Показать что матрица а является обратной для матрицы в если

Показать что матрица а является обратной для матрицы в если

4.1 ОБРАТНАЯ МАТРИЦА И РАНГ МАТРИЦЫ

Показать что матрица а является обратной для матрицы в если.

Легко показать, что

Показать что матрица а является обратной для матрицы в если.

Рангом матрицы А (обозначается rang А или r ( A )) является наибольший порядок порожденных ею миноров (определителей), отличных от нуля. Всякий отличный от нуля минор матрицы, порядок которого равен ее рангу, называется ее базисным минором. Строки и столбцы, участвующие в образовании базисного минора, также будут базисными. Матрица может иметь несколько базисных миноров, однако все их порядки одинаковы и равны рангу матрицы.

Ранг матрицы не изменится, если:

1) строки и столбцы матрицы поменять местами;

2) переставить местами два любых ее столбца (строки);

3) удалить из нее столбец (строку), все элементы которого равны нулю;

4) удалить из нее столбец (строку), являющийся линейной комбинацией остальных ее столбцов (строк);

5) умножить ее произвольный столбец (строку) на любое отличное от нуля число;

6) к любому ее столбцу (строке) прибавить произвольную линейную комбинацию остальных столбцов (строк) этой матрицы.

Преобразования 2) ‑ 6) называются элементарными. Две матрицы являются эквивалентными, если одна получается из другой с помощью элементарных преобразований и обозначается как А

Для рангов матриц справедливы следующие соотношения:

1) r (A + В ) Показать что матрица а является обратной для матрицы в еслиr(A) + r(B),

3) r (A В ) Показать что матрица а является обратной для матрицы в еслиmin<r(A); r(B)>,

5) r ( A В ) = r ( A ), если В – квадратная матрица и D ( В ) Показать что матрица а является обратной для матрицы в если0,

Источник

Обратная матрица.

Метод обратной матрицы.

Метод обратной матрицы – это один из самых распространенных методов решения матриц и применяется для решения систем линейных алгебраических уравнений (СЛАУ) в случаях, когда число неизвестных соответствует количеству уравнений.

Суть метода обратной матрицы.

Пусть есть система n линейных уравнений с n неизвестными:

Показать что матрица а является обратной для матрицы в если

Такую систему можно записать как матричное уравнение A* X = B,

где Показать что матрица а является обратной для матрицы в если– матрица системы,

Показать что матрица а является обратной для матрицы в если– столбец неизвестных,

Показать что матрица а является обратной для матрицы в если– столбец свободных коэффициентов.

Обратная матрица к матрице A существует лишь тогда, когда det A ≠ 0. Ввиду этого при решении СЛАУ методом обратной матрицы первым делом находится det A. Если det A ≠ 0, то у системы есть только одно решение, которое можно получить методом обратной матрицы, если же det A = 0, то такая система методом обратной матрицы не решается.

Решение обратной матрицы.

Последовательность действий для решения обратной матрицы:

Приведенный ниже алгоритм решения обратной матрицы по сути такой же, как и приведенный выше, разница только в нескольких шагах: первым делом определяем алгебраические дополнения, а уже после этого вычисляем союзную матрицу C.

Нахождение обратной матрицы.

Нахождение обратной матрицы – это лучше всего делать с помощью присоединённой матрицы.

Теорема: Если к квадратной матрице с правой стороны приписать единичную матрицу такого же порядка и при помощи элементарных преобразований над строками преобразовать начальную матрицу, стоящую слева, в единичную, то полученная с правой стороны будет обратной к начальной.

Пример нахождения обратной матрицы.

Задание. Для матрицы Показать что матрица а является обратной для матрицы в еслинайти обратную методом присоединенной матрицы.

Решение. Дописываем к заданной матрице А справа единичную матрицу 2го порядка:

Показать что матрица а является обратной для матрицы в если

Из 1й строки вычитаем 2ю:

Показать что матрица а является обратной для матрицы в если

От второй строки отнимаем 2 первых:

Показать что матрица а является обратной для матрицы в если

1ю и 2ю строки меняем местами:

Показать что матрица а является обратной для матрицы в если

От 2й строки отнимаем 2 первых:

Показать что матрица а является обратной для матрицы в если

Вторую строку умножаем на (-1), а к первой строке добавляем 2ю:

Показать что матрица а является обратной для матрицы в если

Итак, слева имеем единичную матрицу, а, значит, матрица, которая стоит справа, будет обратной к заданной изначально.

Т.о., имеем Показать что матрица а является обратной для матрицы в если.

Ответ после нахождения обратной матрицы: Показать что матрица а является обратной для матрицы в если

Замечание. Если на каком-либо этапе в «левой» матрице образуется нулевая строка, значит, что заданная изначально не имеет обратной.

Источник

Как найти обратную матрицу?

Продолжаем разговор о действиях с матрицами. А именно – в ходе изучения данной лекции вы научитесь находить обратную матрицу. Научитесь. Даже если с математикой туго.

Что такое обратная матрица? Здесь можно провести аналогию с обратными числами: рассмотрим, например, оптимистичное число 5 и обратное ему число Показать что матрица а является обратной для матрицы в если. Произведение данных чисел равно единице: Показать что матрица а является обратной для матрицы в если. С матрицами всё похоже! Произведение матрицы Показать что матрица а является обратной для матрицы в еслина обратную ей матрицу Показать что матрица а является обратной для матрицы в еслиравно Показать что матрица а является обратной для матрицы в еслиединичной матрице, которая является матричным аналогом числовой единицы. Однако обо всём по порядку – сначала решим важный практический вопрос, а именно, научимся эту самую обратную матрицу находить.

Что необходимо знать и уметь для нахождения обратной матрицы? Вы должны уметь решать определители. Вы должны понимать, что такое матрица и уметь выполнять некоторые действия с ними.

Есть? Тогда поехали дальше. А хотя… ехать могут все, если что-то не знаете, я буду ставить нужную ссылку по ходу объяснений.

Существует два основных метода нахождения обратной матрицы:
с помощью алгебраических дополнений и с помощью элементарных преобразований.

Сегодня мы изучим первый, более простой способ.

Начнем с самого ужасного и непонятного. Рассмотрим квадратную матрицу Показать что матрица а является обратной для матрицы в если. Обратную матрицу Показать что матрица а является обратной для матрицы в еслиможно найти по следующей формуле:

Показать что матрица а является обратной для матрицы в если, где Показать что матрица а является обратной для матрицы в если– определитель матрицы Показать что матрица а является обратной для матрицы в если, Показать что матрица а является обратной для матрицы в если– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы Показать что матрица а является обратной для матрицы в если.

Понятие обратной матрицы существует только для квадратных матриц, матриц «два на два», «три на три» и т.д.

Обозначения: Как вы уже, наверное, заметили, обратная матрица обозначается надстрочным индексом Показать что матрица а является обратной для матрицы в если

Начнем с простейшего случая – матрицы «два на два». Чаще всего, конечно, требуется найти обратную матрицу для матрицы «три на три», но, тем не менее, настоятельно рекомендую изучить более простое задание, для того чтобы усвоить общий принцип решения.

Найти обратную матрицу для матрицы Показать что матрица а является обратной для матрицы в если

Решаем. Последовательность действий удобно разложить по пунктам.

1) Сначала находим определитель матрицы.

Показать что матрица а является обратной для матрицы в если

Если с пониманием сего действа плоховато, ознакомьтесь с материалом Как вычислить определитель?

Важно! В том случае, если определитель матрицы равен НУЛЮ – обратной матрицы НЕ СУЩЕСТВУЕТ.

В рассматриваемом примере, как выяснилось, Показать что матрица а является обратной для матрицы в если, а значит, всё в порядке.

2) Находим матрицу миноров Показать что матрица а является обратной для матрицы в если.

Для решения нашей задачи не обязательно знать, что такое минор, однако, желательно ознакомиться со статьей Как вычислить определитель.

Матрица миноров имеет такие же размеры, как и матрица Показать что матрица а является обратной для матрицы в если, то есть в данном случае Показать что матрица а является обратной для матрицы в если.
Дело за малым, осталось найти четыре числа и поставить их вместо звездочек.

Возвращаемся к нашей матрице Показать что матрица а является обратной для матрицы в если
Сначала рассмотрим левый верхний элемент:
Показать что матрица а является обратной для матрицы в если
Как найти его минор?
А делается это так: МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:
Показать что матрица а является обратной для матрицы в если
Оставшееся число и является минором данного элемента, которое записываем в нашу матрицу миноров:
Показать что матрица а является обратной для матрицы в если
Рассматриваем следующий элемент матрицы Показать что матрица а является обратной для матрицы в если:
Показать что матрица а является обратной для матрицы в если
Мысленно вычеркиваем строку и столбец, в котором стоит данный элемент:
Показать что матрица а является обратной для матрицы в если
То, что осталось, и есть минор данного элемента, который записываем в нашу матрицу:
Показать что матрица а является обратной для матрицы в если
Аналогично рассматриваем элементы второй строки и находим их миноры:
Показать что матрица а является обратной для матрицы в если
Показать что матрица а является обратной для матрицы в если
Готово.

Показать что матрица а является обратной для матрицы в если– матрица миноров соответствующих элементов матрицы Показать что матрица а является обратной для матрицы в если.

3) Находим матрицу алгебраических дополнений Показать что матрица а является обратной для матрицы в если.

Это просто. В матрице миноров нужно ПОМЕНЯТЬ ЗНАКИ у двух чисел:
Показать что матрица а является обратной для матрицы в если
Именно у этих чисел, которые я обвел в кружок!

Показать что матрица а является обратной для матрицы в если– матрица алгебраических дополнений соответствующих элементов матрицы Показать что матрица а является обратной для матрицы в если.

4) Находим транспонированную матрицу алгебраических дополнений Показать что матрица а является обратной для матрицы в если.

Что такое транспонирование матрицы, и с чем это едят, смотрите в лекции Действия с матрицами.

Показать что матрица а является обратной для матрицы в если– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы Показать что матрица а является обратной для матрицы в если.

5) Ответ.

Вспоминаем нашу формулу Показать что матрица а является обратной для матрицы в если
Всё найдено!

Таким образом, обратная матрица:
Показать что матрица а является обратной для матрицы в если

Ответ лучше оставить в таком виде. НЕ НУЖНО делить каждый элемент матрицы на 2, так как получатся дробные числа. Более подробно данный нюанс рассмотрен в той же статье Действия с матрицами.

Как проверить решение?

Необходимо выполнить матричное умножение Показать что матрица а является обратной для матрицы в еслилибо Показать что матрица а является обратной для матрицы в если

Проверка:
Показать что матрица а является обратной для матрицы в если

Получена уже упомянутая единичная матрица – это матрица с единицами на главной диагонали и нулями в остальных местах.

Таким образом, обратная матрица найдена правильно.

Если провести действие Показать что матрица а является обратной для матрицы в если, то в результате тоже получится единичная матрица. Это один из немногих случаев, когда умножение матриц перестановочно, более подробную информацию можно найти в статье Свойства операций над матрицами. Матричные выражения. Также заметьте, что в ходе проверки константа (дробь) выносится вперёд и обрабатывается в самом конце – после матричного умножения. Это стандартный приём.

Переходим к более распространенному на практике случаю – матрице «три на три»:

Найти обратную матрицу для матрицы Показать что матрица а является обратной для матрицы в если

Алгоритм точно такой же, как и для случая «два на два».

