Почему возникают неточности в измерениях для чего требуется точность измерений
Метрология, стандартизация и сертификация
Лекция 2. Виды и методы измерений
1. Основные понятия и определения. Виды измерений.
2. Методы измерений.
3. Понятие о точности измерений.
4. Основы обеспечения единства измерений
1. Основные понятия и определения. Виды измерений
Измерение — совокупность операций по применению системы измерений для получения значения измеряемой физической величины.
Измерения могут быть классифицированы по метрологическому назначению на три категории:
Ненормированные – измерения при ненормированных метрологических характеристиках.
Технические – измерения при помощи рабочих средств измерений.
Метрологические – измерения при помощи эталонов и образцовых средств измерений.
Ненормированные измерения наиболее простые. В них не нормируются точность и достоверность результата. Поэтому область их применения ограничена. Они не могут быть применены в области, на которую распространяется требование единства измерений. Каждый из нас выполнял ненормированные измерения длины, массы, времени, температуры не задумываясь о точности и достоверности результата. Как правило, результаты ненормированных измерений применяются индивидуально, т.е. используются субъектом в собственных целях.
Технические измерения удовлетворяют требованиям единства измерений, т.е. результат бывает получен с известной погрешностью и вероятностью, записывается в установленных единицах физических величин, с определённым количеством значащих цифр. Выполняются при помощи средств измерений с назначенным классом точности, прошедших поверку или калибровку в метрологической службе. В зависимости от того, предназначены измерения для внутрипроизводственных целей или их результаты будут доступны для всеобщего применения, необходимо выполнение калибровки или поверки средств измерений. Средство измерений, прошедшее калибровку или поверку, называют рабочим средством измерений. Примером технических измерений является большинство производственных измерений, измерение квартирными счётчиками потреблённой электроэнергии, измерения при взвешивании в торговых центрах, финансовые измерения в банковских терминалах. Средство измерений, применяемое для калибровки других средств измерений, называют образцовым средством измерений. Образцовое средство измерений имеет повышенный класс точности и хранится отдельно, для технических измерений не применяется.
Метрологические измерения не просто удовлетворяют требованиям единства измерений, а являются одним из средств обеспечения единства измерений. Выполняются с целью воспроизведения единиц физических величин для передачи их размера образцовым и рабочим средствам измерений. Метрологические измерения выполняет метрологическая служба в стандартных условиях, сертифицированным персоналом.
В дисциплине «Метрология, стандартизация и сертификация» рассматриваются технические измерения.
Можно выделить следующие виды измерений.
1) По характеру зависимости измеряемой величины от времени методы измерений подразделяются на:
2) По способу получения результатов измерений (виду уравнений измерений) методы измерений разделяют на прямые, косвенные, совокупные и совместные.
При прямом измерении искомое значение величины находят непосредственно из опытных данных (например, измерение диаметра штангенциркулем).
При косвенном измерении искомое значение величины определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.
Совместными называют измерения двух или нескольких не одноимённых величин, производимые одновременно с целью нахождения функциональной зависимости между величинами (например, зависимости длины тела от температуры).
Совокупные – это такие измерения, в которых значения измеряемых величин находят по данным повторных измерений одной или нескольких одноименных величин (при различных сочетаниях мер или этих величин) путем решения системы уравнений.
3) По условиям, определяющим точность результата измерения, методы делятся на три класса.
Измерении максимально возможной точности (например, эталонные измерения), достижимой при существующем уровне техники.
Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторое заданное значение.
Технические измерения, в которых погрешность результата определяется характеристиками средств измерения.
4) По способу выражения результатов измерений различают абсолютные и относительные измерения.
Абсолютное измерение основано на прямых измерениях величины и (или) использования значений физических констант.
При относительных измерениях величину сравнивают с одноименной, играющей роль единицы или принятой за исходную (например, измерение диаметра вращающейся детали по числу оборотов соприкасающегося с ней аттестованного ролика).
5) В зависимости от совокупности измеряемых параметров изделия различают поэлементный и комплексный методы измерения.
Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала).
Комплексный метод характеризуется измерением суммарного показателя качества (а не физической величины), на который оказывают влияние отдельные его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.).
Неопределенность измерений в метрологии
Определения погрешности и неопределенности измерений.
История возникновения термина «неопределенность измерений».
Термины используемые при расчете неопределенности.
Соотношение терминов теории неопределенности с терминами классической теории точности (в скобках):
Подробно о типах определённости и их расчётах рассказано в статье «Понятие и типы неопределенностей. ГОСТ 34100.3-2017»
Оценка результата измерений в терминах «погрешность измерений».
Рис.1. Диапазон возможных значений при погрешности
Оценка результата измерений в терминах «неопределенность измерений».
Рис.2. Диапазон возможных значений при неопределенности
Рис.3. Интервал значений при расчете неопределенности
Расчёт неопределённости с применением приборов.
В следующей статье «Расчет неопределенности результатов измерений | пример для люксметра «еЛайт»» мы рассмотрим практический пример как вручную вычислить неопределенность измерений освещенности, используя люксметр-пульсметр-яркомер еЛайт02. В некоторых современных приборах такой расчёт неопределённости уже осуществляется автоматически, как, например, в самом доступном люксметре с поверкой еЛайт-мини.
Рис.4. Профессиональный измеритель освещённости еЛайт01 с функцией автоматического расчёта неопределённости измерений.
Рис.5. Термоанемометр-гигрометр-барометр ЭкоТерма Максима 01 с функцией автоматического расчёта неопределённости измерений.
Выводы.
Отличие понятия «погрешности» от «неопределенности»:
Понравился материал? Поделитесь им в соцсетях:
Погрешности измерений
Погре́шность измере́ния — оценка отклонения величины измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.
Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в БСЭ, термины ошибка измерения и погрешность измерения используются как синонимы.) Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. При этом за истинное значение принимается среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2.8±0.1 c. означает, что истинное значение величины T лежит в интервале от 2.7 с. до 2.9 с. некоторой оговоренной вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка).
В 2006 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределенность измерений».
Содержание
Определение погрешности
В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.
Классификация погрешностей
По форме представления
где Xtrue — истинное значение, а Xmeas — измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина Xmeas распределена по нормальному закону, то, обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.
.
Относительная погрешность является безразмерной величиной, либо измеряется в процентах.
,
— если шкала прибора односторонняя, т.е. нижний предел измерений равен нулю, то Xn определяется равным верхнему пределу измерений;
— если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.
По причине возникновения
В технике применяют приборы для измерения лишь с определенной заранее заданной точностью – основной погрешностью, допускаемой нормали в нормальных условиях эксплуатации для данного прибора.
Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т.п. За нормальную температуру окружающего воздуха принимают 20°С, за нормальное атмосферное давление 01,325 кПа.
Почему при измерение появляется погрешность?
Общие положения. Процесс измерения неизбежно сопровождается ошибками, которые вызываются несовершенством измерительных средств, нестабильностью условий проведения измерений, несовершенством самого метода и методики измерений, недостаточным опытом и несовершенством органов чувств человека, выполняющего измерения, а также другими факторами.
Погрешность измерения, выраженная в единицах измеряемой величины, называется абсолютной. Она не всегда является информативной. Например, абсолютная погрешность 0,01 мм может быть достаточно большой при измерениях величин в десятые доли миллиметра и малой при измерениях величин, размеры которых превышают несколько метров.
Более информативной величиной является относительная погрешность, под которой понимают отношение абсолютной погрешности измерения к ее истинному значению (или математическому ожиданию
Именно относительная погрешность используется для характеристики точности измерения.
По своему характеру (закономерностям проявления) погрешности измерения подразделяются на систематические, случайные и грубые промахи.
Систематические погрешности. К систематическим погрешностям относят погрешности, которые при повторных измерениях остаются постоянными или изменяются по какому-либо закону.
Систематические погрешности при измерении одним и тем же методом и одними и теми же измерительными средствами всегда имеют постоянные значения. К причинам, вызывающим их появление, относят:
— погрешности метода или теоретические погрешности;
— инструментальные погрешности;
— погрешности, вызванные воздействием окружающей среды и условий измерения.
Погрешности метода происходят вследствие ошибок или недостаточной разработанности метода измерений. Сюда же можно отнести неправомерную экстраполяцию свойства, полученного в результате единичного измерения, на весь измеряемый объект. Например, принимая решение о годности вала по единичному измерению, можно допустить ошибку, поскольку не учитываются такие погрешности формы, как отклонения от цилиндричности, круглости, профиля продольного сечения и др. Поэтому для исключения такого рода систематических погрешностей в методике измерений рекомендуется проведение измерений в нескольких местах деталей и взаимно-перпендикулярных направлениях.
К погрешностям метода относят также влияние инструмента на свойства объекта (например, значительное измерительное усилие, изменяющее форму тонкостенной детали) или погрешности, связанные с чрезмерно грубым округлением результата измерения.
Инструментальные погрешности связаны с погрешностями средств измерения, вызванными погрешностями изготовления или износом составных частей измерительного средства.
Одним из методов обнаружения систематической погрешности может быть замена средства измерений на аналогичное в случае, если оно предположительно является источником систематической погрешности. Подобным образом можно обнаружить систематическую погрешность, вызванную внешними условиями: например, замена поверхности, на которую установлено измерительное средство, на более жесткую.
Для исключения систематической погрешности в производственных условиях проводят проверку средств измерений, устраняют те причины, которые вызваны воздействиями окружающей среды, сами измерения проводят в строгом соответствии с рекомендуемой методикой, принимая в необходимых случаях меры по ее.
Погрешности измерений и их классификация. Лекция
При измерении физических величии с помощью даже самых точных и совершенных средств и методов их результат всегда отличается от истинного значения измеряемой физической величины, т.е. определяется с некоторой погрешностью. Источниками погрешностей измерения являются следующие причины: несовершенство используемых методов и средств измерений, нестабильность измеряемых физических величин, непостоянство климатических условий, внешние и внутренние помехи, а также различные субъективные факторы экспериментатора.
Определение «погрешность» является одним из центральных в метрологии, в котором используются понятия «погрешность результата измерения» и «погрешность средства измерения».
Погрешностью результата измерения (погрешностью измерения) называется отклонение результата измерения от истинного значения измеряемой физической величины. Так как истинное значение измеряемой величины неизвестно, то при количественной оценке погрешности пользуются действительным значением физической величины.
Это значение находится экспериментальным путем и настолько близко к истинному значению, что для поставленной измерительной задачи может быть использовано вместо него.
По способу количественного выражения погрешности измерения делятся на абсолютные, относительные и приведенные.
и знак полученной погрешности, но не определяет качество самого проведенного измерения.
Понятие погрешности характеризует как бы несовершенство измерения. Характеристикой качества измерения является используемое в метрологии понятие точности измерений, отражающее меру близости результатов измерений к истинному значению измеряемой физической величины. Точность и погрешность связаны обратной зависимостью. Иначе говоря, высокой точности измерений соответствует малая погрешность. Так, например, измерение силы тока в 10 А и 100 А может быть выполнено с идентичной абсолютной погрешностью ∆ = ±1 А. Однако качество (точность) первого измерения ниже второго. Поэтому, чтобы иметь возможность сравнивать качество измерений, введено понятие относительной погрешности.
Относительной погрешностью δ называется отношение абсолютной погрешности измерения к истинному значению измеряемой величины:
Мерой точности измерений служит величина, обратная модулю относительной погрешности, т.е. 1/|δ|. Погрешность δ часто выражают в процентах:
δ = 100 △ /хн (%). Поскольку обычно △⋍ хн, то относительная погрешность может быть определена как δ ⋍ △ /х или δ = 100 △ /х (%).
Если измерение выполнено однократно и за абсолютную погрешность результата измерения △ принята разность между показанием прибора и истинным значением измеряемой величины хН то из соотношения (1.2) следует, что значение относительной погрешности δ уменьшается с ростом величины хн (здесь предполагается независимость △ от хн ). Поэтому для измерений целесообразно выбирать такой прибор, показания которого были бы в последней части его шкалы (диапазона измерений), а для сравнения различных приборов использовать понятие приведенной погрешности.
Приведенной погрешностью δпр, выражающей потенциальную точность измерений, называется отношение абсолютной погрешности △ к некоторому нормирующему значению XN (например, к конечному значению шкалы прибора или сумме конечных значений шкал при двусторонней шкале).
По характеру (закономерности) изменения погрешности измерений подразделяются на систематические, случайные и грубые (промахи).
• возможна их коррекция поправками только в данный момент времени, а далее эти погрешности вновь непредсказуемо изменяются;
• изменения прогрессирующих погрешностей во времени представляют собой нестационарный случайный процесс (характеристики которого изменяются во времени), и поэтому в рамках достаточно полно разработанной теории стационарных случайных процессов они могут быть описаны лишь с некоторыми ограничениями.
Грубые погрешности (промахи) — погрешности, существенно превышающие ожидаемые при данных условиях измерения. Такие погрешности возникают из-за ошибок оператора или неучтенных внешних воздействий. Их выявляют при обработке результатов измерений и исключают из рассмотрения, пользуясь определенными правилами.
По причинам возникновения погрешности измерения подразделяются на методические, инструментальные, внешние и субъективные.
Методические погрешности возникают обычно из-за несовершенства метода измерений, использования неверных теоретических предпосылок (допущений) при измерениях, а также из-за влияния выбранного средства измерения на измеряемые физические величины. При подключении электроизмерительного прибора от источника сигнала потребляется некоторая мощность. Это приводит к искажению режима работы источника сигнала и вызывает погрешность метода измерения (методическую погрешность).
Инструментальные (аппаратурные, приборные) погрешности возникают из-за несовершенства средств измерения» т.е. из-за погрешностей средств измерений. Источниками инструментальных погрешностей могут быть, например, неточная градуировка прибора и смещение нуля, вариация показаний прибора в процессе эксплуатации и т.д. Уменьшают инструментальные погрешности применением более точного прибора.
Субъективные погрешности вызываются ошибками оператора при отсчете показаний средств измерения (погрешности от небрежности и невнимания оператора, от параллакса, т.е. от неправильного направления взгляда при отсчете показаний стрелочного прибора и пр.). Подобные погрешности устраняются применением современных цифровых приборов или автоматических методов измерения.
По характеру поведения измеряемой физической величины в процессе измерений различают статические и динамические погрешности.
Статические погрешности возникают при измерении установившегося значения измеряемой величины, т.е. когда эта величина перестает изменяться во времени.
Динамические погрешности имеют место при динамических измерениях, когда измеряемая величина изменяется во времени и требуется установить закон ее изменения. Причина появления динамических погрешностей состоит в несоответствии скоростных (временных) характеристик прибора и скорости изменения измеряемой величины.
Средства измерений могут применяться в нормальных и рабочих условиях.
Эти условия для конкретных видов СИ ( средств измерения ) установлены в стандартах или технических условиях.
Нормальным условиям применения средств измерений должен удовлетворять ряд следующих (основных) требований:
температура окружающего воздуха (20±5) °С;
относительная влажность (65±15) %;
атмосферное давление (100±4) кПа;
напряжение питающей сети (220±4) В и (115±2,5) В;
частота сети (50±1) Гц и (400±12) Гц.
Как следует из перечисленных требований, нормальные условия применения СИ характеризуются диапазоном значений влияющих на них величин типа климатических факторов и параметров электропитания.
Рабочие условия применения СИ определяются диапазоном значений влияющих величин не только климатического характера и параметров электропитания, но и типа механических воздействий. В частности, диапазон климатических воздействий делится на ряд групп, охватывающих широкий диапазон изменения окружающей температуры.
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.