Показать что точки лежат в одной плоскости векторы

Компланарность векторов. Условия компланарности векторов.

Показать что точки лежат в одной плоскости векторы
рис. 1

Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.

Условия компланарности векторов

Примеры задач на компланарность векторов

Решение: найдем смешанное произведение векторов

Ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.

Решение: найдем смешанное произведение векторов

Ответ: вектора компланарны так, как их смешанное произведение равно нулю.

Решение: найдем количество линейно независимых векторов, для этого запишем значения векторов в матрицу, и выполним над ней элементарные преобразования

Показать что точки лежат в одной плоскости векторы111Показать что точки лежат в одной плоскости векторы
120
0-11
333

из 2-рой строки вычтем 1-вую; из 4-той строки вычтем 1-вую умноженную на 3

Показать что точки лежат в одной плоскости векторы111Показать что точки лежат в одной плоскости векторыПоказать что точки лежат в одной плоскости векторы111Показать что точки лежат в одной плоскости векторы

к 3-тей строке добавим 2-рую

Показать что точки лежат в одной плоскости векторы111Показать что точки лежат в одной плоскости векторы

Так как осталось две ненулевые строки, то среди приведенных векторов лишь два линейно независимых вектора.

Ответ: вектора компланарны так, как среди приведенных векторов лишь два линейно независимых вектора.

Источник

Показать что точки лежат в одной плоскости векторы

Сформулируем ряд базовых определений.

Три вектора в пространстве называются компланарными, если они лежат в одной плоскости или на параллельных плоскостях. Если среди трех векторов хотя бы один нулевой или два любые коллинеарны, то такие векторы компланарны.

то есть модуль вектора равен корню квадратному из суммы квадратов его координат.

Обозначим углы между вектором и осями координат через α, β, γ соответственно. Косинусы этих углов называются для вектора Показать что точки лежат в одной плоскости векторы направляющими, и для них выполняется соотношение: Показать что точки лежат в одной плоскости векторы Верность данного равенства можно показать с помощью свойства проекции вектора на ось, которое будет рассмотрено в нижеследующем пункте 4.

Пусть в трехмерном пространстве заданы векторы Показать что точки лежат в одной плоскости векторы своими координатами. Имеют место следующие операции над ними: линейные (сложение, вычитание, умножение на число и проектирование вектора на ось или другой вектор); не линейные – различные произведения векторов (скалярное, векторное, смешанное).

1. Сложение двух векторов производится покоординатно, то есть если

Геометрически два вектора складываются по двум правилам:

а) правило треугольника – результирующий вектор суммы двух векторов соединяет начало первого из них с концом второго при условии, что начало второго совпадает с концом первого вектора; для суммы векторов – результирующий вектор суммы соединяет начало первого из них с концом последнего вектора-слагаемого при условии, что начало последующего слагаемого совпадает с концом предыдущего;

б) правило параллелограмма (для двух векторов) – параллелограмм строится на векторах-слагаемых как на сторонах, приведенных к одному началу; диагональ параллелограмма исходящая из их общего начала, является суммой векторов.

Геометрически два вектора складываются по уже упомянутому правилу параллелограмма с учетом того, что разностью векторов является диагональ, соединяющая концы векторов, причем результирующий вектор направлен из конца вычитаемого в конец уменьшаемого вектора.

При λ>0 – вектор Показать что точки лежат в одной плоскости векторы сонаправлен Показать что точки лежат в одной плоскости векторы ; λ Показать что точки лежат в одной плоскости векторы противоположно направлен Показать что точки лежат в одной плоскости векторы ; | λ|> 1 – длина вектора Показать что точки лежат в одной плоскости векторы увеличивается в λ раз; | λ| 1 – длина вектора Показать что точки лежат в одной плоскости векторы уменьшается в λ раз.

4. Пусть в пространстве задана направленная прямая (ось l ), вектор Показать что точки лежат в одной плоскости векторы задан координатами конца и начала. Обозначим проекции точек A и B на ось l соответственно через A и B .

Рассмотрим некоторые основные свойства проекций:

1) проекция вектора Показать что точки лежат в одной плоскости векторы на ось l равна произведению модуля вектора Показать что точки лежат в одной плоскости векторы на косинус угла между вектором и осью, то есть Показать что точки лежат в одной плоскости векторы ;

2.) проекция вектора на ось положительна (отрицательна), если вектор образует с осью острый (тупой) угол, и равна нулю, если этот угол – прямой;

3) проекция суммы нескольких векторов на одну и ту же ось равна сумме проекций на эту ось.

Сформулируем определения и теоремы о произведениях векторов, представляющих нелинейные операции над векторами.

5. Скалярным произведением Показать что точки лежат в одной плоскости векторы векторов Показать что точки лежат в одной плоскости векторы и Показать что точки лежат в одной плоскости векторы называется число (скаляр), равное произведению длин этих векторов на косинус угла φ между ними, то есть

Теорема 2.2. Необходимым и достаточным условием перпендикулярности двух векторов является равенство нулю их скалярного произведения Показать что точки лежат в одной плоскости векторы

Следствие. Попарные скалярные произведения единичных орт равны нулю, то есть Показать что точки лежат в одной плоскости векторы

Отсюда следует условие перпендикулярности ненулевых векторов Показать что точки лежат в одной плоскости векторы и Показать что точки лежат в одной плоскости векторы :

С помощью скалярного произведения векторов находят работу постоянной силы Показать что точки лежат в одной плоскости векторы на прямолинейном участке пути.

Показать что точки лежат в одной плоскости векторы

Решение. Вычислим модули векторов и их скалярное произведение по теореме (2.3):

Показать что точки лежат в одной плоскости векторы

Показать что точки лежат в одной плоскости векторы

Пример 2.10. Затраты сырьевых и материальных ресурсов, используемых на производство одной тонны творога, заданы в таблице 2.2 (руб.).

Какова общая цена этих ресурсов, затрачиваемых на изготовление одной тонны творога?

Показать что точки лежат в одной плоскости векторы

Показать что точки лежат в одной плоскости векторы

Примечание. Действия с векторами, осуществленные в примере 2.10, можно выполнить на персональном компьютере. Для нахождения скалярного произведения векторов в MS Excel используют функцию СУММПРОИЗВ( ), где в качестве аргументов указываются адреса диапазонов элементов матриц, сумму произведений которых необходимо найти. В MathCAD скалярное произведение двух векторов выполняется при помощи соответствующего оператора панели инструментов Matrix Показать что точки лежат в одной плоскости векторы

Решение. Находим вектор перемещения, вычитая из координат его конца координаты начала

Угол φ между Показать что точки лежат в одной плоскости векторы и Показать что точки лежат в одной плоскости векторы находим по формуле (2.29), то есть

Показать что точки лежат в одной плоскости векторы

Показать что точки лежат в одной плоскости векторы перпендикулярен векторам Показать что точки лежат в одной плоскости векторы и Показать что точки лежат в одной плоскости векторы ;

– векторы Показать что точки лежат в одной плоскости векторы образуют правую тройку (рис. 2.15).

Примечание. Определитель (2.25) раскладывается по свойству 7 определителей Показать что точки лежат в одной плоскости векторы

Следствие 1. Необходимым и достаточным условием коллинеарности двух векторов является пропорциональность их соответствующих координат Показать что точки лежат в одной плоскости векторы

Следствие 2. Векторные произведения единичных орт равны Показать что точки лежат в одной плоскости векторы

Следствие 3. Векторный квадрат любого вектора равен нулю Показать что точки лежат в одной плоскости векторы

Показать что точки лежат в одной плоскости векторы

Также с помощью векторного произведения можно определить момент силы относительно точки и линейную скорость вращения.

— перпендикулярен плоскости, проходящей через точки O , A , B ;

Следовательно, момент силы Показать что точки лежат в одной плоскости векторы относительно точки O представляет собой векторное произведение

Показать что точки лежат в одной плоскости векторы

Решение. Найдем векторное произведение заданных векторов по формуле (2.32).

Показать что точки лежат в одной плоскости векторы

Теорема 2.6. Необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения Показать что точки лежат в одной плоскости векторы

Теорема 2.7. Если три вектора Показать что точки лежат в одной плоскости векторы заданы своими координатами, то их смешанное произведение представляет собой определитель третьего порядка, составленный из координат векторов- сомножителей соответственно, то есть

Объем треугольной пирамиды, построенной на этих же векторах, равен

Решение. Найдем координаты векторов

По формуле (2.36) объем пирамиды, построенной на векторах Показать что точки лежат в одной плоскости векторы равен Показать что точки лежат в одной плоскости векторы (единиц объема) Показать что точки лежат в одной плоскости векторы

Рассмотрим очень важный вопрос о разложении вектора по базису. Приведем следующие определения.

Показать что точки лежат в одной плоскости векторы

получим выражение вектора Показать что точки лежат в одной плоскости векторы через остальные векторы Показать что точки лежат в одной плоскости векторы

Линейно независимыми называют векторы, если равенство (2.37) выполняется только тогда, когда все

Базисом n – мерного пространства En называют любую совокупность линейно независимых векторов n – мерного пространства.

Произвольный вектор Показать что точки лежат в одной плоскости векторы n – мерного пространства можно представить в виде линейной комбинации векторов базиса таким образом:

Показать что точки лежат в одной плоскости векторы

Линейное пространство называется конечномерным и имеет размерность n , если в этом пространстве существует система из n линейно независимых векторов (базис) такая, что каждое ее расширение приводит к линейной зависимости системы.

Источник

Лежат ли точки в одной плоскости? Как это проверить?

Проверить, лежат ли в одной плоскости точки A,B,C,D
Проверить, лежат ли в одной плоскости точки A,B,C,D, и найти линейную зависимость векторов AB от AC.

Показать что точки лежат в одной плоскости векторыДве точки на плоскости заданы своими координатами. Проверить, лежат ли они в одной координатной четверти
две точки на плоскости А(х1;у1) и В(х2;у2) задано своими координатами. Проверить, лежат ли эти.

Показать что точки лежат в одной плоскости векторыКак пользуясь рангом матрицы определить лежат ли четыре точки трёхмерного пространства в одной плоскости
Как пользуясь рангом матрицы определить лежат ли четыре точки трёхмерного пространства в одной.

Лежат ли точки на одной плоскости
У тривимірному просторі задається n точок(3 9

Добавлено через 11 минут
Получится система уравнений:

Она вроде бы не совместна, направляющие вектора не параллельны, значит прямые не лежат в одной плоскости.

woldemas, вы пишете, что определитель из координат трех точек — это то же самое, что вычислить смешанное произведение векторов. Каких именно векторов? Ведь векторы в сообщении 2 строятся по четырем точкам. А три точки всегда лежат на одной плоскости.

Jessy James, чтобы определить, лежат ли четыре точки в трехмерном пространстве на одной плоскости, можно вычислить определитель 4×4, составленный из координат точек, к которым добавлена четвертая координата 1. Например, для точки A(1; 0; 2) используется строчка 1 0 2 1. Точки лежат на одной плоскости тогда и только тогда, когда определитель равено нулю.

Там одна из точек имеет нулевые координаты, если принять ее за начало для трех векторов проведенных к остальным точкам, можно просчитать определитель, в котором стоят координаты точек (но на самом деле это координаты радиус-векторов). Я думал это очевидно, поэтому и не стал особо расписывать.

Добавлено через 20 минут
А что касается условия принадлежности прямых одной плоскости, то определитель матрицы 3 на 3 составленной из направляющих векторов прямых и вектора соединяющего две любые точки на прямых должен равняться 0.

Показать что точки лежат в одной плоскости векторыЛежат ли точки в одной плоскости?
На плоскости XOY даны три точки A(x1, y1), B(x2, y2), C(x3, y3). Выяснить, лежат ли они в одной и.

Лежат ли 4 точки в одной плоскости.
Помогите пожалуйста решить, лежат ли точки А(5,3,1), В(-3,2,3), С(3,8,6) и D(-3,1,2) в одной.

Определить, лежат ли три точки плоскости на одной прямой
Задача: Написать программу, определяющую, лежат ли три точки плоскости на одной прямой! Точки и.

Показать что точки лежат в одной плоскости векторыОпределить, лежат ли три точки плоскости на одной прямой
Помогите, пожалуйста с задачей! Написать программу, определяющую, лежат ли три точки плоскости на.

