Почему материи больше чем антиматерии

Ученые приблизились к пониманию того, почему антиматерии во Вселенной меньше, чем материи

Почему материи больше чем антиматерии

Почему во Вселенной было больше материи, чем антиматерии? Ответ, по мнению физиков, может скрываться в частицах нейтрино

Материя и антиматерия

Как пишут исследователи из ЦЕРН, частицы антиматерии (или антивещества) имеют ту же массу, что и их аналоги из материи, но такие качества, как электрический заряд, противоположны. Положительно заряженный позитрон, например, является античастицей отрицательно заряженного электрона.

Почему материи больше чем антиматерии

Частицы материи и антиматерии должны присутствовать во Вселенной в равном количестве. Но этого не происходит.

Частицы материи и антивещества всегда образуются как пара и, если они соприкасаются, то аннигилируют друг с другом, оставляя после себя чистую энергию. В течение первых долей секунды Большого Взрыва горячая и плотная Вселенная гудела от пар частица-античастица, которые постоянно появлялись и исчезали. Если материя и антивещество рождаются и погибают вместе, кажется, что Вселенная не должна содержать ничего, кроме остатков энергии.

Тем не менее, крошечной части материи – примерно одной частице на миллиард – удалось выжить. Это то, что мы видим сегодня. Интересно, что в последние несколько десятилетий эксперименты по физике элементарных частиц показали, что законы природы не в равной степени применимы к материи и антивеществу.

Почему материи больше чем антиматерии

Исследователи из ЦЕРН трудятся не покладая рук, пытаясь разгадать тайны Вселенной.

Теперь же, как пишут авторы нового исследования, «у нас есть возможность измерить эти нарушения симметрии, используя тяжелые радиоактивные молекулы, которые обладают чрезвычайной чувствительностью к ядерным явлениям, которые мы не можем увидеть в других молекулах в природе».

Речь, как вы уже могли догадаться, идет о нейтронах – тяжелые элементарные частицы, которые не оказывают большого влияния на молекулу, будучи в одну миллионную ее размера и одновременно являясь ее частью.

Большинство атомов в природе содержат симметричное сферическое ядро, в котором равномерно распределены нейтроны и протоны. Но в некоторых радиоактивных элементах, таких как радий, атомные ядра имеют странную грушевидную форму с неравномерным распределением нейтронов и протонов внутри. Физики выдвигают гипотезу, что это искажение формы может усилить нарушение симметрии, которое привело к возникновению материи во Вселенной.

Еще больше увлекательных статей о том, как физики разгадывают величайшие тайны Вселенной читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте!

Сколько во Вселенной антиматерии?

В мае этого года физики из Массачусетского технологического института сделали несколько удивительных открытий на основе очень маленькой радиоактивной молекулы, которая была создана в ускорителе частиц в ЦЕРН. Исследователи полагают, что при достаточно тщательном изучении эти новые типы радиоактивных молекул могли бы пролить некоторый свет на то, почему во Вселенной больше материи, чем антиматерии.

Радиоактивные молекулы могут показаться странным местом для начала поиска ответа на один из фундаментальных вопросов, который поставил в тупик современную физику. Но это не обычные радиоактивные молекулы – они существуют только в слияниях нейтронных звезд или сверхновых. По сути, эти молекулы были впервые созданы здесь, на Земле.

Почему материи больше чем антиматерии

Вселенная устроена сложнее, чем мы можем себе представить.

Что делает их интересными, так это их количество нейтронов. Физики смогли измерить влияние нейтрона на энергию его молекулы. Что, кстати, само по себе является научным прорывом (и невероятно сложной работой).
Во-первых, исследователи должны были создать новую молекулу. Особенно их интересовал монофлурид радия (RaF) – нестабильная радиоактивная молекула, которая существует всего несколько секунд после создания.

Как пишет Universe Today со ссылкой на исследование, после успешного создания подобных нестабильных молекул впервые в прошлом году, физики обратили внимание на различные изотопы, что находятся в их составе.

Полученные результаты показали, что рассматриваемые изотопы содержали разное количество нейтронов. Чтобы создать их, ученые разработали диск из карбида урана и фтористого углерода. После того, как его ударили низкоэнергетическим протонным пучком в ускорителе частиц в ЦЕРН, исследователи выпустили настоящий зоопарк новых молекул, в том числе 5 различных изотопов RaF.

Почему материи больше чем антиматерии

Молекулы, содержащие тяжелые и деформированные радиоактивные ядра, могут помочь ученым измерить явления, нарушающие симметрию, и выявить признаки темной материи.

Чтобы захватить эти короткоживущие изотопы, физики использовали серию ионных ловушек – лазеров и электромагнитных полей – для их изоляции. Затем они измерили массу каждой из 5 молекул, чтобы оценить, сколько в ней содержится нейтронов. После этого еще один лазерный луч измерил квантовое состояние каждой молекулы. Удивительно, но разница в одном нейтроне может оказать измеримое влияние на общее квантовое энергетическое состояние молекулы, в которой находится.

Величайшие тайны Вселенной

Радиоактивные молекулы состоят по меньшей мере из одного радиоактивного атома, связанного с одним или несколькими другими атомами. Каждый атом окружен облаком электронов, которые вместе создают в молекуле чрезвычайно высокое электрическое поле, которое, по мнению физиков, может усилить тонкие ядерные эффекты, такие как эффекты нарушения симметрии. Однако, помимо определенных астрофизических процессов, таких как слияние нейтронных звезд и звездных взрывов, эти радиоактивные молекулы не существуют в природе и поэтому должны быть созданы искусственно.

Таким образом, полученные в ходе недавнего исследования результаты показали, что радиоактивные молекулы, такие как RaF, сверхчувствительны к ядерным воздействиям. Их чувствительность, вероятно, может выявить более тонкие, невиданные ранее эффекты, такие как крошечные ядерные свойства, нарушающие симметрию, которые могли бы помочь объяснить расхождение между количеством материи и антиматерии во Вселенной.

Почему материи больше чем антиматерии

Новые исследования показывают, что радиоактивные молекулы чувствительны к тонким ядерным явлениям.

Важно понимать, что новое открытие, каким бы сложным оно нам не казалось, может оказаться ключом к разгадке тайны не только материи и антиматерии, но и темной энергии. И все же, физикам предстоит проделать большую работу. Но кто знает, может быть, ускоритель частиц большего размера и правда поможет им ответить на фундаментальные вопросы о Вселенной?

Почему материи больше чем антиматерии

Новости, статьи и анонсы публикаций

Свободное общение и обсуждение материалов

Почему материи больше чем антиматерии

Любой, у кого есть ящик для принадлежностей всякого рода, знает, что отслеживать небольшие части, не связанные между собой, весьма трудно. Вот скрепки. Они ж…

Почему материи больше чем антиматерии

Однажды осенним утром в 2009 году команда из трех физиков сгрудилась вокруг экрана компьютера в небольшом офисе с видом на Бродвей в Нью-Йорке. Они надели са…

Почему материи больше чем антиматерии

У Вселенной есть фундаментальные законы, которые мы в силах наблюдать. Еще в ней существуем мы, вещи, из которых мы созданы, и все это тоже подчиняется фунда…

Источник

Спросите Итана: чем антиматерия принципиально отличается от материи?

Почему материи больше чем антиматерии
Высокоэнергетические столкновения частиц могут приводить к появлению пар частица/античастица или фотонов, а аннигиляция пар частица/античастица также приводят к появлению фотонов, как показывают эти следы в пузырьковой камере. Но что определяет принадлежность частицы к материи или антиматерии?

У каждой известной частицы материи во Вселенной имеется антиматериальный двойник. У антиматерии есть множество свойств, сходных со свойствами нормальной материи, включая типы взаимодействий, массу, величину электрического заряда, и так далее. Но есть и несколько фундаментальных отличий. Однако две вещи по поводу взаимодействия частиц материи и антиматерии можно сказать с определённостью: если столкнуть частицу материи с её двойником из антиматерии, они мгновенно аннигилируют, превратившись в энергию, и в любом взаимодействии, создающем частицу материи, обязательно возникнет и её двойник из антиматерии. Так что же делает антиматерию особенной? Именно это хочет узнать наш читатель, который спрашивает:

Каковы различия между материей и антиматерией на фундаментальном уровне? Есть ли какое-то внутреннее свойство, заставляющее частицу становиться материей или антиматерией? Есть ли какое-то внутреннее свойство (типа спина), отличающее кварки и антикварки? Что придаёт приставку «анти» антиматерии?

Чтобы понять ответ на вопрос, необходимо взглянуть на существующие частицы (и античастицы).

Почему материи больше чем антиматерии
Частицы и античастицы Стандартной Модели подчиняются всякого рода законам сохранения, но между фермионами и бозонами существуют фундаментальные различия

Почему материи больше чем антиматерии
Возможные конфигурации электрона в атоме водорода удивительно сильно разнятся друг от друга, и всё же все они представляют одну и ту же частицу, находящуюся в немного разных квантовых состояниях. У частиц и античастиц также есть свои, присущие им неизменяемые квантовые числа, и они играют основную роль в определении того, принадлежит ли частица к материи, антиматерии, или ни к одной из категорий.

Учитывая эти свойства электрона, можно задать вопрос – как должна выглядеть частица-двойник электрона из антиматерии, на основании правил, управляющих элементарными частицами.

Почему материи больше чем антиматерии
В простом атоме водорода единый электрон движется по орбите вокруг одного протона. В атоме антиводорода один позитрон движется вокруг одного антипротона. Позитроны и антипротоны – двойники в антиматерии для электронов и протонов соответственно.

Величины всех квантовых чисел должны сохраняться. Но у античастиц знаки этих чисел необходимо обратить. Для антиэлектрона это означает, что у него должны быть следующие квантовые числа:

Почему материи больше чем антиматерии
Электронные переходы в атоме водорода и длины волн получающихся фотонов демонстрируют эффект связующей энергии и взаимодействие между электроном и протоном в квантовой физике. Идентичность спектральных линий у позитронов и антипротонов подтверждена.

Все эти факты были экспериментально подтверждены. Частица, точно соответствующая описанию антиэлектрона, известна, как позитрон. Это необходимо, если учесть, как мы создаём материю и антиматерию: обычно мы создаём их из ничего. То есть, если столкнуть две частицы на достаточно высоких энергиях, часто можно получить дополнительную пару частица/античастица из излишков энергии (из Эйнштейновского E=mc 2 ), по закону сохранения.

Почему материи больше чем антиматерии
Сталкивая частицу с античастицей можно ожидать, что они аннигилируют, превратившись в энергию. А из этого следует, что столкнув две любых частицы с достаточно большой энергией, можно создать пару частица/античастица

Но должна сохраниться не только энергия; есть ещё целая гора квантовых чисел, которые тоже нужно сохранить! Сюда входят:

Почему материи больше чем антиматерии
В ранней Вселенной было чрезвычайно много всех частиц и их античастиц, но по мере её охлаждения большая часть частиц аннигилировала. Вся имеющаяся у нас обычная материя возникла из кварков и лептонов, с положительными барионными и лептонными числами, превысивших по количеству их двойников, антикварков и антилептонов.

Если любое из этих чисел положительное, то частица принадлежит к обычной материи. Поэтому кварки (с барионным числом +1/3), электроны, мюоны, тау, нейтрино (с лептонным числом +1) принадлежат к материи, а антикварки, позитроны, антимюоны, антитау, антинейтрино – к антиматерии. Это всё фермионы и антифермионы, и каждый фермион – это частица материи, а антифермион – частица антиматерии.

Почему материи больше чем антиматерии
На всех масштабах Вселенной, от нашего региона до межзвёздного пространства, от отдельных галактик до скоплений и нитей и великой космической паутины, всё, что мы наблюдаем, видится нам состоящим из обычной материи, но не из антиматерии. Эта загадка остаётся неразгаданной.

Так что же придаёт антиматерии приставку «анти»? Если взять отдельную частицу, то её античастица будет иметь ту же массу, и все те же квантовые числа с обратным знаком: это частица, способная аннигилировать с первой и превратиться в энергию. Но чтобы быть материей, у частицы должно быть позитивным либо барионное, либо лептонное число. Чтобы быть антиматерией, нужно иметь негативным либо барионное, либо лептонное число. Кроме этого в нашей Вселенной неизвестно никаких фундаментальных причин, по которым бы материя чем-то превосходила антиматерию; мы до сих пор не знаем, как была нарушена эта симметрия (хотя идеи у нас есть). Если бы всё пошло по-другому, мы бы, наверно, называли всё, из чего мы состоим, «материей», а остальное – «антиматерией», но названия эти даются произвольно. Как всегда, Вселенная находится на стороне тех, кто выжил.

Источник

Почему во Вселенной больше материи, чем антиматерии?

Почему мы существуем? Это, пожалуй, самый глубокий вопрос, который может показаться совершенно выходящим за рамки физики элементарных частиц. Но наш новый эксперимент на Большом адронном коллайдере ЦЕРН приблизил нас к ответу. Чтобы понять, почему мы существуем, нужно сперва отправиться на 13,8 миллиардов лет назад, во времени Большого Взрыва. Это событие произвело равное количество вещества, из которого мы состоим, и антивещества.

Почему материи больше чем антиматерии

Считается, что каждая частица имеет партнера из антиматерии, который практически идентичен ей, однако обладает противоположным зарядом. Когда частица и ее античастица встречаются, они аннигилируют — исчезают во вспышке света.

Где все антивещество?

Почему Вселенная, которую мы видим, состоит целиком из материи, это одна из величайших загадок современной физики. Если когда-то было равное количество антивещества, все во Вселенной аннигилировало бы. И вот, недавно опубликованное исследование, похоже нашло новый источник асимметрии между материей и антиматерии.

Об антиматерии первым заговорил Артур Шустер в 1896 году, затем в 1928 году Поль Дирак привел ей теоретическое обоснование, а в 1932 году Карл Андерсон обнаружил ее в форме антиэлектронов, которые получили название позитронов. Позитроны рождаются в естественных радиоактивных процессах, например, распада калия-40. Это означает, что обычный банан (содержащий калий) испускает позитрон каждые 75 минут. Затем он аннигилирует с электронами в материи, производя свет. Медицинские приложения вроде сканеров PET также производят антиматерию в аналогичном процессе.

Основными строительными блоками вещества, из которого состоят атомы, являются элементарные частиц — кварки и лептоны. Существует шесть видов кварков: верхний, нижний, странный, очарованный, истинный и красивый. Точно так же, существует шесть лептонов: электрон, мюон, тау и три вида нейтрино. Есть также антиматериальные копии этих двенадцати частиц, которые отличаются только своим зарядом.

Частицы антивещества в принципе должны быть идеальным зеркальным отражением своих обычных спутников. Но эксперименты показывают, что это не всегда так. Возьмем, к примеру, частицы, известные как мезоны, которые состоят из одного кварка и одного антикварка. Нейтральные мезоны имеют удивительную особенность: они могут самопроизвольно превращаться в свой анти-мезон и наоборот. В этом процессе кварк превращается в антикварк или антикварк превращается в кварк. Однако эксперименты показали, что это может происходить чаще в одном направлении, чем в другом — в результате чего материи становится больше со временем, чем антиматерии.

Третий раз — волшебный

Среди частиц, содержащих кварки, такие асимметрии обнаружены только у странных и красивых кварков — и эти открытия стали чрезвычайно важными. Самое первое наблюдение асимметрии с участием странных частиц в 1964 году позволило теоретикам предсказать существование шести кварков — в то время, когда было известно, что существует только три. Открытие асимметрии у красивых частиц в 2001 году стало окончательным подтверждением механизма, которое привело к картине с шестью кварками. Оба открытия принесли Нобелевские премии.

И странный, и красивый кварки переносят отрицательный электрический заряд. Единственный положительно заряженный кварк, который в теории должен быть способен образовывать частицы, которые могут проявлять асимметрию вещества и антивещества — это очарованный. Теория предполагает, что он это делает, его эффект должен быть незначительным и трудно находимым.

Но эксперимент LHCb на Большом адронном коллайдере смог наблюдать такую асимметрию в частицах, называемых D-мезонами, которые состоят из очарованных кварков — впервые. Это стало возможным благодаря беспрецедентному количеству очарованных частиц, произведенными непосредственно в столкновениях на БАК. Результат показывает, что вероятность того, что это статистическая флуктуация, составляет 50 на миллиард.

Если эта асимметрия рождается не из того же самого механизма, который приводит к асимметриям странного и красивого кварков, остается пространство для новых источников асимметрии материи-антиматерии, которые могут добавить к общей асимметрии таковых во Вселенной. И это важно, так как несколько известных случаев асимметрии не могут объяснить, почему во Вселенной так много материи. Одного открытия с очарованными кварками будет недостаточно, чтобы заполнить этот проблем, но это важная часть головоломки в понимании взаимодействия фундаментальных частиц.

Следующие шаги

За этим открытием последует рост количества теоретических работ, которые помогают в интерпретации результата. Но что еще более важно, она наметит дальнейшие тесты для углубления понимания нашего открытия — и некоторые из этих тестов уже проводятся.

В предстоящее десятилетие модернизированный эксперимент LHCb повысит чувствительность таких измерений. Он будет дополнен экспериментом Belle II в Японии, который только начинает работать.

Антиматерия также лежит в основе ряда других экспериментов. Целые антиатомы производятся на Антипротонном замедлителе ЦЕРН, и они обеспечивают целый ряд экспериментов по проведению высокоточных измерений. Эксперимент AMS-2 на борту Международной космической станции находится в поисках антиматерии космического происхождения. Ряд текущих и будущих экспериментов будет посвящен вопросу о том, существует ли асимметрия вещества-антивещества среди нейтрино.

Хотя мы до сих пор не можем полностью разгадать тайну асимметрии материи и антиматерии, наше последнее открытие открыло дверь в эпоху точных измерений, которые могут раскрыть еще неизвестные явления. Есть все основания полагать, что однажды физики смогут объяснить, почему мы вообще здесь.

Вы не знаете, почему? Если знаете, расскажите в нашем чате в Телеграме.

Источник

Почему во Вселенной больше материи, чем антиматерии?

Почему материи больше чем антиматерии

Говорят, что все частицы материи имеют симметричную частицу антиматерии. Они аналогичны, но с противоположными зарядами. Столкновение частиц вещества и антивещества приводит к аннигиляции. Так почему во Вселенной больше материи, чем антиматерии, как так вышло? Сейчас разберемся.

Где все антивещество?

Один из самых важных и сложных вопросов современности – почему все, что мы наблюдаем, состоит лишь из материи, и где все антивещество? На самом деле, если бы материи и антиматерии было одинаковое количество, Вселенная давно бы аннигилировала и просто самоуничтожилась. Наука не стоит на месте и недавно было проведено исследование, результаты которого пролили свет на эту асимметричность.

Впервые понятие антиматерии прозвучало еще в девятнадцатом веке от английского физика Артура Шустера. Уже в двадцатом веке идею подхватил его британский коллега по цеху Поль Дирак и в 1928 году вывел теорию антивещества. Четырьмя годами позже Карл Андерсон, американский физик-испытатель (не путать с американским рестлером) открыл позитроны – положительно заряженные электроны. Они появляются при определенных радиоактивных процессах, как например, распад калия. То есть любое вещество, содержащее калий, с некой периодичностью рождает позитроны. Потом происходит аннигиляция и вспышка света, которая, естественно, на столько мала, что мы не можем заметить ее невооруженным взглядом.

Почему материи больше чем антиматерии

Не для кого уже не секрет, что атомы состоят из кварков и лептонов – элементарных частиц. Последние включают в себя электроны, три различных нейтрино, мюоны и тау. Видов кварков также шесть: верхний, нижний, истинный, странный, очарованный и красивый. Не спрашивайте, просто примите это как факт. Это значит, что у каждой из этих частиц есть партнеры в антиматерии с противоположным зарядом.

Почему материи больше чем антиматерии

По сути такие частицы должны быть идентичны частицам вещества, однако это не совсем так. Не всегда так. Простой пример – мезоны, состоящие из кварков и антикварков. Казалось бы, они должны просто аннигилировать, но мезон может обратиться антимезоном и обратно. В таком интересном событии кварки также становятся антикварками и наоборот.

Но чаще всего такой процесс возможен лишь в одну сторону – антивещество становится веществом. Вот поэтому во Вселенной больше материи, чем антиматерии. И со временем это соотношение лишь увеличивает свой разрыв.

Очарование асимметрии

Подобная асимметрия найдена лишь в странных и красивых кварках. Это на самом деле очень важное открытие, которое помогло предположить о существовании шести видов кварков еще в далеком 1964. Хотя на то время физики считали, что их всего три. И лишь в начале нашего века была открыта асимметрия красивых кварков, что только подтвердило наличие всех шести видов. За оба этих открытия были получены Нобелевские премии.

Как же все это работает? Красивый и странный кварки отрицательно заряжены. Кварк, несущий в себе положительный заряд – очарованный. Именно он и должен стать катализатором асимметрии материи и антиматерии во Вселенной, в теории, конечно же.

Еще больше приоткрыть завесу тайны помог БАК. Именно там ученые впервые обнаружили асимметрию мезонов, состоящих из очарованных частиц. D-мезоны сталкивали между собой на ускорителе и наблюдали за рождением очарованных частиц. В условиях эксперимента вероятность того, что это лишь случайное отклонение от нормы, ничтожно мала, примерно 50 на 1 000 000 000.

Почему материи больше чем антиматерии

Что же получается, если это не тот же процесс, что в случае странного и красивого кварков, значит есть еще как минимум один, а может и больше, источников асимметрии материи и антиматерии во Вселенной. И это на самом деле очень важно, потому что такое малое количество известных механизмов сего процесса все равно не объясняет наличие такой огромной разницы в глобальных масштабах. Понятно, что одного такого открытия для ответа на вопрос будет мало, но все же это значительная часть пазла, которая поможет собрать его быстрее. А чем дальше продвигаются физики, тем больше им хочется продолжать, поэтому новые открытия тоже не заставят себя долго ждать. Очарование асимметрии касается не только кварков.

Следующие шаги

И что дальше? Каковы следующие шаги в изучении вопроса: Почему во Вселенной больше материи, чем антиматерии? Так как открытие еще совсем свежее и пока не до конца понятое, его нужно правильно объяснить. А это означает появление новых теорий, исследований, тестирований и прочего, которые уже начали свою работу.

Данный эксперимент, проведенный на Большом адронном коллайдере, тоже будет совершенствоваться, чтобы улучшить точность измерений. В скором времени его должны объединить с японским экспериментов Bell II, который вот-вот запустится.

Антивещество также изучается и в других исследования. Не только антикварки, но даже антиатомы создаются на замедлителе ЦЕРН уже сейчас. И даже в космосе на МКС проводятся эксперименты, направленные на нахождение космической антиматерии. Также некоторые исследования планируется направить в сторону нахождения асимметрии матери-антиматерии в нейтрино.

Ответить на вопрос, заданный в заголовке данной статьи, полностью мы пока не можем. Но крайнее открытие значительно продвинуло человечество вперед. В конце концов, мы живем в эру высоких технологий, позволяющий проводить особо точные измерения и эксперименты, которые в конечном итоге обязательно принесут результаты. Возможно, когда-нибудь ученые смогут ответить нам, почему мы находимся здесь, как мы появились, и где все остальные.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *