом. Однако, несмотря на существующие различия, можно видеть общие признаки классификации реакторов, облегчающие систематизацию сведений о них, составление математического описания и выбор математического расчета.
Наиболее употребимы следующие признаки классификации химических реакторов и режимов их работы: 1) режим движения реакционной среды (гидродинамическая обстановка в реакторе); 2) условия теплообмена в реакторе; 3) фазовый состав реакционной смеси; 4) способ организации процесса; 5) характер изменения параметров процесса во времени; 6) конструктивные характеристики.
1. Классификация химических реакторов по гидродинамической обстановке.
По гидродинамической обстановке реакторы подразделяют на реакторы смешения и вытеснения.
Реакторы смешения – это емкостные аппараты с перемешиванием механической мешалкой или циркуляционным насосом. Иногда в качестве способа перемешивания используется барботаж газообразного реагента через слой жидкой реакционной массы.
Реакторы вытеснения – трубчатые аппараты, достаточно большой длины по сравнению с диаметром. В таких аппаратах течение реакционного потока имеет поршнеобразный характер. Перемешивание в таких реакторах имеет локальный характер и вызывается неравномерностью распределения скорости потока и его флуктуациями, а также завихрениями.
В теории реакторов обычно рассматривают идеальные варианты этих аппаратов – реактор идеального или полного смешения и реактор идеального или полного вытеснения.
Для идеального смешения характерно абсолютно полное выравнивание всех характеризующих реакцию параметров по объёму реактора.
Идеальное вытеснение предполагает равенство по сечению реактора скоростей потока. Перемещение реакционной массы по длине реактора носит строго поршнеобразный характер. В то же время по длине реактора в соответствии с закономерностями протекания реакции устанавливается определённое распределение концентраций участников реакции, температуры и других параметров.
2. Классификация химических реакторов по условиям теплообмена.
При отсутствии теплообмена между реактором и окружающей средой химический реактор является адиабатическим. Вся теплота, выделяющаяся или поглощающаяся в результате химических реакций, расходуется на внутренний теплообмен, т.е. на нагрев или охлаждение реакционной смеси.
Если теплообмен с окружающей средой протекает гораздо быстрее, чем тепловыделение или теплопоглощение, то во всех точках реакционной зоны обеспечивается постоянство температуры и такой реактор называется изотермическим.
Реакторы, в которых скорости тепловыделения или теплопоглощения соизмеримы со скоростями теплообмена с окружающей средой, температурный режим представляет собой результат баланса между этими процессами и в общем случае это обусловливает неравномерность распределения температуры в реакционной зоне. Такие реакторы называются политермическими.
Особо следует выделить автотермические реакторы, в которых поддержание необходимой температуры процесса осуществляется исключительно за счёт теплоты химического процесса без использования внешних источников энергии. В практике химической технологии стремятся к тому, чтобы химические реакторы, особенно в крупнотоннажных производствах, были автотермическими.
3. Классификация химических реакторов по фазовому составу реакционной массы.
Реакторы для проведения гомогенных процессов подразделяют на аппараты для газофазных и жидкофазных реакций. Аппараты для проведения реакций с двухфазными системами подразделяют на газо-жидкостные, реакции для систем газ – твёрдое тело, жидкость твёрдое тело и др. Особо выделяют реакторы для гетерогенно-каталитических процессов.
4. Классификация по способу организации процесса.
По способу организации процесса (способу подачи реагентов и отвода продуктов) реакторы подразделяют на периодические, непрерывные и полунепрерывные (поулпериодические).
В реакторе периодического действия все реагенты вводят в реактор до начала реакции, смесь выдерживают в реакторе необходимое время, после чего производится выгрузка продуктов. Продолжительность операции от момента загрузки до момента выгрузки соответствует времени реакции. Обычно параметры технологического процесса в периодическом реакторе изменяются во времени. Недостатки периодических реакторов – цикличность работы, низкая производительность, большие затраты ручного труда. Такие реакторы выгодны при организации малотоннажных производств, т.к. в ходе операции можно строго следить за параметрами, поддерживая их на оптимальном уровне.
В реакторе непрерывного действия ( проточном) производится непрерывная подача реагентов в реакционную зону и непрерывный отвод продуктов. Эти реакторы обеспечивают высокую производительность и их применение особенно выгодно при организации крупнотоннажных производств.
Реактор полунепрерывного (полупериодического) действия характеризуется тем, что один из реагентов поступает в него непрерывно, а другой – периодически. Возможны варианты, когда реагенты поступают в реактор периодически, а продукты реакции выводятся непрерывно, или наоборот.
5. Классификация по характеру изменения параметров процесса во времени.
Согласно этой классификации различают реакторы, работающие в стационарном и нестационарном режиме.
Режим работы реактора называют стационарным, если протекание химической реакции в произвольно выбранной точке реактора характеризуется постоянством концентраций реагентов и продуктов, скорости и других показателей во времени. В стационарном режиме показатели потока на выходе из реактора не зависят от времени. Это постоянство показателей определяется двумя факторами: стационарностью режима и постоянством состава параметров потока на входе в реактор.
Если в произвольно выбранной точке происходит изменение параметров химического процесса во времени, режим работы реактора называется нестационарным.
Стационарный режим обычно выдерживается в непрерывно действующих проточных реакторах. Но даже эти реакторы работают в нестационарном режиме в период пуска и установки. В ряде случаев имеет место дрейф показателей непрерывных процессов, например, когда катализатор во времени меняет свою активность.
Нестационарными являются все периодические процессы. Это можно проиллюстрировать рядом примеров. Так, если в реактор единовременно загрузить реагенты А и В, а затем выдерживать реакционную массу во времени, то в связи с расходом А и В и накоплением продуктов реакции во времени их концентрация будет меняться по мере проведения процесса.
В другом варианте к загруженному единовременно реагенту А добавляется равномерно во времени другой реагент В. В этом случае А будет расходоваться во времени и его концентрация будет снижаться. Концентрация В будет постоянной, поскольку расход его в реакции будет компенсироваться прибылью его новых порций за счет подачи. В то же время количество продуктов реакции будет нарастать во времени.
Нестационарные реакторы характеризуются положительным или отрицательным накоплением вещества или энергии в реакторе, например, для периодических ректоров характерно положительное накопление продуктов и отрицательное накопление (убыль) реагентов. При протекании в таком реакторе экзотермической реакции в отсутствие теплообмена с окружающей средой будет иметь место накопление тепла, что приведет к росту температуры.
Стационарные проточные реакторы проще для моделирования, т.к. их работа описывается более простыми уравнениями. Например, скорость реакции в проточных реакторах смешения характеризуется алгебраическими уравнениями. Стационарные процессы легче автоматизировать.
Нестационарность процесса в реакторе вносит определенное усложнение в описание реактора и в управление его работой, однако во многих случаях нестационарные режимы технологических процессов, протекающих в химических реакторах, легче приблизить к оптимальным.
6. Классификация по конструктивным характеристикам.
Химические реакторы отличаются друг от друга по ряду конструктивных характеристик, оказывающих влияние на расчет и изготовление аппаратуры.
Конкретная конструкция реактора определяется рядом факторов: фазовым составом реакционной массы, режимом процесса, физическими свойствами реакционной смеси и др. Различают реакторы для гомогенных, гетерогенных и гетерофазных процессов.
Политермический реактор
Изменение температуры в политермическом реакторе определяется величиной и знаком теплового эффекта, также начальной концентрацией и степенью превращения, количеством теплоты, подводимой и отводимой из зоны реакции. Изменение температуры рассчитывается по уравнениям теплового баланса реактора, которые учитывают приход теплоты с реагентами, теплоту реакции, теплообмен с окружающей средой и вынос теплоты с продуктами реакции. Тепловой баланс складывается из следующих величин:
где кТ – коэффициент теплопередачи; F – поверхность теплопередачи; Δtср – средняя движущая сила теплопередачи; τТ – время контакта с поверхностью теплопередачи F.
Изменение температуры в реакторе рассчитывают по уравнению:
Применение: политермический режим наблюдается в реакторах, в которых тепловой эффект лишь частично будет компенсироваться за счет тепловых эффектов различных побочных реакций и физических процессов (шахты, доменные печи).
Сложный политермический режим наблюдается в насадочных башнях для сорбционных и десорбционных процессов, т.к. процессы абсорбции сопровождаются теплообменом между газом и жидкостью, возможным испарением растворителя в нижней части башни с последующей конденсацией в верхних участках башни.
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)
Температурный режим реакторов
Характер распределения температуры в химическом реакторе чрезвычайно важен при анализе протекающих в нем процессов, так как температура – один из основных параметров технологического режима. От температуры зависят состояние химического равновесия и предельно достижимая степень превращения реагентов и скорость химических реакций. Кроме того, от температуры зависит селективность при проведении сложных реакций. Нарушение равномерного распределения температуры в реакторе может привести к локальным разогревам, нежелательным побочным явлениям и т.д.
Изменение температуры в реакторе в целом или изменение распределения температуры по объему реактора происходит вследствие протекающих в нем процессов, сопровождающихся выделением или поглощением теплоты, а также вследствие теплообмена реактора с окружающей средой.
Существенное влияние на характер распределения температуры оказывает гидродинамическая обстановка в аппарате. Например, в реакторе идеального смешения все параметры процесса, в том числе и температура в данный момент времени одинаковы в любой точке реактора. Напротив, в реакторе вытеснения температура может быть различной в разных точках аппарата. Интенсивность перемешивания влияет и на интенсивность теплообмена в аппарате.
В зависимости от температурного режима выделяют 3 основных типа реакторов: адиабатический, изотермический, политермический.
Адиабатическими называют реакторы, работающие без подвода или отвода тепла в окружающую среду через стенки реактора и все тепло, выделяемое или поглощаемое в ходе реакции, накапливается реакционной смесью (РИВ).
Изотермическими называются реакторы, в которых протекают процессы при постоянной температуре во всем объеме реактора. Изотермичность достигается прежде всего весьма интенсивным перемешиванием реагентов, в результате которого температура во всех точках реактора становится одинаковой. Это происходит в реакторах с сильным перемешиванием реагентов, близким к полному смешению. Необходимая температура в реакторе устанавливается или благодаря подводу или отводу теплоты реакции, или за счет регулирования температуры поступающей реакционной смеси. Изотермический режим приближенно достигается и в реакторах вытеснения при протекании в них процессов с малыми тепловыми эффектами или при весьма низкой концентрации реагентов.
Политермический реактор характеризуется частичным отводом тепла реакции или подводом тепла извне в соответствии с заданной программой изменения температуры по высоте реактора вытеснения или неполного смешения. Реакторы такого типа называют также программно-регулируемыми. Политермичны во времени реакторы полного смешения периодического действия.
При изучении и количественной оценке процессов в реакторе, для вывода расчетных формул температурного режима используют тепловые балансы. Тепловой баланс основан на законе сохранении энергии.