Источник

Геометрия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Понятие вектора в пространстве

Напомним, что в курсе планиметрии мы уже подробно изучали вектора и действия с ними. При этом предполагалось, что все вектора располагаются в одной плоскости. Однако можно расширить понятие вектора так, чтобы они использовались и в стереометрии. В таком случае вектора уже могут располагаться в различных плоскостях.

Начнем с определения вектора:

Конец вектора обозначают с помощью стрелки. Посмотрим на рисунок:

Здесь показаны сразу три вектора:

У вектора АВ начало находится в точке А, а конец – в точке В. Аналогично у вектора С D точка С – это начало, а D – это конец. В обоих случаях начало и конец – это различные точки, поэтому АВ и CD именуют ненулевыми векторами. Если же начало и конец находятся в одной точке, например в Т, то получается нулевой вектор ТТ. Всякую точку в пространстве можно рассматривать как нулевой вектор:

Длина вектора АВ – это длина соответствующего ему отрезка АВ. Для обозначения длины используют квадратные скобки:

Естественно, что нулевой вектор имеет нулевую длину.

Далее напомним понятие коллинеарных векторов:

Коллинеарные вектора могут быть либо сонаправленными, либо противоположно направленными. Сонаправленные вектора находятся на сонаправленных лучах. Рассмотрим пример с кубом:

Здесь показаны вектора AD и ВС. Они сонаправленные, этот факт записывается так:

Вектора AD и FE располагаются на скрещивающихся прямых, поэтому они не коллинеарны. Их нельзя считать ни сонаправленными, ни противоположно направленными.

Сонаправленные вектора, имеющие одинаковую длину, именуются равными.

Рассмотрим несколько простейших задач.

Задание. В прямоугольном параллелепипеде АВС DA 1 B 1 C 1 D 1 известны три его измерения:

Решение. Для нахождения длин этих векторов достаточно вычислить длину отрезков СВ, DB и DB 1. Проще всего вычислить СВ, ведь отрезки СВ и AD одинаковы как стороны прямоугольника АВ CD :

Вектора АМ и МВ также коллинеарны и имеют одинаковую длину, но они противоположно направлены, а потому равными не являются.

Операции над векторами

Такой метод сложения векторов именуется правилом треугольника. Если нужно сложить больше двух векторов, то используют правило многоугольника. В этом случае необходимо каждый следующий вектор откладывать от конца предыдущего. При этом в стереометрии вектора могут располагаться в различных плоскостях, то есть они на самом деле многоугольник не образуют:

Напомним, что в планиметрии существовали так называемые противоположные вектора. Есть они и в стереометрии:

Главное свойство противоположных векторов заключается в том, что в сумме они дают нулевой вектор:

Заметим, что для получения противоположного вектора достаточно поменять его начало и конец, то есть в записи вектора обозначающие его буквы надо просто записать в обратном порядке:

1) b и a будут коллинеарными векторами;

Если k – положительное число, то вектора a и b будут сонаправленными. Если же k a и b будут направлены противоположно.

Задание. Дан параллелепипед АВС D А1В1С1 D 1. Постройте вектор, который будет являться суммой векторов:

Решение. В каждом случае необходимо заменить один из векторов в сумме на другой равный ему вектор так, чтобы можно было применить правило треугольника.

В задании а) вектор А1 D 1 заменить равным ему вектором ВС. В итоге получится вектор АС.

В задании б) заменяем А D 1 на вектор ВС1. Также можно было бы заменить АВ на D 1 C 1. В обоих случаях сумма окажется равной АС1.

В задании в) удобно DA заменить на C 1В1, тогда искомой суммой будет вектор С1В.

В задании г) производим замену DD 1 на равный ему вектор BB 1. Тогда сумма DB и BB 1– это вектор DB 1.

В задании д) необходимо заменить ВС на В1С1. В итоге получаем вектор DC :

Решение. В случае а) сначала запишем очевидное равенство векторов, вытекающее из правило многоугольника:

Обратите внимание, что здесь у каждого следующего слагаемого начальная точка совпадает с конечной точкой предыдущего слагаемого, поэтому равенство и справедливо:

Однако по условию а) нам надо использовать другие вектора для выражения АВ. Мы можем просто заменить вектора CD и DB на противоположные:

Теперь можно составить и выражение для АВ:

Аналогично решаем и задания б) и в):

Задание. Р – вершина правильной шестиугольной пирамиды. Докажите, что сумма векторов, совпадающих с ребрами этой пирамиды и начинающихся в точке Р, в точности равна сумме векторов, которые совпадают с апофемами пирамиды и при этом также начинаются в точке Р.

Решение. Обозначим вершины буквами А1, А2, … А6, а середины сторон шестиугольника, лежащего в основании, буквами Н1, Н2, … Н6, как это показано на рисунке:

Нам надо показать, что сумма красных векторов равна сумме черных векторов:

Теперь отдельно построим правильный шестиугольник, лежащий, в основании пирамиды:

Ясно, что вектора, образованные сторонами этого шестиугольника, в сумме дают нулевой вектор (по правилу многоугольника):

Так как точки Н1, Н2, … Н6 – середины сторона, то вектора Н6А6, Н5А5,…Н1А1 будут вдвое короче векторов А1А6, А6А5, … А2А1. При этом они находятся на одних прямых, поэтому справедливы равенства:

Таким образом нам удалось из верного равенства (3) доказать (2), из которого в свою очередь следует справедливость и (1), ч. т. д.

Задание. Упростите выражения:

Решение. Здесь надо просто применить законы сложения и умножения векторов, как это делалось и в курсе планиметрии. Сначала раскрываем скобки, а потом приводим подобные слагаемые:

Компланарные векторы

Если мы отложим несколько векторов от одной точки, то они либо будут находиться в одной плос-ти, либо располагаться в различных плос-тях. В первом случае их именуют компланарными векторами, а во втором – некомпланарными.

Любые два вектора будут компланарны, ведь при их откладывании от одной точки мы получаем две пересекающихся прямых, а через них всегда можно провести плос-ть. Однако если векторов более двух, то они могут быть как компланарны, так и некомпланарны.

Рассмотрим для примера параллелепипед:

Здесь вектора АС, АВ и АD компланарны, так как все они принадлежат одной грани (то есть плос-ти) АВСD. А вектора АВ, АD и АА1 некомпланарны, ведь через них нельзя провести одну плос-ть.

Очевидно, что если из трех векторов любые два коллинеарны, то вся тройка векторов компланарна, ведь при откладывании векторов от одной точки коллинеарные вектора окажутся на одной прямой.

Существует признак компланарности векторов:

Напомним, что подразумевается под разложением вектора. Пусть есть вектора а, b и c. Если существуют такие числах и y, при которых выполняется равенство

то говорят, что вектор с разложен по векторам а и b, причем числа xи y называются коэффициентами разложения.

Докажем сформулированный признак. Пусть есть три вектора а, b и c, а также числа xи y, такие, что

Эти вектора находятся в одной плос-ти ОАВ. Теперь от той же точки О отложим вектора ха и уb, концы которых окажутся в точках А1 и В1:

Естественно, что вектора ОА1 и ОВ1 также окажутся в плос-ти ОАВ. Тогда и их сумма будет принадлежать этой плос-ти, а эта сумма как раз и есть вектор с:

В итоге получили, что а, b и с располагаются в одной плос-ти, то есть они компланарны.

Справедливо и обратное утверждение. Если вектора а, b и с компланарны, но а и b неколлинеарны, то вектор с можно разложить на вектора a и b. Это утверждение прямо следует из изученной в 9 классе теоремы о разложении векторов. Важно отметить, что коэффициенты такого разложения определяются однозначно.

Для сложения тройки некомпланарных векторов можно применить так называемое правило параллелепипеда. Если есть три некомпланарных вектора, то можно отложить их от одной точки О и далее построить параллелепипед, в котором эти вектора будут ребрами. Тогда диагональ этого параллелепипеда, выходящая из точки О, и будет суммой этих трех векторов:

Разложение вектора на некомпланарные вектора

Иногда вектор можно разложить не на два, а на три вектора. Выглядит такое разложение так:

Для доказательства рассмотрим три некомпланарных вектора а, bи c, а также произвольный вектор р. Отложим их от одной точки О. Обозначим концы этих векторов большими буквами А, В, С и Р:

Через ОВ и ОА можно провести некоторую плос-ть α. Точка С ей принадлежать не может, ведь ОА, ОВ и ОС – некомпланарные вектора. Проведем через Р прямую, параллельную ОС. Так как ОС пересекает α, то и параллельная ей прямая также пересечет α в некоторой точке Р1. (Примечание. Если Р принадлежит α, то точки Р и Р1 совпадут, то есть вектор Р1Р будет нулевым).

Далее через точку Р1 в плос-ти α проведем прямую, параллельную ОВ, которая пересечет ОА в точке Р2. Заметим, что вектор ОР2 находится на той же прямой, что и вектор ОА, то есть они коллинеарны, поэтому существует такое число х, что

Итак, мы показали, что у произвольного вектора p есть разложение на заранее заданные некомпланарные вектора. Осталось показать, что существует только одно такое разложение. Докажем это методом от противного. Пусть есть второе разложение с другими коэффициентами х1, у1 и z1:

В правой части находятся три вектора, которые в сумме нулевой вектор. По правилу сложения векторов это означает, что эти вектора образуют треугольник, то есть находятся в одной плос-ти:

Значит, они компланарны. Тогда компланарны и вектора a, b и с, что противоречит условию теоремы. Значит, второго разложения р на заданные некомпланарные векторы не существует, ч. т. д.

Задание. АВСD и А1В1С1D1 – параллелограммы, располагающиеся в разных плос-тях. Докажите, что тройка векторов ВВ1, СС1 и DD1 компланарна.

Решение. Сначала построим рисунок по условию задачи:

Для доказательства используем признак компланарности векторов. Для этого надо один из векторов, отмеченных на рисунке красным, разложить на два других вектора.

В результате нам удалось разложить СС1 на вектора BB1 и CC1. Значит, эти три вектора коллинеарны.

Задание. В параллелепипеде АВСDA1B1C1D1 запишите разложение вектора BD1 по векторам ВА, ВС и ВВ1.

Решение. Сначала представим вектор BD1 как сумму трех векторов:

Теперь заметим, что вектора С1D1 и ВА соответствуют ребрам параллелепипеда. Эти ребра одинаковы по длине и параллельны, поэтому и вектора будут равными. Аналогично равны вектора СС1 и ВВ1:

Задание. АВСD – тетраэдр, а точка К делит его ребро ВС пополам. Разложите вектор DK по векторам DA, AB и AC.

Решение. Сначала запишем очевидное выражение для вектора DK:

Задание. В точке М пересекаются медианы треугольника АВС, а О – произвольная точка в пространстве. Разложите вектор ОМ по векторам ОА, ОВ и ОС.

Решение. Медиану, проходящую через точку А, мы обозначим как АА1, то есть А1 – это середина отрезка ВС. Также буквой К обозначим середину ОВ:

Сначала разложим вектор ОА1 на ОВ и ОС. Это можно сделать, ведь они компланарны. КА1 – это средняя линия ∆ОСВ, поэтому КА1||ОС и КА1 вдвое короче ОС. Это значит, что

Так как АА1 – медиана, то точка М делит ее в отношении 2:1. Отсюда вытекает следующее соотношение:

Только что решенная задача может быть использована и при решении другого, более сложного задания.

Задание. Докажите, что в параллелепипеде АВС1В1С1D1 плос-ти А1ВD и СB1D1 делят диагональ АС1 на три равных отрезка.

Решение. Обозначим точкой K точку пересечения медиан ∆А1ВD. Тогда по формуле, выведенной в предыдущей задаче, мы получаем, что

Это соотношение означает, что вектора АК и АС1 коллинеарны, поэтому они располагаются на одной прямой (они не могут находиться на параллельных прямых, ведь у них есть общая точка А). Значит, точка K принадлежит диагонали АС1, и отрезок АК втрое короче диагонали.

Аналогично можно показать, что и

Из этого также вытекает, что М принадлежит диагонали АС1, и МС1 втрое короче АС1. Значит, точки М и К делят диагональ на три равных отрезка, ч. т. д.

Сегодня мы расширили понятие векторов и научились их применять не только в планиметрических, но и в стереометрических задачах. При сохраняются все правила, по которым выполняются действия над векторами. Также в стереометрии появляется новое понятие компланарных и некомпланарых векторов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *