Показать что последовательность имеет пределом число

Показать что последовательность имеет пределом число

`|x_n-a| oo) x_n=a` (читается: предел `x_n` при `n`, стремящемся к бесконечности, равен `a`). Последовательность, называется сходящейся, если существует число `a`, являющееся её пределом. Если такого числа `a` не существует, то последовательность называется расходящейся.

Часто в определении предела полагают число `k` натуральным. Однако, как нетрудно понять, получится эквивалентное определение.

Показать что последовательность имеет пределом число

Пусть выбрано произвольное `epsilon>0`. Нам нужно найти такое число `k`, что при всех `n>k` выполнялось бы неравенство `|x_n-c| k` имеет место неравенство `|x_n-c| oo)x_n=c`.

В разобранном примере число `k` удалось выбрать так, чтобы оно годилось сразу для всех `epsilon`. Такой случай не типичен.

Доказать, что `lim_(n->oo)1/n=0`.

Могут ли два разных числа быть пределами одной и той же последовательности?

Пусть `lim_(n->oo)x_n=a`. Имеет ли предел последовательность `(x_(n+1))`?

Пусть `lim_(n->oo)x_n=a`, `epsilon>o`. Можно ли утверждать, что найдётся такое число `k`, что `|x_n-a| k`?

Да. Поскольку `lim_(n->oo)x_n=a`, то по определению предела для любого положительного числа `alpha`, а следовательно, и для `alpha=epsilon//2`, найдётся число `k`, такое что `|x_n-a|k`.

Сформулируем необходимое условие существования предела.

Если последовательность имеет предел, то она ограничена.

Доказать, что последовательность `x_n=(-1)^n` не имеет предела.

Предположим противное, т. е. какое-то число `a` является пределом этой последовательности. Тогда для `epsilon=1` найдётся такое число `k`, что `|x_n-a| k`. Пусть номер `N>k`, тогда `|x_N-a| oo)y_n!=0`). При этом

Ограничимся доказательством пункта 2. Фиксируем произвольное `epsilon>0`. Нам нужно показать, что существует такое число `k`, что `|x_ny_n-ab| k`. По теореме 2.1 последовательности `(x_n)` и `(y_n)` ограничены; тем самым найдётся такое `C>0`, что `|x_n| k_1`, а также число `k_2` такое, что `|y_n-b| k_2`. Если положить `k=max`, то при `n>k` имеем:

`|x_ny_n-ab| oo)cx_n=clim_(n->oo)x_n` для любого `cinR`.

В самом деле, рассмотрим последовательность `y_n=c`. Поскольку `lim_(n->oo)y_n=c` (пример 2.1), то по пункту 2 теоремы 2.2

Показать, что `lim_(n->oo) 1/(n^2)=0`.

Поскольку `lim_(n->oo) 1/n=0`, то по пункту 2 теоремы 2.2

`lim_(n->oo) 1/(n^2)=lim_(n->oo) 1/n*lim_(n->oo) 1/n=0`.

Теорему 2.2 можно обобщить на произвольное (конечное) число слагаемых (сомножителей). В частности, `lim_(n->oo)1/n^m=0` для любого `m inN`.

Обозначим дробь, стоящую под знаком предела, через `x_n`. В числителе и знаменателе `x_n` стоят последовательности, не являющиеся ограниченными (доказывается аналогично примеру 1.6). По теореме 2.1 они не имеют предела и теорема о пределе частного (теорема 2.2 3)) «напрямую» здесь неприменима. Поступим следующим образом: поделим числитель и знаменатель на наибольшую степень `n`. По формулам сокращённого умножения `(n+2)^3-n(n-1)^2=8n^2+11n+8`, так что `x_n` можно переписать в виде:

Теперь в числителе и знаменателе `x_n` стоят сходящиеся последовательности:

По пункту 3 теоремы 2.2

Следующее полезное свойство пределов известно под названием теоремы о «зажатой» последовательности.

Для данного `epsilon>0` существует такое число `k_1`, что члены `x_n` лежат в интервале `(a-epsilon, a+epsilon)` при всех `n>k_1`, и существует такое число `k_2`, что члены `z_n` лежат в интервале `a-epsilon;a+epsilon)` при всех `n>k_2`. Положим `k=max`. Тогда при `n>k` одновременно `x_n in(a-epsilon;a+epsilon)` и `z_n in(a-epsilon;a+epsilon)` и, следовательно, `a-epsilon oo)x_n=1`.

Попробуем «зажать» `x_n` между членами последовательностей, сходящихся к одному и тому же числу, и применим теорему 2.3.

`sqrt(n^2+n) 1/(n+1) iff n/(sqrt(n^2+n))>n/(n+1)`.

Учитывая `n/(sqrt(n^2+1)) oo)n/(n+1)=1` и `lim_(n->oo)1=1`, по теореме 2.3 `lim_(n->oo)x_n=1`.

Если для любого `n inN`, `n>=n_0` выполняется неравенство `a_n oo)a_n=a`, `lim_(n->oo)b_n=b`, то `a b`. По определению предела для `epsilon=(a-b)/2` найдутся такие `k_1`, `k_2`, что для `n>k_1` выполняется `|a_n-a| k_2` выполняется `|b_n-b| k` имеем `b_n oo)1/n=0`.

В теории пределов важную роль играет следующий факт.

Всякая монотонная ограниченная последовательность имеет предел.

Эта теорема эквивалентна свойству полноты множества действительных чисел. Образно говоря, свойство полноты означает, что числовая ось является «сплошным» множеством, множеством без «дырок».

Источник

Числовая последовательность

Определение 1. Числовой последовательностью называется функция, аргументом которой является множество всех натуральных чисел, или множество первых n натуральных чисел.

Обозначается числовая последовательность так:

Показать что последовательность имеет пределом число
Показать что последовательность имеет пределом число

где Показать что последовательность имеет пределом числоi-ый член последовательности.

При словестном задании последовательности, описывается из каких элементов она состоит.

Последовательность нечетных чисел:

Последовательность простых чисел :

Последовательности (1) и (2) мы задали словестно.

Последовательность нечетных чисел аналитически задается формулой

Показать что последовательность имеет пределом число

Отметим, что последовательность простых чисел невозможно задать аналитически.

Пример задания рекуррентной последовательности:

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число

В этой последовательности

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число

Пример стационарной последовательности:

Показать что последовательность имеет пределом число

Возрастающие и убывающие последовательности

Определение 3. Последовательность, в которой каждый последующий член (кроме первого) больше предыдующего, называется возрастающей :

Показать что последовательность имеет пределом число

Определение 4. Последовательность, в которой каждый последующий член (кроме первого) меньше предыдующего, называется убывающей :

Показать что последовательность имеет пределом число

Пример 1. Выяснить, монотонна ли последовательность

Решение. Запишем n+1 член последовательности (подставим вместо n, n+1):

Найдем разность членов Показать что последовательность имеет пределом числои Показать что последовательность имеет пределом число:

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число
Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число.(3)

Так как n=1,2,3. то правая часть уравнения (3) положительна. Тогда:

Показать что последовательность имеет пределом число

Таким образом, каждый последующий член последовательности больше предыдующего. Следовательно последовательность является возрастающим (и монотонным).

Пример 2. Выяснить, при каких значениях a последовательность (bn) является возрастающей и при каких, убывающей:

Решение. Запишем n+1 член последовательности (вместо n подставим n+1):

Найдем разность членов Показать что последовательность имеет пределом числои Показать что последовательность имеет пределом число:

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число
Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число(4)

Посмотрим на правую часть выражения (4). Если a 10, то Показать что последовательность имеет пределом число. Тогда последовательность является убывающей. При a=10 Показать что последовательность имеет пределом число. Последовательность имеет одинаковые члены:

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число

т.е. имеем дело с последовательностью

Очевидно, что последовательность (5) не является монотонной. Она является стационарной последовательностью.

Ограниченные и неограниченные последовательности

Определение 5. Последовательность (yn) называется ограниченной сверху, если существует такое число k, что yn Определение 6. Последовательность (yn) называется ограниченной снизу, если существует такое число k, что yn>k при любом n.

Определение 7. Последовательность (yn) называется ограниченной, если она ограничена и сверху, и снизу.

Пример 3. Показать, что последовательность (an) является монотоннной и ограниченной:

Решение. Запишем n+1 член последовательности (вместо n подставим n+1):

Найдем разность членов Показать что последовательность имеет пределом числои Показать что последовательность имеет пределом число:

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число
Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число(6)

Правая часть равенства (6) положительна при любых натуральных чисел n. Следовательно последовательно (an) возрастающая (и монотонная).

Далее, сделаем эквивалентное преобразование для проследовательности (5):

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число

Из выражения (7) видно, что при любых n an≤1. Т.е. хотя последовательность возрастает, то остается меньше числа 1 (ограничена сверху). Запишем несколько членов данной последовательности, задав n=1,2,3.

Так как последовательность возрастающая, то все члены последовательности не меньше Показать что последовательность имеет пределом число. Тогда последовательность ограничена также и снизу. Таким образом последовательность ограничена и всерху, и снизу, т.е. является ограниченной последовательностью.

Сходящиеся и расходящиеся последовательности

Рассмотрим две числовые последовательности:

На координатной прямой изобразим члены этих последовательностей:

Показать что последовательность имеет пределом число
Показать что последовательность имеет пределом число

Предел числовой последовательности

Точка, к которой приближаются члены последовательности при увеличении n, называется пределом последовательности. Для последовательности (10) пределом является число 0. Более строго предел последовательности определяется так:

Определение 8. Число k называют пределом последовательности (yn), если для любой заранее выбранной окресности точки k, можно выбрать такой номер n0, чтобы все члены последовательности, начиная с номера n0 содержались в указанной окрестности.

Если k является пределом последовательности (yn), то пишут Показать что последовательность имеет пределом число( Показать что последовательность имеет пределом числостремится к k или Показать что последовательность имеет пределом числосходится к k).

Обозначают это так:

Выраженние (11) читается так: предел проследовательности Показать что последовательность имеет пределом число, при стремлении n к бесконечности равен k.

Изложим некоторые пояснения к определению 8.

Пусть выполнено (11). Возьмем окрестность точки k, т.е. интервал Показать что последовательность имеет пределом число, где Показать что последовательность имеет пределом числорадиус этой окрестности ( Показать что последовательность имеет пределом число>0). По определению, существует номер n0, начиная с которого вся последовательность содержится в указанной окресности, т.е.

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число.

Если же взять другую окресность Показать что последовательность имеет пределом число(пусть Показать что последовательность имеет пределом число), то найдется другой номер n1, начиная с которого, вся последовательность содержится в указанной окрестности, но этот номер будет больше n1 > n0.

Пример 4. Дана полследовательность (yn):

Доказать, что Показать что последовательность имеет пределом число.

Решение. Найдем любую окрестность точки 0. Пусть ее радиус равен r. Тогда всегда можно выбирать n0 так, чтобы Показать что последовательность имеет пределом число.

Пусть, например, r=0.001. Вычислим n‘ из уравнения

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число.

В качестве n0 берем 501. Имеем:

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число.

Запишем члены последовательности (12) начиная с номера 501:

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число.

Далее, учитывая (13), имеем:

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число.

Следовательно, все члены последовательности (12) начиная с номера 501 попадают в окресность Показать что последовательность имеет пределом число. А по определению 8, это означает:

Пример 5. Дана полследовательность (yn):

Доказать, что Показать что последовательность имеет пределом число.

Решение. Найдем любую окрестность точки 2. Пусть ее радиус равен r. Тогда всегда можно выбирать n0 так, чтобы

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число.
Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число.

Неравенство в (17) всегда выполняется так как n0 натуральное число, а правая часть неравенства отрицательно (это означает, что Показать что последовательность имеет пределом числодля любого n0). Из неравенства (16) можно найти номер n0, начиная с которого члены последовательности попадают в окресность (2−r; 2+r). Например, пусть r=0.001, тогда Показать что последовательность имеет пределом число. Тогда нужно брать n0=2000. И тогда все члены последовательности, начиная с номера 2000 попадают в окрестность (2−r; 2+r).

Запишем члены последовательности, начиная с номера 2000:

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число.

Легко проверить, что Показать что последовательность имеет пределом число. Тогда, учитывая, что данная последовательность возрастающая (см. пример 1), получим:

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число.

Пример 6. Найти предел последовательности

Решение. Выполним некоторые преобразования выражения (18):

Тогда последовательность (18) можно переписать так:

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число(19)

Как видно из (19), пройдя по членам последовательности слева направо, из числа 1 вычитается все меньшее и меньшее положительное число. Т.е. последовательность приближается к числу 1. Тогда 1 является пределом последовательности (19) и (18):

Показать что последовательность имеет пределом число

Свойства сходящихся последовательностей

Сходящиеся последовательности обладают рядом свойств.

Свойство 1. Если последовательность сходится, то только к одному пределу.

Свойство 2. Если последовательность сходится, то она ограничена.

Свойство 3. Если последовательность монотонна и ограничена, то она сходится (теорема Вейерштрасса).

Предел стационарной последовательности равен значению любого члена последовательности:Показать что последовательность имеет пределом число.

Теорема. Если Показать что последовательность имеет пределом число, то

1. Предел суммы равен сумме пределов:

2. Предел произведения равен произведению пределов:

3. Предел частного равен частному пределов:

Показать что последовательность имеет пределом число

4. Постоянный множитель можно вывести за знак предела:

Пример 7. Найти предел последовательности:

Решение. Так как Показать что последовательность имеет пределом число, то

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число.

Пример 8. Найти предел последовательности:

Решение. Применив правило «предел суммы» теоремы, получим

Показать что последовательность имеет пределом числоПоказать что последовательность имеет пределом числоПоказать что последовательность имеет пределом число.

Пример 9. Вычислить:

Решение. Делим числитель и знаменатель дроби на наивысшую из имеющихся степень переменного n. Далее используем правило «предел суммы» для числителя и знаменателя и правило «предел частного»:

Источник

Предел последовательности

п.1. Определение последовательности

С понятием «последовательность» мы уже познакомились, когда изучали прогрессии (см. §24 справочника для 9 класса). По определению:

Т.е., числовая последовательность – это некий набор чисел с присвоенными им порядковыми номерами. Это набор можно задать формулой, описанием или просто перечислением.

Например:
1) Формула \(y_n=\frac1n,\ n\in\mathbb\) задает бесконечную последовательность дробей:

2) Формула \(y_n=(-1)^n,\ n\in\mathbb\) задает бесконечную последовательность «прыгающих» единиц:

3) Рекуррентная формула \(y_1=1,\ y_2=1,\ y_(n+2)=y_(n+1)+y_n\) задает бесконечную последовательность чисел Фибоначчи:

4) Описание «число π точностью до \(10^<-n>\)» задает бесконечную последовательность все более «подробных» значений числа π:

Этот ряд можно также задать формулой \(y_n=\frac<[\pi\cdot 10^n]><10^n>\), где квадратные скобки обозначают целую часть от числа.

п.2. Предел последовательности

Поведение последовательности «на длинных дистанциях» может быть неочевидным. Чтобы лучше понять, возрастает или убывает заданный ряд чисел, ограничен ли он какой-либо величиной или уходит на бесконечность, проще всего построить график.

1) \(y_n=\frac1n\)
Показать что последовательность имеет пределом число
Последовательность сходится к 0
2) \(y_n=(-1)^n\)
Показать что последовательность имеет пределом число
Последовательность ни к чему не сходится
3) числа Фибоначчи \(y_1=1,\ y_2=1,\ y_=y_+y_n\)
Показать что последовательность имеет пределом число
Последовательность уходит на бесконечность
4) приближения числа π
Показать что последовательность имеет пределом число
Последовательность сходится к π

п.3. Как доказать сходимость последовательности к пределу?

\(\varepsilon\)0,10,010,0010,00010,000010,000001
\(N_<\varepsilon>\)797997999799997999997
\(\lg \varepsilon\)-1-2-3-4-5-6
\(\lg N_<\varepsilon>\)0,8451,9872,9994,0005,0006,000

И построим график (в логарифмическом масштабе):
Показать что последовательность имеет пределом число
Мы видим, что чем меньше ε, тем больше \(N_<\varepsilon>\). Но главное – мы всегда можем его указать.
Таким образом, мы доказали, что действительно \(\lim_\frac<1>=0\)
Ведь для любого сколь угодно малого \(\varepsilon\gt 0\) мы можем указать такой номер \(N_<\varepsilon>=\left[\frac1\varepsilon-4\right]+1\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_<\varepsilon>\) разность \(\left|\frac<1>-0\right|\), т.е. эти члены не выйдут за переделы ε окрестности предела b=0.

Построенный график интересен еще и тем, что показывает одно из важных практических применений логарифмов: если разбросы по шкалам очень велики, отличаются на порядки, то графики удобней строить в десятичных логарифмах.
Такие графики часто можно увидеть у физиков-ядерщиков, копающих вглубь, от нанометров до планковских длин; или у астрономов, всматривающихся вдаль, от тысяч километров до гигапарсек.

п.4. Ограниченные и неограниченные последовательности

п.5. Как доказать неограниченность последовательности?

Таким образом, мы доказали, что действительно \(\lim_n^2=+\infty\)
Ведь для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=[\sqrt]\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_M,\ y_n=n^2\gt M\), т.е. члены последовательности становятся ещё больше.

п.6. Примеры

ε0,10,010,0010,00010,000010,000001
\(N_<\varepsilon>\)151281253125031250031250003

Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\frac12\left(\frac<5><2\varepsilon>+3\right)\right]+1\), начиная с которого
\(\left|\frac<3-2n>+\frac12\right|\lt\varepsilon,\ n\geq N_<\varepsilon>\geq 2\).
Что и требовалось доказать.

Показанный приём с усилением неравенства часто применяется в математическом анализе. Найденное \(N_<\varepsilon>\) немного больше «точного» значения, которое следует из исходной дроби \(\frac<3(3n^2+n+1)>\), но наша задача в том, чтобы обоснованно построить любое выражение для стартового номера \(N_<\varepsilon>\) в зависимости от ε.
Если найденный номер будет немного больше исходного – не страшно; главное, чтобы он 1) был обоснован; 2) гарантировал размещение всех последующих \(y_n,\ n\geq N_<\varepsilon>\) в ε окрестности предела b.

Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\frac<1><3\sqrt<\varepsilon>>\right]\), начиная с которого \(\left|\frac<3n^2+n+1>-\frac13\right|\lt\varepsilon,\ n\geq N_<\varepsilon>\geq 3\).
Что и требовалось доказать.

Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[-\log_3\varepsilon\right]\), начиная с которого \(\left|\frac<3^n+1><3^n>-1\right|\lt\varepsilon,\ n\geq N_<\varepsilon>\).
Что и требовалось доказать.

ε0,10,010,0010,00010,000010,000001
\(N_<\varepsilon>\)23623960239960024·10 84·10 10

Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\left(\frac<1><5\varepsilon>-1\right)^2\right]\), начиная с которого \(\left|\frac<\sqrt><5\sqrt+1>-\frac15\right|\lt\varepsilon,\ n\geq N_<\varepsilon>\).
Что и требовалось доказать.

Пример 2. Используя определения неограниченной последовательности, докажите, что:
a) \( \lim_2^n=+\infty \)
По условию: \(y_n=2^n\)
Записываем неравенство \(|y_n|\gt M\):
\begin 2^n\gt M\Rightarrow n\gt \log_2M\\ N_M=\left[\log_2M\right]+1 \end Например:

Таким образом, для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=\left[\log_2M\right]+1\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_M,\ y_n=2^n\gt M\).
Что и требовалось доказать.

M101001 00010 000100 0001 000 000
NM10010 0001 000 00010 810 1010 12

Таким образом, для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=\left[M^2\right]\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_M,\ y_n=\sqrt\gt M\).
Что и требовалось доказать.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *