Поисковые системы что это такое
Поисковые системы
Поисковые системы (ПС) уже давно являются обязательной частью интернета и нашей повседневной жизни. Сегодня они громадные и сложнейшие механизмы, которые представляют собой не только инструмент для нахождения любой необходимой информации, но и довольно увлекательные сферы для бизнеса.
Функции и понятие ПС
Поисковая система – это аппаратно-программный комплекс, который предназначен для осуществления функции поиска в интернете, и реагирующий на пользовательский запрос который обычно задают в виде какой-либо текстовой фразы (или точнее поискового запроса), выдачей ссылочного списка на информационные источники, осуществляющейся по релевантности. Самые распространенные и крупные системы поиска: Google, Bing, Yahoo, Baidu. В Рунете – Яндекс, Mail.Ru, Рамблер.
Рассмотрим поподробнее само значение запроса для поиска, взяв для примера систему Яндекс.
Запрос обязан быть сформулирован пользователем в полном соответствии с предметом его поиска, максимально просто и кратко. К примеру, мы желаем найти информацию в данном поисковике: «как выбрать автомобиль для себя». Чтобы сделать это, открываем главную страницу и вводим запрос для поиска «как выбрать авто». Потом наши функции сводятся к тому, чтобы зайти по предоставленным ссылкам на информационные источники в сети.
Но даже действуя таким образом, можно и не получить необходимую нам информацию. Если мы получили подобный отрицательный результат, нужно просто переформировать свой запрос, или же в базе поиска действительно нет никакой полезной информации по данному виду запроса (такое вполне возможно при заданных «узких» параметров запроса, как, к примеру, «как выбрать автомобиль в Туле»).
Самая основная задача каждой поисковой системы – доставить людям именно тот вид информации, который им нужен. Приучить же пользователей создавать «правильный» вид запросов к поисковым системам, то есть фразы, которые будут соответствовать их принципам работы, практически, невозможно.
Именно поэтому специалисты-разработчики поисковиков делают такие принципы и алгоритмы их работы, которые бы давали пользователям находить интересующие их сведения. Это означает, что система, должна «думать» так же, как мыслит человек при поиске необходимой информации в интернете.
Когда он вводит свой запрос в поисковую машину, он желает найти то, что ему надо, как можно проще и быстрее. Получив результат, пользователь составляет свою оценку работе системы, руководствуясь несколькими критериями. Получилось ли у него найти нужную информацию? Если нет, то сколько раз ему пришлось переформатировать текст запроса, чтобы найти ее? Насколько актуальная информация была им получена? Как быстро поисковая система обработала его запрос? Насколько удобно были предоставлены поисковые результаты? Был ли нужный результат первым, или находился на 30-ом месте? Сколько «мусора» (ненужной информации) было найдено вместе с полезными сведениями? Найдется ли актуальная для него информация, при использовании ПС, через неделю, либо через месяц?
Основные характеристики поисковых систем
Полнота.
Точность.
Еще одна основная функция поисковой системы – точность. Она определяет степень соответствия запросу пользователя найденных страниц в Сети. К примеру, если по ключевой фразе «как выбрать автомобиль» найдется сотня документов, в половине из них содержится данное словосочетание, а в остальных просто есть в наличии такие слова (как грамотно выбрать автомагнитолу, и установить ее в автомобиль»), то поисковая точность равна 50/100 = 0,5.
Чем поиск точнее, тем скорее пользователь найдет необходимую ему информацию, тем меньше разнообразного «мусора» будет встречаться среди результатов, тем меньше найденных документов будут не соответствовать смыслу запроса.
Актуальность.
Это значимая составляющая поиска, которую характеризует время, проходящее с момента опубликования информации в интернете до занесения ее в индексную базу поисковика.
К примеру, на следующий день после возникновения информации о выходе нового iPad, множество пользователей обратилась к поиску с соответствующими видами запросов. В большинстве случаев информация об этой новости уже доступна в поиске, хотя времени с момента ее появления прошло очень мало. Это происходит благодаря наличию у крупных поисковых систем «быстрой базы», которая обновляется несколько раз за день.
Скорость поиска.
Наглядность.
Наглядное представление результатов является важнейшим элементом удобства поиска. По множеству запросов поисковая система находит тысячи, а в некоторых случаях и миллионы разных документов. Вследствие нечеткости составления ключевых фраз для поиска или его не точности, даже самые первые результаты запроса не всегда имеют только нужные сведения.
Это значит, что человеку часто приходится осуществлять собственный поиск среди предоставленных результатов. Разнообразные компоненты страниц выдачи ПС помогают ориентироваться в поисковых результатах.
История развития поисковых систем
Когда интернет только начал развиваться, число его постоянных пользователей было небольшим, и объем информации для доступа был сравнительно невеликим. В основном доступ к этой сети имели лишь специалисты научно-исследовательских сфер. В то время, задача нахождения информации не была столь актуальна как сейчас.
Одним из самых первых методов организации широкого доступа к ресурсам информации стало создание каталогов сайтов, причем ссылки на них начали группировать по тематике. Таким первым проектом стал ресурс Yahoo.com, который открылся весной 1994-ого года. Впоследствии когда количество сайтов в Yahoo-каталоге существенно увеличилось, была добавлена опция поиска необходимых сведений по каталогу. Это еще не было в полной мере поисковой системой, так как область такого поиска была ограничена только сайтами, входящими в данный каталог, а не абсолютно всеми ресурсами в интернете. Каталоги ссылок весьма широко использовались раньше, однако в настоящее время, практически в полной мере утратили свою популярность.
Ведь даже сегодняшние, громадные по своим объемам каталоги имеют информацию о незначительно части сайтов в интернете. Самым известным и большим каталогом в мире был DMOZ (прекратил работу 14 марта 2017 года) имеет информацию о пяти миллионах сайтов, когда база Google содержит информацию о более чем 25 миллиардов страниц.
Самой первой настоящей поисковой системой стала WebCrawler, возникшая еще в 1994-ом году.
В следующем году появились AltaVista и Lycos. Причем первая была лидером по поиску информации очень длительное время.
В 1997-ом году Сергей Брин вместе с Ларри Пейджем создал машину поисковую Google как исследовательский проект в Стэндфордском университете. Сегодня именно Google, самая востребованная и популярная поисковая система в мире.
В сентябре 1997-ом году была анонсирована (официально) ПС Yandex, которая в настоящий момент является самой популярной системой поиска в Рунете.
Доля поисковых систем
Принципы работы поисковой системы
Модуль индексирования.
Данный компонент состоит из трех программ-роботов:
Spider (по англ. паук) – программа которая предназначена для того чтобы скачивать веб-страницы. «Паук» скачивает определенную страницу, одновременно извлекая из нее все ссылки. Скачивается код html практически с каждой страницы. Для этого роботы используют HTTP-протоколы.
«Паук» функционирует следующим образом. Робот передает запрос на сервер “get/path/document” и иные команды запроса HTTP. В ответ программа-робот получает поток текста, который содержит информацию служебного вида и, естественно, сам документ.
Crawler, исследуя найденные ссылки, ищет новые документы, еще не ставшие известными поисковой системе.
Indexer (робот-индексатор) – это программа, анализирующая страницы, которые скачали пауки.
Индексатор полностью разбирает страницу на составные элементы и проводит их анализ, применяя свои морфологические и лексические виды алгоритмов.
Анализ проводится над разнообразными частями страницы, такими как заголовки, текст, ссылки, стилевые и структурные особенности, теги html и др.
Таким образом, модуль индексирования дает возможность проходить по ссылкам заданного количества ресурсов, скачивать страницы, извлекать ссылочную массу на новые страницы из полученных документов и делать подробный их анализ.
База данных
Поисковый сервер
Это самый важный элемент всей системы, потому что от алгоритмов, лежащих в основе ее функциональности, прямо зависит скорость и, конечно же, качество поиска.
Поисковая система
Поисковая система — это сложная программная разработка, онлайн-интерфейс которой создан для поиска информации в интернете. Главным качеством подобных сервисов является возможность формирования результатов поиска, которые в максимальной степени соответствуют запросам пользователя. Идеал не достигнут, но все лидеры рынка стремятся к нему. Поисковая система — что это? Миллионы людей ежедневно начинают свой серфинг в интернете с запроса в поисковике, но далеко не все могут ответить на этот вопрос. Алгоритмы поисковых систем не только имеют высокую сложность, но и являются важнейшей для компании коммерческой тайной. Но чтобы понять принцип их работы, достаточно рассмотреть базовые направления функционирования.
Сканирование страниц. С помощью поисковых роботов выполняется автоматический мониторинг появления в Сети новых сайтов и страниц, а также изменений на существующих ресурсах.
Индексация. Алгоритмы определяют тематику, ключевые слова, качество и другие параметры. После обработки полученные сведения отправляются на хранение в базы данных, которые таким образом обновляются.
Ранжирование. Определяется место конкретных страниц сайта в выдаче по всем возможным релевантным запросам. Сегодня при ранжировании во внимание берутся сотни факторов, определяющих тематику, качество и полезность ресурса.
Все известные поисковые системы работают по аналогичному принципу. Однако у каждого сервиса есть свои особенности, о которых мы поговорим ниже.
В конце весны 2019 года агентство Statcounter провело исследование, которое показало, что на Google приходится более 92 % мирового поискового рынка. Такой успех во многом обусловлен тем, что компания много усилий прикладывает к совершенствованию своих алгоритмов анализа и ранжирования. В Google делают все возможное, чтобы пользователи получали лучшие результаты поиска. В процессе совершенствования компания периодически выпускала новые алгоритмы. Некоторые из них не имели особого значения, но отдельные становились причиной настоящего переворота в мире продвижения сайтов. Однако система имеет несколько особенностей.
Консервативные инструменты ранжирования. Нужно отметить, что Google до сих пор отдает приоритет техническим факторам ранжирования. При таком «классическом» подходе большое значение имеет ссылочная масса, возраст домена, авторитет сайта. Такая консервативность привела к тому, что информативные и полезные сайты могут оказаться ниже в тематической выдаче, чем ресурсы без хорошего контента, но с удачными техническими показателями. Такая ситуация кажется удивительной для мирового лидера инноваций и передовых технологий. Однако на адекватность ранжирования в Google жалуются не только оптимизаторы, но и многие требовательные пользователи.
Отслеживание поведения пользователей. Также нельзя не отметить того факта, что корпорация Google периодически попадает в скандалы, связанные с конфиденциальностью. Дело в том, что поисковая система очень тщательно отслеживает поведение пользователей в интернете, причем даже за пределами непосредственно самой поисковой системы. С точки зрения обычных людей это не очень хороший факт. Но для бизнеса такой подход к обработке данных является важным плюсом. Ведь рекламодателям сервис может предоставить самый гибкий и широкий набор инструментов для таргетинга рекламы. С помощью рекламных возможностей Google может добиться невероятного охвата, а также точности выхода на целевую аудиторию.
Если говорить о глобальном рынке, то поисковая система Bing уверенно занимает второе место после Google. Этот сервис принадлежит Microsoft, поэтому не удивительно, что он глубоко оптимизирован под работу с Windows. Поисковая система Bing отличается более совершенным, чем у главного конкурента-гиганта, алгоритмом поиска видеороликов. Пользователям здесь предлагают больше качественных вариантов автозаполнения строки. Алгоритмы Bing глубоко анализируют связи между сайтами, что делает поиск похожих вариантов более результативным.
Yandex
Поисковая система «Яндекс» — это лидер поискового рынка Рунета, который фактически на равных соперничает с Google. Сервис отличается собственным алгоритмом с отменной логикой. Его создатели успешно поработали над тем, чтобы роботы лучше «понимали» смысл текстовых материалов. Поэтому для удачного продвижения здесь придется научиться писать полезные и уникальные статьи. Пользователям поисковой системы «Яндекс» предоставляется доступ к широкому набору дополнительных инструментов, включая карты, почту, информатор о загруженности дорог и пр. Нужно отметить, что многие дополнительные сервисы дублируются аналогичными инструментами от Google.
Продвижение в поисковой системе «Яндекс» проходит быстрее, чем в Google. Но добиться хорошего результата можно только при пристальном внимании к качеству контента и поведенческим факторам. Алгоритмы учитывают то, насколько качественный опыт получил пользователь от взаимодействия с сайтом.
DuckDuckGo
Это еще одна достаточно распространенная поисковая система. С ней точно сталкивались пользователи браузера Firefox, ведь там этот сервис предустановлен по умолчанию. В DuckDuckGo принципиально отказались от «слежки» за своими пользователями. Это во многом позволило эффектно противопоставить себя гиганту Google и завоевать массовую популярность среди ценителей конфиденциальности.
Boardreader
Разработчики этого поискового сервиса решили не идти по консервативному пути. В итоге они создали систему, которая формирует выдачу на основе страниц различных авторитетных форумов. В некотором смысле эта система позволяет обойти коммерческие проекты и получить информацию от людей, которые разбираются в теме, но не представляют бизнес.
Dogpile
Это своеобразный граббер Google, Yandex и Yahoo. При вводе запроса в Dogpile система анализирует соответствующую выдачу у трех гигантов поискового рынка. После этого сервис с помощью собственного алгоритма составляет собственную выдачу. Здесь нет рекламы, поэтому можно глубже сосредоточиться на серфинге в интернете.
Creative Commons Search
Это уникальная поисковая система, которая чем-то напоминает узкоспециализированную социальную сеть. Ее алгоритмы позволяют находить необходимые тематические авторские материалы, причем с возможностью их использования для некоммерческих целей. Это просто находка для дизайнеров, музыкантов и других креативных людей.
Giphy
Эта оригинальная система была создана для удобного поиска анимированных изображений. Если вы любите развлекаться просмотром смешных и увлекательных мини-роликов, то эта поисковая система именно для вас. Также поисковик Giphy будет полезен для администраторов развлекательных сообществ.
Quora
По своему функционалу поисковая система очень напоминает гибрид классического информационного ресурса и сайта вопросов-ответов. Здесь всегда можно найти интересных собеседников, для чего и придется воспользоваться внутренним поиском. На главной странице есть рейтинг популярных вопросов, что позволяет сразу влиться в интересную беседу.
Vimeo
Поисковый сервис Vimeo является достаточно интересным и перспективным конкурентом крупнейшего видеохостинга YouTube. Причин популярности сервиса достаточно много: простой принцип обмена контентом, полное отсутствие рекламы и большой выбор материалов в высоком качестве.
WolframAlpha
Поисковая система WolframAlpha — это собственный оригинальный алгоритм поиска, необычный яркий дизайн и большой выбор дополнительных функций, которых не найдешь у конкурентов. Это интересная альтернатива привычным сервисам.
StartPage
Главная особенность этой поисковой платформы — это полное отсутствие слежки за своими пользователями. Это идеальное решение для людей, которые не хотят, чтобы крупные корпорации зарабатывали миллиарды, продавая информацию о поведении и интересах пользователей интернета. В поисковую систему StartPage встроен мощный прокси-сервер, позволяющий анонимно заходить на любые сайты вне зависимости от региональных или персональных блокировок. Пользователи сервиса не оставляют совершенно никаких следов своего присутствия на сайте.
Ask.com
Эта поисковая система, по сути, является агрегатором, который объединяет работы крупных поисковиков. Здесь пользователи могут добавлять в избранное результаты удачного поиска. А также есть возможность задать вопрос другим пользователям системы.
SlideShare
Это специализированный сервис, созданный для людей, которые нуждаются в инфографике, документах, презентациях и подобных материалах. Здесь собрана большая собственная база, многие из материалов которой не дублируются в свободном доступе. Чтобы пользоваться контентом, достаточно пройти простую и бесплатную процедуру регистрации.
Что такое поисковая система, как работает поиск
Наиболее популярным веб сервисом современности является именно поисковая система. Тут всё объяснимо, ведь те времена, когда представители первых пользователей интернета могли наблюдать новинки в сети уже давным-давно ушли.
Информации появляется и скапливается так много, что человеку стало очень трудно найти именно ту, которая ему была бы необходима. Представьте, как бы обстоял бы поиск в интернете, если бы рядовому пользователю пришлось бы искать информацию не пойми где. Именно не пойми где, потому как ручным поиском много информации не найдёшь.
Поисковая система, что это такое?
Хорошо если пользователю уже известны сайты, на которых возможно есть нужная информация, но что делать в противном случае? Для того, чтобы облегчить жизнь человеку в поиске нужной информации в интернете и были придуманы поисковые системы или просто поисковики. Поисковая система выполняет одну очень важную функцию, без которой интернет был бы не таким как мы его привыкли видеть – это поиск информации в сети.
Поисковая система – это специальный веб узел или по-другому сайт, который предоставляет пользователям по их запросам гиперссылки на страницы, сайтов, отвечающие на заданный поисковой запрос.
Если быть немного точнее, то поиск информации в интернете, осуществляющийся благодаря программно-аппаратному функциональному набору и веб интерфейсу для взаимодействия с пользователями.
Для взаимодействия человека с поисковой системой и был создан веб интерфейс, то есть видимая и понятная оболочка. Данный подход разработчиков поисковиков облегчает поиск многим людям. Как правило, именно в интернете осуществляется поиск при помощи поисковых систем, но также существуют системы поиска для FTP-серверов, отдельных видов товаров во всемирной паутине, либо новостной информации или же другие поисковые направления.
Поиск может осуществляться не только по текстовому наполнению сайтов, но и по другим типам информации, которые человек может искать: изображения, видео, звуковые файлы и т.д.
Как осуществляется поиск поисковой системой?
Сам поиск в интернете, ровно так же как просмотр веб сайтов возможен при помощи интернет обозревателя – браузера. Только после того, как пользователь задал свой запрос в строке поиска, осуществляется непосредственно и сам поиск.
Релевантность поиска – поиск наиболее отвечающих запросу пользователя материалов и расположение на них гиперссылок на странице выдачи с более точными результатами выше других. Само распределениерезультатов называется ранжированием сайтов.
Так как же поисковик подготавливает для выдачи свои материалы и как происходит поиск информации самим поисковиком? Сбору информации в сети способствует уникальный для каждой поисковой системы робот или по-другому бот, обладающий так же рядом других синонимов как краулер или паук, а саму работу системы поиска можно разделить на три этапа:
К первому этапу работы поисковой системы можно отнести сканирование сайтов в глобальной сети и сбор на свои собственные серверы копий веб страниц. Это образует огромное количество пока ещё не обработанной и не пригодной информации для поисковой выдачи.
Второй этап работы поисковика сводится к приведению в порядок полученной ранее, на первом этапе информации от сайтов. Производится такая сортировка, которая за наименьшее время будет благоприятствовать тому самому качественному поиску, которого собственно и ждут пользователи от поисковой системы. Этап называют индексацией, это значит, что страницы уже являются подготовленными к выдаче, а актуальная база будет считаться индексом.
Как раз третий этап и обуславливает поисковую выдачу, после приёма запроса от своего клиента, опираясь на ключевые или около ключевые слова, указанные в запросе. Это способствует отбору наиболее соответствующей запросу информации, и последующей её выдачи. Так как информации, очень и очень много, поисковая система выполняет ранжирование в соответствие со своими алгоритмами.
Лучшей поисковой системой считается та, которая сможет предоставить наиболее корректно отвечающий на запрос пользователя материал. Но и тут могут встречаться результаты, на которые повлияли люди, заинтересованные в продвижение своего сайта, такие сайты хоть и не всегда, но зачастую появляются в результатах поиска, но не на долго.
Хоть мировые лидеры уже во многих регионах определены, поисковые системы продолжаются развивать свой качественный, поиск. Чем качественней поиск они смогут предоставить, тем больше людей будут им пользоваться.
Как пользоваться поисковой системой?
А вот получить правильный ответ на запрос поиска, с первого раза удаётся не всегда. Для того, чтобы поиски желаемого не становились мучительными, необходимо правильно составлять поисковый запрос и следовать нижеописанным рекомендациям.
Составляем поисковый запрос правильно
Далее будут указаны советы по использованию поисковой системы. Следование некоторым хитростям и правилам при осуществлении поиска информации в поисковой системе даст возможность получить нужный результат гораздо быстрее. Следуйте данным рекомендациям:
Так что такое поисковая система – это ни что иное, как возможность найти интересующую информацию и обычно совершенно бесплатно ей воспользоваться, чему-то научиться, что-то понять или сделать правильный для себя вывод. Многие уже не представляют своей жизни без голосового поиска, при котором текст не приходится набирать, свой запрос нужно всего лишь произнести, а устройством ввода информации тут является микрофон. Всё это свидетельствует о постоянном развитие поисковых технологий в интернете и необходимости в них.
Как работают поисковые системы
Мы разбирали старые письма и наткнулись на статью, которую писал Илья Сегалович iseg для журнала «Мир Internet» в далёком 2002 году. В ней он сравнивает интернет и поисковые системы с чудесами света, размышляет о поисковых технологиях и вспоминает их историю. Несмотря на загруженность по работе, Илья написал статью в рекордные сроки и даже снабдил достаточно подробным словарём терминов, который особенно интересно читать в наши дни. Нам не удалось найти электронную версию журнала со статьей, поэтому сегодня мы публикуем её в нашем блоге, первым автором которого, к слову, был Илья.
В мире написаны сотни поисковых систем, а если считать функции поиска, реализованные в самых разных программах, то счет надо вести на тысячи. И как бы ни был реализован процесс поиска, на какой бы математической модели он ни основывался, идеи и программы, реализующие поиск, достаточно просты. Хотя эта простота, относится, по-видимому, к той категории, про которую говорят «просто, но работает». Так или иначе, но именно поисковые системы стали одним из двух новых чудес света, предоставив Homo Sapiens неограниченный и мгновенный доступ к информации. Первым чудом, очевидно, можно считать Интернет как таковой, с его возможностями всеобщей коммуникации.
Поисковые системы в исторической перспективе
Существует распространенное убеждение, что каждое новое поколение программ совершенней предыдущего. Дескать, раньше все было несовершенно, зато теперь повсюду царит чуть ли не искусственный интеллект. Иная крайняя точка зрения состоит в том, что «все новое – это хорошо забытое старое». Думаю, что применительно к поисковым системам истина лежит где-то посередине.
Но что же поменялось в действительности за последние годы? Не алгоритмы и не структуры данных, не математические модели. Хотя и они тоже. Поменялась парадигма использования систем. Проще говоря, к экрану со строчкой поиска подсели домохозяйка, ищущая утюг подешевле, и выпускник вспомогательного интерната в надежде найти работу автомеханика. Кроме появления фактора, невозможного в доинтернетовскую эру – фактора тотальной востребованности поисковых систем – стала очевидна еще пара изменений. Во-первых, стало ясно, что люди не только «думают словами», но и «ищут словами». В ответе системы они ожидают увидеть слово, набранное в строке запроса. И второе: «человека ищущего» трудно «переучить искать», так же как трудно переучить говорить или писать. Мечты 60-х – 80-х об итеративном уточнении запросов, о понимании естественного языка, о поиске по смыслу, о генерации связного ответа на вопрос с трудом выдерживают сейчас жестокое испытание реальностью.
Алгоритм + Структура данных = Поисковая система
Как и любая программа, поисковая система оперирует со структурами данных и исполняет алгоритм. Разнообразие алгоритмов не очень велико, но оно есть. Не считая квантовых компьютеров, которые обещают нам волшебный прорыв в «алгоритмической сложности» поиска, и про которые автору почти ничего не известно, есть четыре класса поисковых алгоритмов. Три алгоритма из четырех требуют «индексирования», предварительной обработки документов, при котором создается вспомогательный файл, сиречь «индекс», призванный упростить и ускорить сам поиск. Это алгоритмы инвертированных файлов, суффиксных деревьев, сигнатур. В вырожденном случае предварительный этап индексирования отсутствует, а поиск происходит при помощи последовательного просмотра документов. Такой поиск называется прямым.
Прямой поиск
ПРЯМОЙ ПОИСК ТЕКСТА. В этой функции языка C текст строки big просматривают слева направо и для каждой позиции x запускают последовательное сравнение с искомой подстрокой little. Для этого, двигая одновременно два указателя y и z, попарно сравнивают все символы. Если мы успешно дошли до конца искомой подстроки, значит она найдена! |
Несмотря на кажущуюся простоту, последние 30 лет прямой поиск интенсивно развивается. Было выдвинуто немалое число идей, сокращающих время поиска в разы. Эти алгоритмы подробно описаны в разнообразной литературе, есть их сводки и сопоставления. Неплохие обзоры прямых методов поиска можно найти в учебниках, например Седжвика или Кормена. При этом надо учесть, что новые алгоритмы и их улучшенные варианты появляются постоянно.
Хотя прямой просмотр всех текстов – довольно медленное занятие, не следует думать, что алгоритмы прямого поиска не применяются в интернете. Норвежская поисковая система Fast (www.fastsearch.com) использовала чип, реализующий логику прямого поиска упрощенных регулярных выражений, и разместила 256 таких чипов на одной плате. Это позволяло Fast-у обслуживать довольно большое количество запросов в единицу времени.
Кроме того, есть масса программ, комбинирующих индексный поиск для нахождения блока текста с дальнейшим прямым поиском внутри блока. Например, весьма популярный, в том числе и в Рунете, glimpse.
Вообще, у прямых алгоритмов есть принципиально беспроигрышные отличительные черты. Например, неограниченные возможности по приближенному и нечеткому поиску. Ведь любое индексирование всегда сопряжено с упрощением и нормализацией терминов, а, следовательно, с потерей информации. Прямой же поиск работает непосредственно по оригинальным документам безо всяких искажений.
Инвертированный файл
Эта простейшая структура данных, несмотря на свое загадочное иностранное название, интуитивно знакома как любому грамотному человеку, так и любому программисту баз данных, даже не имевшему дело с полнотекстовым поиском. Первая категория людей знает, что это такое, по «конкордансам» – алфавитно упорядоченным исчерпывающим спискам слов из одного текста или принадлежащих одному автору (например «Конкорданс к стихам А. С. Пушкина», «Словарь-конкорданс публицистики Ф. М. Достоевского»). Вторые имеют дело с той или иной формой инвертированного списка всякий раз, когда строят или используют «индекс БД по ключевому полю».
Проиллюстрируем эту структуру при помощи замечательного русского конкорданса – «Симфонии», выпущенной Московской патриархией по тексту синодального перевода Библии.
Перед нами упорядоченный по алфавиту список слов. Для каждого слова перечислены все «позиции», в которых это слово встретилось. Поисковый алгоритм состоит в отыскании нужного слова и загрузке в память уже развернутого списка позиций.
Чтобы сэкономить на дисковом пространстве и ускорить поиск, обычно прибегают к двум приемам. Во-первых, можно сэкономить на подробности самой позиции. Ведь чем подробнее задана такая позиция, например, в случае с «Симофонией» это «книга+глава+стих», тем больше места потребуется для хранения инвертированного файла.
В наиподробнейшем варианте в инвертированном файле можно хранить и номер слова, и смещение в байтах от начала текста, и цвет и размер шрифта, да много чего еще. Чаще же просто указывают только номер документа, скажем, книгу Библии, и число употреблений этого слова в нем. Именно такая упрощенная структура считается основной в классической теории информационного поиска – Information Retrieval (IR).
Второй (никак не связанный с первым) способ сжатия: упорядочить позиции для каждого слова по возрастанию адресов и для каждой позиции хранить не полный ее адрес, а разницу от предыдущего. Вот как будет выглядеть такой список для нашей странички в предположении, что мы запоминаем позицию вплоть до номера главы:
В литературе встречается и более тяжелая артиллерия упаковочных алгоритмов самого широкого спектра: арифметический, Хафман, LZW и т. д. Прогресс в этой области идет непрерывно. На практике в поисковых системах они используются редко: выигрыш невелик, а мощности процессора расходуются неэффективно.
В результате всех описанных ухищрений размер инвертированного файла, как правило, составляет от 7 до 30 процентов от размера исходного текста, в зависимости от подробности адресации.
Занесены в «Красную книгу»
Неоднократно предлагались другие, отличные от инвертированного и прямого поиска алгоритмы и структуры данных. Это, прежде всего, суффиксные деревья (см. книги Манбера и Гоннета), а также сигнатуры.
Первый из них функционировал и в интернете, будучи запатентованным алгоритмом поисковой сиcтемы OpenText. Мне доводилось встречать суффиксные индексы в отечественных поисковых системах.
Второй – метод сигнатур – представляет собой преобразование документа к поблочным таблицам хеш-значений его слов – «сигнатуре» и последовательному просмотру «сигнатур» во время поиска.
Широкого распространения ни тот ни другой метод не получили, а, следовательно, не заслужили и подробного обсуждения в этой небольшой статье.
Математические модели
Приблизительно 3 из 5 поисковых систем и модулей функционируют безо всяких математических моделей. Точнее сказать, их разработчики не ставят перед собой задачу реализовывать абстрактную модель и/или не подозревают о существовании оной. Принцип здесь прост: лишь бы программа хоть что-нибудь находила. Абы как. А дальше сам пользователь разберется.
Однако, как только речь заходит о повышении качества поиска, о большом объеме информации, о потоке пользовательских запросов, кроме эмпирически проставленных коэффициентов полезным оказывается оперировать каким-нибудь пусть и несложным теоретическим аппаратом. Модель поиска – это некоторое упрощение реальности, на основании которого получается формула (сама по себе никому не нужная), позволяющая программе принять решение: какой документ считать найденным и как его ранжировать. После принятия модели коэффициенты часто приобретают физический смысл и становятся понятней самому разработчику, да и подбирать их становится интересней.
Все многообразие моделей традиционного информационного поиска (IR) принято делить на три вида: теоретико-множественные (булевская, нечетких множеств, расширенная булевская), алгебраические (векторная, обобщенная векторная, латентно-семантическая, нейросетевая) и вероятностные.
Булевское семейство моделей, по сути, – первое, приходящее на ум программисту, реализующему полнотекстовый поиск. Есть слово – документ считается найденным, нет – не найденным. Собственно, классическая булевская модель – это мостик, связывающий теорию информационного поиска с теорией поиска и манипулирования данными.
Критика булевской модели, вполне справедливая, состоит в ее крайней жесткости и непригодности для ранжирования. Поэтому еще в 1957 году Joyce и Needham (Джойс и Нидхэм) предложили учитывать частотные характеристики слов, чтобы «… операция сравнения была бы отношением расстояния между векторами. ». Векторная модель и была с успехом реализована в 1968 году отцом-основателем науки об информационном поиске Джерардом Солтоном (Gerard Salton)* в поисковой системе SMART (Salton’s Magical Automatic Retriever of Text). Ранжирование в этой модели основано на естественном статистическом наблюдении, что чем больше локальная частота термина в документе (TF) и больше «редкость» (то есть обратная встречаемость в документах) термина в коллекции (IDF), тем выше вес данного документа по отношению к термину.
* Gerard Salton (Sahlman) 1927-1995. Он же Селтон, он же Залтон и даже Залман, он же Жерар, Герард, Жерард или даже Джеральд в зависимости от вкуса переводчика и допущенных опечаток.
http://www.cs.cornell.edu/Info/Department/Annual95/Faculty/Salton.html
http://www.informatik.uni-trier.de/
clv2m/salton.txt
Обозначение IDF ввела Karen Sparck-Jones (Карен Спарк-Джоунз) в 1972 в статье про различительную силу (term specificity). С этого момента обозначение TF*IDF широко используется как синоним векторной модели.
Наконец, в 1977 году Robertson и Sparck-Jones (Робертсон и Спарк-Джоунз) обосновали и реализовали вероятностную модель (предложенную еще в 1960-м), также положившую начало целому семейству. Релевантность в этой модели рассматривается как вероятность того, что данный документ может оказаться интересным пользователю. При этом подразумевается наличие уже существующего первоначального набора релевантных документов, выбранных пользователем или полученных автоматически при каком-нибудь упрощенном предположении. Вероятность оказаться релевантным для каждого следующего документа рассчитывается на основании соотношения встречаемости терминов в релевантном наборе и в остальной, «нерелевантной» части коллекции. Хотя вероятностные модели обладают некоторым теоретическим преимуществом, ведь они располагают документы в порядке убывания «вероятности оказаться релевантным», на практике они так и не получили большого распространения.
Я не собираюсь вдаваться в подробности и выписывать громоздкие формулы для каждой модели. Их сводка вместе с обсуждением занимает в сжатом виде 35 страниц в книжке «Современный информационный поиск». Важно только заметить, что в каждом из семейств простейшая модель исходит из предположения о взаимонезависимости слов и обладает простым условием фильтрации: документы, не содержащие слова запроса, никогда не бывают найденными. Продвинутые («альтернативные») модели каждого из семейств не считают слова запроса взаимонезависимыми, а, кроме того, позволяют находить документы, не содержащие ни одного слова из запроса.
Поиск «по смыслу»
Способность находить и ранжировать документы, не содержащие слов из запроса, часто считают признаком искусственного интеллекта или поиска по смыслу и относят априори к преимуществам модели. Вопрос о том, так ли это или нет, мы оставим за рамками данной статьи.
Для примера опишу лишь одну, пожалуй, самую популярную модель, работающую по смыслу. В теории информационного поиска данную модель принято называть латентно-семантическим индексированием (иными словами, выявлением скрытых смыслов). Эта алгебраическая модель основана на сингулярном разложении прямоугольной матрицы, ассоциирующей слова с документами. Элементом матрицы является частотная характеристика, отражающая степень связи слова и документа, например, TF*IDF. Вместо исходной миллионно-размерной матрицы авторы метода Furnas и Deerwester предложили использовать 50-150 «скрытых смыслов», соответствующих первым главным компонентам ее сингулярного разложения.
Давным-давно доказано, что если оставить в рассмотрении первые k сингулярных чисел (остальные приравнять нулю), мы получим ближайшую из всех возможных аппроксимацию исходной матрицы ранга k (в некотором смысле ее «ближайшую семантическую интерпретацию ранга k»). Уменьшая ранг, мы отфильтровываем нерелевантные детали; увеличивая, пытаемся отразить все нюансы структуры реальных данных.
Оценка качества
Consistency checking has shown that the overlap of relevant documents between any two assesors is on the order of 40% on average…cross-assesor recall and precision of about 65% …This implies a practical upper bound on retrieval system performance of 65% …
Donna Harman
What we have learned, and not learned, from TREC
Какова бы ни была модель, поисковая система нуждается в «тюнинге» – оценке качества поиска и настройке параметров. Оценка качества – идея, фундаментальная для теории поиска. Ибо именно благодаря оценке качества можно говорить о применимости или неприменимости той или иной модели и даже обсуждать их теоретичеcкие аспекты.
В частности, одним из естественных ограничений качества поиска служит наблюдение, вынесенное в эпиграф: мнения двух «асессоров» (специалистов, выносящих вердикт о релевантности) в среднем не совпадают друг с другом в очень большой степени! Отсюда вытекает и естественная верхняя граница качества поиска, ведь качество измеряется по итогам сопоставления с мнением асессора.
* Материалы конференции публично доступны по адресу trec.nist.gov/pubs.html.
Не только поиск
Как видно из «дорожек» TREC, к самому поиску тесно примыкает ряд задач, либо разделяющих с ним общую идеологию (классификация, маршрутизация, фильтрация, аннотирование), либо являющихся неотъемлемой частью поискового процесса (кластеризация результатов, расширение и сужение запросов, обратная связь, «запросо-зависимое» аннотирование, поисковый интерфейс и языки запросов). Нет ни одной поисковой системы, которой бы не приходилось решать на практике хотя бы одну из этих задач.
Зачастую наличие того или иного дополнительного свойства является решающим доводом в конкурентной борьбе поисковых систем. Например, краткие аннотации состоящие из информативных цитат документа, которыми некоторые поисковые системы сопровождают результаты своей работы, помогают им оставаться на полступеньки впереди конкурентов.
Обо всех задачах и способах их решения рассказать невозможно. Для примера рассмотрим «расширение запроса», которое обычно производится через привлечение к поиску ассоциированных терминов. Решение этой задачи возможно в двух видах – локальном (динамическом) и глобальном (статическом). Локальные техники опираются на текст запроса и анализируют только документы, найденные по нему. Глобальные же «расширения» могут оперировать тезаурусами, как априорными (лингвистическими), так и построенными автоматически по всей коллекции документов. По общепринятому мнению, глобальные модификации запросов через тезаурусы работают неэффективно, понижая точность поиска. Более успешный глобальный подход основан на построенных вручную статических классификациях, например, ВЕБ-директориях. Этот подход широко используется в интернет-поисковиках в операциях сужения или расширения запроса.
Нередко реализация дополнительных возможностей основана на тех же самых или очень похожих принципах и моделях, что и сам поиск. Сравните, например, нейросетевую поисковую модель, в которой используется идея передачи затухающих колебаний от слов к документам и обратно к словам (амплитуда первого колебания – все тот же TF*IDF), с техникой локального расширения запроса. Последняя основана на обратной связи (relevance feedback), в которой берутся наиболее смыслоразличительные (контрастные) слова из документов, принадлежащих верхушке списка найденного.
К сожалению, локальные методы расширения запроса, несмотря на эффектные технические идеи типа «Term Vector Database» и очевидную пользу, все еще остаются крайне «дорогим» удовольствием (в смысле вычислительных ресурсов).
Лингвистика
Немного в стороне от статистических моделей и структур данных стоит класс алгоритмов, традиционно относимых к лингвистическим. Точно границы между статистическими и лингвистическими методами провести трудно. Условно можно считать лингвистическими методы, опирающиеся на словари (морфологические, синтаксические, семантические), созданные человеком. Хотя считается доказанным, что для некоторых языков (например, для английского) лингвистические алгоритмы не вносят существенного прироста точности и полноты, все же основная масса языков требует хотя бы минимального уровня лингвистической обработки. Не вдаваясь в подробности, приведу только список задач, решаемых лингвистическими или окололингвистическими приемами:
— автоматическое определение языка документа
— токенизация (графематический анализ): выделение слов, границ предложений
— исключение неинформативных слов (стоп-слов)
— лемматизация (нормализация, стемминг): приведение словоизменительных форм к «словарной», в том числе и для слов, не входящих в словарь системы
— разделение сложных слов (компаундов) для некоторых языков (например, немецкого)
— дизамбигуация: полное или частичное снятие омонимии
— выделение именных групп
Еще реже в исследованиях и на практике можно встретить алгоритмы словообразовательного, синтаксического и даже семантического анализа. При этом под семантическим анализом чаще подразумевают какой-нибудь статистический алгоритм (LSI, нейронные сети), а если толково-комбинаторные или семантические словари и используются, то в крайне узких предметных областях.
Поиск в вебе
“Things that work well on TREC often do not produce good results on the web… Some argue that on the web, users should specify more accurately what they want and add more words to their query. We disagree vehemently with this position. If a user issues a query like «Bill Clinton» they should get reasonable results since there is a enormous amount of high quality information available on this topic”
Sergei Brin, Larry Page
The Anatomy of a Large-Scale Hypertextual Web Search Engine
«I was struck when a Google person told me at SIGIR that the most recent Google ranking algorithm completely ignores anything discovered at TREC, because all the good Ad Hoc ranking algorithms developed over the 10 years of TREC get trashed by spam»
Mark Sanderson
Пора вернуться к теме, с которой началась эта статья: что же изменилось в поисковых системах за последнее время?
Прежде всего, стало очевидно, что поиск в вебе, не может быть сколько-нибудь корректно выполнен, будучи основан на анализе (пусть даже сколь угодно глубоком, семантическом и т. п.) одного лишь текста документа. Ведь внетекстовые (off-page) факторы играют не меньшую, а порой и бо́льшую роль, чем текст самой страницы. Положение на сайте, посещаемость, авторитетность источника, частота обновления, цитируемость страницы и ее авторов – все эти факторы невозможно сбрасывать со счета.
Cтав основным источником получения справочной информации для человеческого вида, поисковые системы стали основным источником трафика для интернет-сайтов. Как следствие, они немедленно подверглись «атакам» недобросовестных авторов, желающих любой ценой оказаться в первых страницах результатов поиска. Искусственная генерация входных страниц, насыщенных популярными словами, техника клоакинга, «слепого текста» и многие другие приемы, предназначенные для обмана поисковых систем, мгновенно заполонили Интернет.
Кроме проблемы корректного ранжирования, создателям поисковых систем в Интернете пришлось решать задачу обновления и синхронизации колоссальной по размеру коллекции с гетерогенными форматами, способами доставки, языками, кодировками, массой бессодержательных и дублирующихся текстов. Необходимо поддерживать базу в состоянии максимальной свежести (на самом деле достаточно создавать иллюзию свежести – но это тема отдельного разговора), может быть учитывать индивидуальные и коллективные предпочтения пользователей. Многие из этих задач никогда прежде не рассматривались в традиционной науке информационного поиска.
Для примера рассмотрим пару таких задач и практических способов их решения в поисковых системах для интернета.
Качество ранжирования
Не все внетекстовые критерии полезны в равной мере. Именно ссылочная популярность и производные от нее оказались решающим фактором, поменявшим в 1999-2000 годах мир поисковых систем и вернувшим им преданность пользователей. Так как именно с ее помощью поисковые системы научились прилично и самостоятельно (без подпорок из вручную отредактированных результатов) ранжировать ответы на короткие частотные запросы, составляющие значительную часть поискового потока.
Простейшая идея глобального (то есть статического) учета ссылочной популярности состоит в подсчете числа ссылок, указывающих на страницы. Примерно то, что в традиционном библиотековедении называют индексом цитирования. Этот критерий использовался в поисковых системах еще до 1998 года. Однако он легко подвергается накрутке, кроме того, он не учитывает вес самих источников. Естественным развитием этой идеи можно считать предложенный Брином и Пейджем в 1998 году алгоритм PageRank – итеративный алгоритм, подобный тому, что используется в задаче определения победителя в шахматном турнире по швейцарской системе. В сочетании с поиском по лексике ссылок, указывающих на страницу (старая, весьма продуктивная идея, которая использовалась в гипертекстовых поисковых системах еще в 80-е годы), эта мера позволила резко повысить качество поиска.
Оба алгоритма, их формулы, условия сходимости подробно описаны, в том числе и в русскоязычной литературе. Отмечу только, что расчет статической популярности не является самоценной задачей, он используется в многочисленных вспомогательных целях: определение порядка обхода документов, ранжирование поиска по тексту ссылок и т. д. Формулы расчета популярности постоянно улучшают, в них вносят учет дополнительных факторов: тематической близости документов (например, популярная поисковая система www.teoma.com), их структуры и т.п., позволяющих понизить влияние непотизма. Интересной отдельной темой является эффективная реализация соответствующих структур данных.
Качество индекса
Хотя размер базы в интернете на поверхностный взгляд не кажется критическим фактором, это не так. Недаром рост посещаемости таких машин, как Google и Fast, хорошо коррелирует именно с ростом их баз. Основная причина: «редкие» запросы, то есть те, по которым находится менее 100 документов, составляют в сумме около 30% от всей массы поисков – весьма значительную часть. Этот факт делает размер базы одним из самых критичных параметров системы.
Однако рост базы, кроме технических проблем с дисками и серверами, ограничивается логическими: необходимостью адекватно реагировать на мусор, повторы и т.п. Не могу удержаться, чтобы не описать остроумный алгоритм, применяемый в современных поисковых системах для того, чтобы исключить «очень похожие документы».
Происхождение копий документов в Интернете может быть различным. Один и тот же документ на одном и том же сервере может отличаться по техническим причинам: быть представлен в разных кодировках и форматах; содержать переменные вставки – рекламу или текущую дату.
Широкий класс документов в вебе активно копируется и редактируется – ленты новостных агентств, документация и юридические документы, прейскуранты магазинов, ответы на часто задаваемые вопросы и т. д. Популярные типы изменений: корректура, реорганизация, ревизия, реферирование, раскрытие темы и т. д. Наконец, публикации могут быть скопированы с нарушением авторских прав и изменены злонамеренно с целью затруднить их обнаружение.
Кроме того, индексация поисковыми машинами страниц, генерируемых из баз данных, порождает еще один распространенный класс внешне мало отличающихся документов: анкеты, форумы, страницы товаров в электронных магазинах.
Очевидно, что с полными повторами проблем особых нет, достаточно сохранять в индексе контрольную сумму текста и игнорировать все остальные тексты с такой же контрольной суммой. Однако этот метод не работает для выявления хотя бы чуть-чуть измененных документов.
Для решения этой задачи Udi Manber (Уди Манбер) (автор известной программы приближенного прямого поиска agrep) в 1994 году предложил идею, а Andrei Broder (Андрей Бродер) в 1997-м придумал название и довел до ума алгоритм «шинглов» (от слова shingles, «черепички», «чешуйки»). Вот его примерное описание.
Для каждого десятисловия текста рассчитывается контрольная сумма (шингл). Десятисловия идут внахлест, с перекрытием, так, чтобы ни одно не пропало. А затем из всего множества контрольных сумм (очевидно, что их столько же, сколько слов в документе минус 9) отбираются только те, которые делятся на, скажем, 25. Поскольку значения контрольных сумм распределены равномерно, критерий выборки никак не привязан к особенностям текста. Ясно, что повтор даже одного десятисловия – весомый признак дублирования, если же их много, скажем, больше половины, то с определенной (несложно оценить вероятность) уверенностью можно утверждать: копия найдена! Ведь один совпавший шингл в выборке соответствует примерно 25 совпавшим десятисловиям в полном тексте!
Очевидно, что так можно определять процент перекрытия текстов, выявлять все его источники и т.п. Этот изящный алгоритм воплотил давнюю мечту доцентов: отныне мучительный вопрос «у кого студент списывал этот курсовик» можно считать решенным! Легко оценить долю плагиата в любой статье. (В том числе и в данной; надеюсь, что 0%; можете проверить.)
Чтобы у читателя не создалось впечатление, что информационный поиск исключительно западная наука, упомяну про альтернативный алгоритм определения почти-дубликатов, придуманный и воплощенный у нас в Яндексе. В нем используется тот факт, что большинство поисковых систем уже обладают индексом в виде инвертированного файла (или инвертированным индексом), и этот факт удобно использовать в процедуре нахождения почти-дубликатов.
Цена одного процента
Архитектурно современные поисковые системы представляют собой сложные многокомпьютерные комплексы. Начиная с некоторого момента по мере роста системы основная нагрузка ложится вовсе не на робота, а на поиск. Ведь в течение секунды приходят десятки и сотни запросов.
Для того чтобы справиться с этой проблемой, индекс разбивают на части и раскладывают по десяткам, сотням и даже тысячам компьютеров. Сами компьютеры, начиная с 1997 года (поисковая система Inktomi) представляют собой обычные 32-битные машины (Linux, Solaris, FreeBSD, Win32) с соответствующими ограничениями по цене и производительности. Исключением из общего правила осталась лишь AltaVista, которая с самого начала использовала относительно «большие» 64-битные компьютеры Alpha.
Поисковые системы для Интернета (и, вообще, все большие поисковые сиcтемы) могут ускорять свою работу при помощи техник эшелонирования и прюнинга. Первая техника состоит в разделении индекса на заведомо более релевантную и менее релевантную части. Поиск сначала выполняется в первой части, а затем, если ничего не найдено, или найдено мало, поисковая система обращается ко второй части индекса. Pruning (от англ. отсечение, сокращение) состоит в том, чтобы динамически прекращать обработку запроса после накопления достаточного количества релевантной информации. Бывает еще статический pruning, когда на основании некоторых допущений индекс сокращается за счет таких документов, которые заведомо никогда не будут найдены.
Отдельная проблема – организовать бесперебойную работу многокомпьютерных комплексов, бесшовное обновление индекса, устойчивость к сбоям и задержкам с ответами отдельных компонент. Для общения между поисковыми серверами и серверами, собирающими отклики и формирующими страницу выдачи разрабатываются специальные протоколы.
Решающее значение приобретает продумывание архитектуры всего комплекса с самого начала, так как любые изменения, например, добавление необычного фактора при ранжировании или сложного источника данных становится исключительно болезненной и сложной процедурой. Очевидно, системы, стартующие позже, имеют в этой ситуации преимущество. Но инертность пользователей весьма высока, так, например, требуется 2-4 года, чтобы сформированная многомиллионная аудитория сама, пусть и медленно, но перешла на непривычную поисковую систему, даже при наличии у нее неоспоримых преимуществ. В условиях жесткой конкуренции это порой неосуществимо.
Асессор (assesor, эксперт) – специалист в предметной области, выносящий заключение о релевантности документа, найденного поисковой системой.
Булевская модель (boolean, булева, булевая, двоичная) – модель поиска, опирающаяся на операции пересечения, объединения и вычитания множеств.
Векторная модель – модель информационного поиска, рассматривающая документы и запросы как векторы в пространстве слов, а релевантность – как расстояние между ними.
Вероятностная модель – модель информационного поиска, рассматривающая релевантность как вероятность соответствия данного документа запросу на основании вероятностей соответствия слов данного документа идеальному ответу.
Внетекстовые критерии (off-page, внестраничные) – критерии ранжирования документов в поисковых системах, учитывающие факторы, не содержащиеся в тексте самого документа и не извлекаемые оттуда никаким образом.
Входные страницы (doorways, hallways) – страницы, созданные для искусственного повышения ранга в поисковых системах (поискового спама). При попадании на них пользователя перенаправляют на целевую страницу.
Дизамбигуация (tagging, part of speech disambiguation, таггинг) – выбор одного из нескольких омонимов c помощью контекста; в английском языке часто сводится к автоматическому назначению грамматической категории «часть речи».
Дубликаты (duplicates) – разные документы с идентичным, с точки зрения пользователя, содержанием; приблизительные дубликаты (near duplicates, почти-дубликаты), в отличие от точных дубликатов, содержат незначительные отличия.
Иллюзия свежести – эффект кажущейся свежести, достигаемый поисковыми системами в интернете за счет более регулярного обхода тех документов, которые чаще находятся пользователями.
Инвертированный файл (inverted file, инверсный файл, инвертированный индекс, инвертированный список) – индекс поисковой системы, в котором перечислены слова коллекции документов, а для каждого слова перечислены все места, в которых оно встретилось.
Индекс (index, указатель) – см. индексирование.
Индекс цитирования (citation index) – число упоминаний (цитирований) научной статьи, в традиционной библиографической науке рассчитывается за промежуток времени, например, за год.
Индексирование (indexing, индексация) – процесс составления или приписывания указателя (индекса) – служебной структуры данных, необходимой для последующего поиска.
Информационный поиск (Information Retrieval, IR) – поиск неструктурированной информации, единицей представления которой является документ произвольных форматов. Предметом поиска выступает информационная потребность пользователя, неформально выраженная в поисковом запросе. И критерий поиска, и его результаты недетермированы. Этими признаками информационный поиск отличается от «поиска данных», который оперирует набором формально заданных предикатов, имеет дело со структурированной информацией и чей результат всегда детерминирован. Теория информационного поиска изучает все составляющие процесса поиска, а именно, предварительную обработку текста (индексирование), обработку и исполнение запроса, ранжирование, пользовательский интерфейс и обратную связь.
Клоакинг (cloaking) – техника поискового спама, состоящая в распознании авторами документов робота (индексирующего агента) поисковой системы и генерации для него специального содержания, принципиально отличающегося от содержания, выдаваемого пользователю.
Контрастность термина – см. различительная сила.
Латентно-семантическое индексирование – запатентованный алгоритм поиска по смыслу, идентичный факторному анализу. Основан на сингулярном разложении матрицы связи слов с документами.
Лемматизация (lemmatization, нормализация) – приведение формы слова к словарному виду, то есть лемме.
Накрутка поисковых систем – см. спам поисковых систем.
Непотизм – вид спама поисковых систем, установка авторами документов взаимных ссылок с единственной целью поднять свой ранг в результатах поиска.
Обратная встречаемость в документах (inverted document frequency, IDF, обратная частота в документах, обратная документная частота) – показатель поисковой ценности слова (его различительной силы); «обратная» говорят, потому что при вычислении этого показателя в знаменателе дроби обычно стоит число документов, содержащих данное слово.
Обратная связь – отклик пользователей на результат поиска, их суждения о релевантности найденных документов, зафиксированные поисковой системой и использующиеся, например, для итеративной модификации запроса. Следует отличать от псевдообратной связи – техники модификации запроса, в которой несколько первых найденных документов автоматически считаются релевантными.
Омонимия – см. полисемия.
Основа – часть слова, общая для набора его словообразовательных и словоизменительных (чаще) форм.
Поиск по смыслу – алгоритм информационного поиска, способный находить документы, не содержащие слов запроса.
Поиск похожих документов (similar document search) – задача информационного поиска, в которой в качестве запроса выступает сам документ и необходимо найти документы, максимально напоминающие данный.
Поисковая система (search engine, SE, информационно-поисковая система, ИПС, поисковая машина, машина поиска, «поисковик», «искалка») – программа, предназначенная для поиска информации, обычно текстовых документов.
Поисковое предписание (query, запрос) – обычно строчка текста.
Полисемия (polysemy, homography, многозначность, омография, омонимия) — наличие нескольких значений у одного и того же слова.
Полнота (recall, охват) – доля релевантного материала, заключенного в ответе поисковой системы, по отношению ко всему релевантному материалу в коллекции.
Почти-дубликаты (near-duplicates, приблизительные дубликаты) – см. дубликаты.
Прюнинг (pruning) – отсечение заведомо нерелевантных документов при поиске с целью ускорения выполнения запроса.
Прямой поиск – поиск непосредственно по тексту документов, без предварительной обработки (без индексирования).
Псевдо-обратная связь – см. обратная связь.
Различительная сила слова (term specificity, term discriminating power, контрастность, различительная сила) – степень ширины или узости слова. Слишком широкие термины в поиске приносят слишком много информации, при это существенная часть ее бесполезна. Слишком узкие термины помогают найти слишком мало документов, хотя и более точных.
Регулярное выражение (regualr expression, pattern, «шаблон», реже «трафарет», «маска») – способ записи поискового предписания, позволяющий определять пожелания к искомому слову, его возможные написания, ошибки и т. д. В широком смысле – язык, позволяющий задавать запросы неограниченной сложности.
Релевантность (relevance, relevancy) – соответствие документа запросу.
Сигнатура (signature, подпись) – множество хеш-значений слов некоторого блока текста. При поиске по методу сигнатур все сигнатуры всех блоков коллекции просматриваются последовательно в поисках совпадений с хеш-значениями слов запроса.
Словоизменение (inflection) – образование формы определенного грамматического значения, обычно обязательного в данном грамматическом контексте, принадлежащей к фиксированному набору форм (парадигме), характерному для слов данного типа. В отличие от словообразования, никогда не приводит к смене типа и порождает предсказуемое значение. Словоизменение имен называют склонением (declension), а глаголов – спряжением (conjugation).
Словообразование (derivation) – образование слова или основы из другого слова или основы. Чаще приводит к смене типа и к образованию слов, имеющих идеосинкразическое значение.
Смыслоразличительный – см. различительная сила.
Спам поисковых систем (spam, спамдексинг, накрутка поисковых систем) – попытка воздействовать на результат информационного поиска со стороны авторов документов.
Статическая популярность – см. PageRank.
Стемминг – процесс выделения основы слова.
Стоп-слова (stop-words) – те союзы, предлоги и другие частотные слова, которые данная поисковая система исключила из процесса индексирования и поиска для повышения своей производительности и/или точности поиска.
Суффиксные деревья, суффиксные массивы (suffix trees, suffix arrays, PAT-arrays) – индекс, основанный на представлении всех значимых суффиксов текста в структуре данных, известной как бор (trie). Суффиксом в этом индексе называют любую «подстроку», начинающуюся с некоторой позиции текста (текст рассматривается как одна непрерывная строка) и продолжающуюся до его конца. В реальных приложениях длина суффиксов ограничена, а индексируются только значимые позиции – например, начала слов. Этот индекс позволяет выполнять более сложные запросы, чем индекс, построенный на инвертированных файлах.
Токенизация (tokenization, lexical analysis, графематический анализ, лексический анализ) – выделение в тексте слов, чисел и иных токенов, в том числе, например, нахождение границ предложений.
Точность (precision) — доля релевантного материала в ответе поисковой системы.
Хеш-значение (hash-value) – значение хеш-функции (hash-function), преобразующей данные произвольной длины (обычно, строчку) в число фиксированного порядка.
Частота (слова) в документах (document frequency, встречаемость в документах, документная частота) – число документов в коллекции, содержащих данное слово.
Частота термина (term frequency, TF) – частота употреблений слова в документе.
Шингл – (shingle) – хеш-значение непрерывной последовательности слов текста фиксированной длины.
PageRank – алгоритм расчета статической (глобальной) популярности страницы в интернете, назван в честь одного из авторов — Лоуренса Пейджа. Соответствует вероятности попадания пользователя на страницу в модели случайного блуждания.
TF*IDF – численная мера соответствия слова и документа в векторной модели; тем больше, чем относительно чаще слово встретилось в документе и относительно реже – в коллекции.