Обратную матрицу найдем по формуле: Показать что матрица а является обратной для матрицы в если, где Показать что матрица а является обратной для матрицы в если– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы Показать что матрица а является обратной для матрицы в если.

1) Находим определитель матрицы.

Показать что матрица а является обратной для матрицы в если
Здесь определитель раскрыт по первой строке.

Также не забываем, что Показать что матрица а является обратной для матрицы в если, а значит, всё нормально – обратная матрица существует.

2) Находим матрицу миноров Показать что матрица а является обратной для матрицы в если.

Матрица миноров имеет размерность «три на три» Показать что матрица а является обратной для матрицы в если, и нам нужно найти девять чисел.

Я подробно рассмотрю парочку миноров:

Рассмотрим следующий элемент матрицы:
Показать что матрица а является обратной для матрицы в если
МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:
Показать что матрица а является обратной для матрицы в если

Оставшиеся четыре числа записываем в определитель «два на два»
Показать что матрица а является обратной для матрицы в если
Этот определитель «два на два» и является минором данного элемента. Его нужно вычислить:
Показать что матрица а является обратной для матрицы в если
Всё, минор найден, записываем его в нашу матрицу миноров:
Показать что матрица а является обратной для матрицы в если

Как вы, наверное, догадались, необходимо вычислить девять определителей «два на два». Процесс, конечно, муторный, но случай не самый тяжелый, бывает хуже.

Ну и для закрепления – нахождение еще одного минора в картинках:
Показать что матрица а является обратной для матрицы в если
Остальные миноры попробуйте вычислить самостоятельно.

Окончательный результат:
Показать что матрица а является обратной для матрицы в если– матрица миноров соответствующих элементов матрицы Показать что матрица а является обратной для матрицы в если.

То, что все миноры получились отрицательными – чистая случайность.

3) Находим матрицу алгебраических дополнений Показать что матрица а является обратной для матрицы в если.

В матрице миноров необходимо СМЕНИТЬ ЗНАКИ строго у следующих элементов:
Показать что матрица а является обратной для матрицы в если
В данном случае:
Показать что матрица а является обратной для матрицы в если– матрица алгебраических дополнений соответствующих элементов матрицы Показать что матрица а является обратной для матрицы в если.

4) Находим транспонированную матрицу алгебраических дополнений Показать что матрица а является обратной для матрицы в если.

Показать что матрица а является обратной для матрицы в если– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы Показать что матрица а является обратной для матрицы в если.

5) Ответ:

Показать что матрица а является обратной для матрицы в если

Проверка:
Показать что матрица а является обратной для матрицы в если

Таким образом, обратная матрица найдена правильно.

Как оформить решение на чистовик? Примерный образец чистового оформления задания можно найти на странице Правило Крамера. Метод обратной матрицы в параграфе, где идет речь о матричном методе решения системы линейных уравнений. По существу, основная часть упомянутой задачи – и есть поиск обратной матрицы.

Нахождение обратной матрицы для матрицы «четыре на четыре» не рассматриваем, так как такое задание может дать только преподаватель-садист (чтобы студент вычислил один определитель «четыре на четыре» и 16 определителей «три на три»). В моей практике встретился только один такой случай, и заказчик контрольной работы заплатил за мои мучения довольно дорого =).

В ряде учебников, методичек можно встретить несколько другой подход к нахождению обратной матрицы, однако я рекомендую пользоваться именно вышеизложенным алгоритмом решения. Почему? Потому что вероятность запутаться в вычислениях и знаках – гораздо меньше.

Иногда обратную матрицу требуется найти методом Гаусса-Жордана, но второй способ доступен для студентов с приличной техникой элементарных преобразований.

Автор: Емелин Александр

(Переход на главную страницу)

Показать что матрица а является обратной для матрицы в если Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5

Показать что матрица а является обратной для матрицы в если Tutoronline.ru – онлайн репетиторы по математике и другим предметам

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *