Почему фиолетовые лучи отклоняются призмой больше чем красные

Почему фиолетовые лучи отклоняются призмой больше чем красные

Почему фиолетовые лучи отклоняются призмой больше чем красные

Одним из результатов взаимодействия света с веществом является его дисперсия.

Дисперсией света называется зависимость показателя преломления n вещества от частоты ν (длины волн λ) света или зависимость фазовой скорости световых волн Почему фиолетовые лучи отклоняются призмой больше чем красныеот их частоты.

Дисперсия света представляется в виде зависимости:

Почему фиолетовые лучи отклоняются призмой больше чем красныеили Почему фиолетовые лучи отклоняются призмой больше чем красные.

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму (рис. 10.1). Первые экспериментальные наблюдения дисперсии света проводил в 1672 г. И. Ньютон. Он объяснил это явление различием масс корпускул.

Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления n (рис. 10.2) под углом Почему фиолетовые лучи отклоняются призмой больше чем красные.

Почему фиолетовые лучи отклоняются призмой больше чем красные Почему фиолетовые лучи отклоняются призмой больше чем красные Почему фиолетовые лучи отклоняются призмой больше чем красные
Рис. 10.1Рис. 10.2

После двукратного преломления (на левой и правой гранях призмы) луч оказывается преломлен от первоначального направления на угол φ. Из рис. следует, что

Почему фиолетовые лучи отклоняются призмой больше чем красные.

Предположим, что углы А и Почему фиолетовые лучи отклоняются призмой больше чем красныемалы, тогда углы Почему фиолетовые лучи отклоняются призмой больше чем красные, Почему фиолетовые лучи отклоняются призмой больше чем красные, Почему фиолетовые лучи отклоняются призмой больше чем красныебудут также малы и вместо синусов этих углов можно воспользоваться их значениями. Поэтому Почему фиолетовые лучи отклоняются призмой больше чем красные, Почему фиолетовые лучи отклоняются призмой больше чем красные, а т.к. Почему фиолетовые лучи отклоняются призмой больше чем красные, то Почему фиолетовые лучи отклоняются призмой больше чем красныеили Почему фиолетовые лучи отклоняются призмой больше чем красные.

Отсюда следует, что

т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы.

Из выражения (10.1.1) вытекает, что угол отклонения лучей призмой зависит от показателя преломления n, а n – функция длины волны, поэтому лучи разных длин волн после прохождения призмы отклоняются на разные углы. Пучок белого света за призмой разлагается в спектр, который называется дисперсионным или призматическим, что и наблюдал Ньютон. Таким образом, с помощью призмы, так же как с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

Рассмотрим различия в дифракционном и призматическом спектрах.

· Дифракционная решетка разлагает свет непосредственно по длинам волн, поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны (частоты). Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения частоты или длины волны света надо знать зависимость Почему фиолетовые лучи отклоняются призмой больше чем красныеили Почему фиолетовые лучи отклоняются призмой больше чем красные.

· Составные цвета в дифракционном и призматическом спектрах располагаются различно. Мы знаем, что синус угла в дифракционной решетке пропорционален длине волны Почему фиолетовые лучи отклоняются призмой больше чем красные. Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма же разлагает лучи света в спектре по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны (т.е. с уменьшением частоты) уменьшается (рис. 10.3).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Поэтому, красные лучи отклоняются призмой слабее, в отличие от дифракционной решетки.

Величина Почему фиолетовые лучи отклоняются призмой больше чем красные(или Почему фиолетовые лучи отклоняются призмой больше чем красные), называемая дисперсией вещества, показывает, как быстро меняется показатель преломления с длиной волны.

Из рис. 10.3 следует, что показатель преломления для прозрачных веществ с увеличением длины волны увеличивается, следовательно величина Почему фиолетовые лучи отклоняются призмой больше чем красныепо модулю также увеличивается с уменьшением λ.Такая дисперсия называется нормальной. Вблизи линий и полос поглощения, ход кривой дисперсии Почему фиолетовые лучи отклоняются призмой больше чем красныебудет иным, а именно n уменьшается с уменьшением λ. Такой ход зависимости n от λ называется аномальной дисперсией. Рассмотрим подробнее эти виды дисперсии.

Источник

Дисперсия света

Почему фиолетовые лучи отклоняются призмой больше чем красные Почему фиолетовые лучи отклоняются призмой больше чем красные Почему фиолетовые лучи отклоняются призмой больше чем красные Почему фиолетовые лучи отклоняются призмой больше чем красные

Почему фиолетовые лучи отклоняются призмой больше чем красные

Почему фиолетовые лучи отклоняются призмой больше чем красные

Дисперсией света называется зависимость показателя преломления n вещества от частоты n (длины волны l) света или зависимость фразовой скорости v распространения световых волн от частоты n: n = f(l).

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму. Рассмотрим дисперсию света в призме.

Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления n (под углом a1). После двукратного преломления (на левой и правой гранях призмы), луч

оказывается отклоненным от первоначального

Почему фиолетовые лучи отклоняются призмой больше чем красныенаправления на угол j. Из рисунка 51 следует,

Почему фиолетовые лучи отклоняются призмой больше чем красныечто

Преобразуя это выражение можно показать, что

Почему фиолетовые лучи отклоняются призмой больше чем красные(173)

Рассмотрим различия в дифракционном и призматическом спектрах.

1. Дифракционная решетка разлагает падающий свет непосредственно по длинам волн, поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны. Разложение света в спектр призмой происходит по значениям показателя преломления, поэтому для определения длины волны света надо знать зависимость n = f(l).

2. Составные цвета в дифракционном и призматическом спектрах располагаются различно. Из формулы (166) следует, что в дифракционной решетке синус угла отклонения пропорционален длине волны. Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма разлагает лучи в спектр по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны уменьшается (рисунок 51). Поэтому красные лучи отклоняются призмой слабее, чем фиолетовые.

3. Дифракционные спектры равномерные, дисперсионные – нет.

4. Дифракционные решётки дают несколько порядков спектра, призма даёт спектр одного порядка.

Величина Почему фиолетовые лучи отклоняются призмой больше чем красные, называется дисперсией вещества; она показывает, как быстро изменяется показатель преломления с длиной волны. Из рис. 52 следует, что показатель преломления для прозрачных веществ с уменьшением длины волны увеличивается; следовательно, величина Почему фиолетовые лучи отклоняются призмой больше чем красныепо модулю также увеличивается с уменьшением l. Такая дисперсия называется нормальной.

Почему фиолетовые лучи отклоняются призмой больше чем красныеРисунок 52

На явлении нормальной дисперсии основано действие призменных спектрографов. Ход кривой n(l) вблизи полос поглощения будет иным: n уменьшается с уменьшением l. Такой ход зависимости n от l называетсяаномальной дисперсией. Участок аномальной дисперсии изображён на рисунке 53. Участки аномальной дисперсии наблюдаются вблизи резонанса, когда частота падающего света n приближается к одной из частот собственных колебаний n0 электрических колебаний в веществе. Наблюдение аномальной дисперсии позволяет определять собственные частоты колебаний атомов и определять энергетические уровни электронов в атомах.

Почему фиолетовые лучи отклоняются призмой больше чем красныеРисунок 53

Основными характеристиками любого спектрального аппарата являются дисперсия и разрешающая сила.

Почему фиолетовые лучи отклоняются призмой больше чем красные; (174)

Почему фиолетовые лучи отклоняются призмой больше чем красные, (175)

где dj – угловое расстояние между спектральными линиями, отличающимися по длине волны на dl, а dl – линейное расстояние между теми же линиями.

Чтобы найти угловую дисперсию дифракционной решетки продифференцируем условие главного максимума слева по j, а справа по l.

Почему фиолетовые лучи отклоняются призмой больше чем красные Почему фиолетовые лучи отклоняются призмой больше чем красныеПочему фиолетовые лучи отклоняются призмой больше чем красные

Почему фиолетовые лучи отклоняются призмой больше чем красные

при небольших углах cosj » 1, и

Почему фиолетовые лучи отклоняются призмой больше чем красные= mN0 , (176)

где N0число щелей, приходящихся на единицу длины. Из формулы (176) следует, чточем выше порядок спектра, тем больше дисперсия.

где f ’ –фокусное расстояние линзы. Возможность разрешения (т.е. раздельного восприятия) двух близких спектральных линий зависит не только от

расстояния между ними ( определяется дисперсией прибора), но также и от ширины спектрального максимума. Согласно критерию, предложенному Рэлеем, спектральные линии считаются полностью разрешенными, если середина одного максимума совпадает с краем другого. В этом случае минимум между линиями составляет около 80% от максимумов (рисунок 54 а).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Почему фиолетовые лучи отклоняются призмой больше чем красные,

где Почему фиолетовые лучи отклоняются призмой больше чем красные— наименьшая разность двух близких по длине волны спектральных линий, которые в спектре решётки воспроизводятся ещё раздельно или, как говорят, разрешаются решеткой. Для дифракционной решетки

Почему фиолетовые лучи отклоняются призмой больше чем красные,

Источник

Дисперсия света. Цветовой диск Ньютона

Введение

Мы живем в мире разнообразных световых явлений – радуга, полярные сияния, голубое небо. Тем, кто не знаком с причинами их возникновения, эти световые явления кажутся необыкновенными и загадочными.

В повседневной жизни мы встречаемся со многими световыми явлениями, но обычно не задумываемся над ними – насколько они привычны для нас, а вот объяснить их часто затрудняемся. Например, чайная ложка, опущенная в стакан с водой, кажется нам надломленной или сломанной, в зависимости от того, с какой стороны мы смотрим на ложку. Мы видим окружающие нас предметы многоцветными при освещении Солнцем или яркой лампой, но с наступлением сумерек или при ослаблении света цветность предметов блекнет.

Все эти явления связаны с понятием «свет». В обыденной речи «свет» мы используем в самых разных значениях: ученье – свет, а неученье – тьма, свет мой, солнышко, скажи … В физике термин «свет» имеет гораздо более определенное значение. Опытным путем было установлено, что свет нагревает тела, на которое падает. Следовательно, он передает этим телам энергию. Мы также знаем, что одним из видов теплопередачи является излучение, следовательно, Свет – это электромагнитное излучение, воспринимаемое человеческим глазом и вызывающее зрительные ощущения. Свет обладает множественными свойствами, одним таким свойством света является – дисперсия. Мы всегда сталкиваемся с этим явлением в жизни, но не всегда замечаем этого. Но если быть внимательным, то явление дисперсии всегда нас окружает. Одно из таких явлений это обычная радуга. На первый взгляд радуга это что-то простое, на самом деле при возникновении радуги происходят сложные физические процессы. Поэтому мы выбрали тему дисперсия света для того, чтобы глубже понять физические процессы и явления, происходящие в природе. Это очень интересная тема и мы постараемся в своем проекте представить все моменты, происходящие в истории развития науки о свете и показать опыты по демонстрации дисперсии света, а так же свою экспериментальную установку, разработанную специально для наблюдения дисперсии света, которая впоследствии может быть использована на уроках физики при изучении данной темы.

Цель проекта – изучение понятия «Дисперсия света» и изготовление экспериментальной установки «Цветовой диск Ньютона».

Задачи:

I. Теоритическая часть

1.1. Открытие Исаака Ньютона

В 1665–1667 годах Исаак Ньютон – английский физик и математик занимаясь усовершенствованием телескопов, обратил внимание на то, что изображение, даваемое объективом, по краям окрашено, данное наблюдение его очень заинтересовало, и он решил разгадать природу возникновения цветных полос. В это время в Англии свирепствовала эпидемия чумы, и молодой Исаак Ньютон решил укрыться от неё в своём родном Вулсторпе. Перед отъездом в деревню он приобрёл стеклянные призмы, чтобы «произвести опыты со знаменитыми явлениями цветов». Исследуя природу цветов, Ньютон придумал и выполнил целый комплекс различных оптических экспериментов. Некоторые из них без существенных изменений в методике, используются в физических лабораториях до сих пор. Главный опыт был традиционным. Проделав небольшое отверстие в ставне окна затемнённой комнаты, Ньютон поставил на пути пучка лучей, проходивших через это отверстие, стеклянную призму. На противоположной стене он получил изображение в виде полоски чередующихся цветов (рис. 1).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Рисунок 1. Эксперимент И. Ньютона

1.2. Спектральный состав света

Полученную таким образом цветную полоску солнечного света Ньютон разделил на семь цветов радуги – красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый (рис. 2).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Рисунок 2. Разложение белого пучка света на спектр

Спектр – (от латинского «spectrum» – видение) непрерывный ряд цветных полос, получается путем разложения луча белого света на составные части (рис. 3).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Если же рассматривать спектр без подобного предубеждения, то полоса спектра распадается на три главные части – красную, желто-зелёную и сине-фиолетовую. Остальные цвета занимают сравнительно узкие области между этими основными.

Все цвета спектра содержатся в самом солнечном свете, а стеклянная призма лишь разделяет их, так как различные цвета по-разному преломляются стеклом. Наиболее сильно преломляются фиолетовые лучи, слабее всего – красные.

1.3. Дисперсия света

Проходя через призму, луч солнечного света не только преломляется, но и разлагается на различные цвета.

Дисперсией называется явление разложения света на цвета при прохождении света через вещество.

Прежде чем разобраться в сути этого явления, необходимо рассмотреть преломлении световых волн. Изменение направления распространения волны при прохождении из одной среды в другую называется преломлением.

Положим на дно пустого не прозрачного стакана монету или другой небольшой предмет. Подвинем стакан так, чтобы центр монеты, край стакана и глаз находились на одной прямой. Не меняя положения головы, будем наливать в стакан воду. По мере повышения уровня воды дно стакана с монетой как бы приподнимается. Монета, которая ранее была видна лишь частично, теперь будет видна полностью. Эти явления объясняются изменением направления лучей на границе двух сред — преломлением света (рис. 4).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Рисунок 4. Преломление светового луча

Закон преломления света: падающий луч, луч преломленный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости.

sin α= n21
sin β

где n21относительный показатель преломления второй среды относительно первой.

Если луч переходит в какую-либо среду из вакуума, то

где n абсолютный показатель преломления второй среды.

Абсолютный показатель преломления – физическая величина, равная отношению синуса угла падения луча к синусу угла преломления при переходе луча из вакуума в эту среду.

Чем больше у вещества показатель преломления, тем более оптически плотным считается это вещество. Например, рубин – среда оптически более плотная, чем лёд.

Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде. Это было доказано французским математиком Пьером Ферма и голландским физиком Христианом Гюйгенсом. Они доказали, что

Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, равная отношению скоростей света в этих средах:

sin α= n21 =V1
sin βV2

Скорость света в любом веществе меньше скорости света в вакууме. Причиной уменьшения скорости света в среде является взаимодействие световой волны с атомами и молекулами вещества. Чем сильнее взаимодействие, тем больше оптическая плотность среды, и тем меньше скорость света. Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой.

Абсолютный показатель преломления определяется скоростью распространения света в данной среде, которая зависит от физического состояния среды, т. е. от температуры вещества его плотности. Показатель преломления зависит также и от характеристик самого света. Для красного света он меньше, чем для зеленого, а для зеленого – меньше, чем для фиолетового.

Дисперсия света – зависимость показателя преломления и скорости света от частоты световой волны.

Абсолютный показатель преломления стекла n, из которого изготовлена призма, зависит не только от свойств стекла, но и от частоты (от цвета) проходящего через него света. В опыте Ньютона при разложении в спектр пучка белого света, лучи фиолетового цвета, имеющие большую частоту, чем красные, преломились сильнее красных, поэтому на экране можно наблюдать цветную полосу – спектр (рис. 5).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Рисунок 5. Преломление светового луча при прохождении через более оптически-плотную среду – стеклянную призму

1.4. Радуга

Дисперсией света объясняются многие явления природы, например Радуга. В результате преломления солнечных лучей в каплях воды во время дождя на небе появляется разноцветная дуга – радуга (рис. 6).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Рисунок 6. Природное явление радуга

Радуга — это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя.

Разноцветная дуга появляется оттого, что луч света преломляется в капельках воды, а затем, возвращаясь к наблюдателю под углом в 42 градуса, расщепляется на составные части от красного до фиолетового цвета (рис. 7).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Рисунок 7. Преломления света в капле дождя

Прежде всего, заметим, что радуга может наблюдаться только в стороне, противоположной Солнцу. Если встать лицом к радуге, то Солнце окажется сзади. Наблюдаемые в радуге цвета чередуются в такой же последовательности, как и в спектре, получаемом при пропускании пучка солнечных лучей через призму. При этом внутренняя (обращенная к поверхности Земли) крайняя область радуги окрашена в фиолетовый цвет, а внешняя крайняя область — в красный.

Яркость оттенков и ширина радуги зависят от размера капель дождя. Чем крупнее капли, тем уже и ярче радуга, тем в ней больше красного насыщенного цвета. Если идёт мелкий дождик, то радуга получается широкая, но с блёклыми оранжевыми и жёлтыми краями.

Чаще всего видим радугу в форме дуги, но дуга – это лишь часть радуги. Радуга имеет форму окружности, но мы наблюдаем лишь половину дуги, потому что её центр находится на одной прямой с нашими глазами и Солнцем (рис. 8).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Рисунок 8. Схема образования радуги относительно наблюдателя

Целиком радугу можно увидеть лишь на большой высоте, с борта самолёта или с высокой горы (рис. 9).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Рисунок 9. Радуга с борта самолета

II. Практическая часть

2.1. Демонстрация экспериментов по наблюдению дисперсии света

Изучив историю открытия дисперсии света, и процесс образования спектра, мы решили опытным путем пронаблюдать дисперсию света. Для этого подготовили и провели видео эксперименты, которые можно использовать на уроках физики при изучении темы Дисперсия света.

Эксперимент №1. Получение радужного спектра на мыльных пленках

Для проведения эксперимента понадобится: ёмкость с мыльным раствором, проволочная рамка.

Ход эксперимента: наливаем мыльный раствор в ёмкость, опускаем рамку в раствор, образуется мыльная плёнка. На плёнке появляется радужные полосы.

Почему фиолетовые лучи отклоняются призмой больше чем красные

Эксперимент №2. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении сквозь стеклянную призму

Для проведения эксперимента понадобится: призма, источник света (фонарик телефона), экран (лист белой бумаги).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Ход эксперимента: устанавливаем призму на экспериментальном столике. С одной стороны столика устанавливаем экран. Свет направляем на призму и на экране наблюдаем радужные полосы.

Почему фиолетовые лучи отклоняются призмой больше чем красные

Почему фиолетовые лучи отклоняются призмой больше чем красные

Эксперимент № 3. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении через воду

Для проведения эксперимента понадобится: зеркало, источник света (фонарик телефона), экран (лист белой бумаги), ёмкость с водой.

Почему фиолетовые лучи отклоняются призмой больше чем красные

Почему фиолетовые лучи отклоняются призмой больше чем красные

Ход эксперимента: в ёмкость наливаем воду и кладем на дно зеркало. Направляем на зеркало свет, чтобы отраженный свет попадал на экран.

Почему фиолетовые лучи отклоняются призмой больше чем красные

Почему фиолетовые лучи отклоняются призмой больше чем красные

1.2. Цветовой диск Ньютона

Ньютон провел обычный опыт со стеклянной призмой и заметил разложение света на спектр. Направив луч дневного света на призму, он увидел на экране различные цвета радуги. После увиденного он выделил из них семь основных цветов. Это были такие цвета как: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый (каждый охотник желает знать где сидит фазан). Ньютон выбрал лишь семь цветов по той причине, что были наиболее яркие, он также говорил, что в музыке всего семь нот, но сочетание их, различные вариации позволяют получить совершенно различные мелодии. Проведя обратный опыт, т.е. полученный спектр он направил на грань другой призмы и в результате опыта Ньютон снова получил белый свет (рис.10).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Рисунок 10. Первая призма разлагает белый свет в спектр, вторая вновь собирает спектр в белый свет

На основе этих простых опытов Ньютону пришла в голову мысль о создании круга состоящего из семи секторов и закрашенных определенными цветами в результате вращения, которого произойдет их смешение и мы получим белую раскраску этого круга. В последствии этот круг стали называть Цветной диск Ньютона (рис. 11).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Рисунок 11. Цветной диск Ньютона

Попробуем повторить опыт Ньютона. Для этого создадим экспериментальную установку, которая состоит из компьютерного кулера и прикрепленного к нему цветового диска, также блока питания (рис. 12).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Рисунок 12. Экспериментальная установка по получению белого света из спектра

Кулер создает большой проток воздуха, и служит для того что бы привести во вращение цветной диск. Так как наша установка подключается в сеть с напряжением 220 В, а кулер рассчитан на 12 В, поэтому к кулеру подключили блок питания для понижения напряжения с 220 В на 12 В. Для безопасности установка изолирована в пластмассовом боксе.

В результате при включении установки в розетку сети питания цветной круг, закрепленный на кулере, начнет вращаться, и мы увидим желтовато-белую окраску круга (рис. 13).

Почему фиолетовые лучи отклоняются призмой больше чем красные

Рисунок 13. Результат вращения цветового диск Ньютона

Окраска круга при вращении желтовато-белая по двум причинам:

Таким образом, нам удалось повторить эксперименты Ньютона по разделению белого света на спектр и наоборот получение белого света из спектра.

Заключение

В результате проведенных опытов и экспериментов нами были сделаны следующие выводы:

Таким образом, посредством теоретического изучения данной темы и ее практического подтверждения и была достигнута основная цель проекта.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *