Твердотельный аккумулятор для авто что это
Твердотельные батареи: вся информация о новой технологии
Твердотельные батареи также называются твердотопливными – они обещают более высокую плотность энергии и быстрое время зарядки. В этой статье мы разложим по полочкам все, что касается нового вида аккумуляторов.
Твердотельные батареи — что это?
Твердотельные батареи — новая разработка, которая находится на стадии исследований. Их главное отличие от традиционных аккумуляторов заключается в том, что они содержат твердый, а не жидкий электролит. Плотность энергии клеток здесь увеличивается за счет твердой природы вещества, что позволяет хранить больше энергии на килограмм батареи.
Большим преимуществом твердотельных батарей является их пожарная безопасность, которая представляет риск (особенно для обычных литий-ионных батарей) из-за жидкого электролита между анодом и катодом. Добавьте к этому будущую возможность большей емкости, а также более быстрой зарядки.
Согласно данным Штутгартского университета, в настоящее время реализация твердотельных батарей заключается в поиске правильных материалов и их сочетаний для обеспечения хорошей плотности энергии и мощности, безопасности и длительного срока службы при низких затратах на производство.
Например, одной из трудностей в разработке твердотельных батарей является достижение короткого времени зарядки. Из-за низкой силы тока время зарядки аккумуляторов в настоящее время очень большое. Кроме того, поиск материала с такой же высокой ионной проводимостью, как и у жидких электролитов, также является трудностью. Некоторые автомобильные компании, такие как Toyota и Volkswagen, уже инвестировали в производство твердотельных батарей, поскольку они особенно интересны для электромобилей.
Интерес для автомобильной промышленности заключается в том, что твердотельная батарея, как ожидается, будет весить в четыре раза меньше обычных аккумуляторов при том же заряде. Таким образом, электрический автомобиль может достичь четырехкратной дальности пробега с тем же размером батареи.
Ожидается, что постоянное производство твердотельных батарей будет налажено на рынке с 2025 года, но сначала не в автомобильной промышленности.
Аккумуляторы нового поколения помогут электромобилям увеличить длину пробега без подзарядки
Компания QuantumScape, которую поддерживают Volkswagen и Билл Гейтс, представила прототип аккумулятора будущего для электромобилей. По заявлению разработчиков, транспортные средства с их батареей могут путешествовать на 80 процентов дальше, чем автомобили, оснащенные литий-ионными аккумуляторами.
Сейчас основными источниками питания ноутбуков, смартфонов и даже электрокаров являются литий-ионные батареи. Они неплохо справляются, когда речь идет о небольших устройствах, но автомобильные версии имеют ряд недостатков: долго заряжаются и содержат компоненты, которые могут воспламениться при аварии. Такие батареи могут замерзнуть при очень низких температурах. Исследователи в течение многих лет тестировали разные материалы, такие как полимеры и керамика, которые помогли бы решить эти проблемы.
Устройство нового твердотельного аккумулятора.
На виртуальной пресс-конференции Battery Day, Джагдип Сингх, основатель и генеральный директор QuantumScape представил концепт литий-металлического аккумулятора, который стал результатом десятилетней работы над твердотельной литиевой батареей, — сообщает techxplore.com
Вместо привычного жидкого электролита в новой батарее применен сухой керамический сепаратор. Он обеспечивает более эффективную передачу энергии при прохождении ионов. Также в аккумуляторе есть гелевый компонент, который не замерзает в холодную погоду и подавляет рост дендритов электролита, которые снижают эффективность литий-ионного аккумулятора.
Согласно результатам тестов QuantumScape, транспортные средства с их батареей могут путешествовать на 80% дальше, чем автомобили, оснащенные литий-ионными аккумуляторами. Также они сохраняют более 80 процентов емкости после 800 циклов зарядки, что намного больше, чем у их нынешних литий-ионных «собратьев». Немаловажно, детище QuantumScape заряжается до 80 процентов от емкости аккумулятора всего за 15 минут.
«Самым сложным в создании работающей твердотельной батареи является необходимость одновременного удовлетворения требований высокой плотности энергии, быстрой зарядки, длительного срока службы и работы в широком диапазоне температур», — сказал лауреат Нобелевской премии 2019 года Стэн Уиттингем, соавтор литий-ионного аккумулятора.
И, по словам Уиттингэма, батарея QuantumScape отвечает всем этим требованиям.
«Если QuantumScape сможет внедрить эту технологию в массовое производство, это может привести к преобразованию отрасли», — добавил Стэн Уиттингем.
«Мы не видим на горизонте ничего близкого к тому, что мы делаем», — сообщил Сингх.
По мнению экспертов, в новой разработке может использоваться соединение лития, известное как LLZO.
Тестирование новой батареи проводилось на однослойных элементах. Окончательная версия батареи потребует до 100 слоев, и по мере увеличения толщины могут возникнуть дополнительные сложности.
В этом направлении активно работает китайский гигант по производству аккумуляторов CATL, LG Chem, Samsung, Panasonic и Tesla. Toyota также должна была представить свой твердотельный аккумулятор на Олимпийских играх в Токио в этом году, пока пандемия не поставила крест на этих планах. Стартап под названием Solid Power начал производство батареи аналогичного типа с электролитом на основе сульфида, который обладает высокой проводимостью. Ford, BMW и Hyundai также присоединились к этому процессу. В России разработками и производством источников питания являются компании участники рынка EnergyNet. Среди ярких представителей этого рынка можно отметить компанию-производителя аккумуляторов «Лиотек». Компания производит аккумуляторы для транспорта, промышленных предприятий и домашних хозяйств.
Создан аккумулятор будущего для автомобилей. Чем он отличается от обычных батарей и как поможет спасти жизнь пассажиров?
В конце сентября международный коллектив ученых под руководством ученого Даррена Хана и с участием инженеров LG рассказал о создании первого комбинированного аккумулятора для автомобилей на электрической тяге. Подобная батарея является твердотельной и построена на базе анода из чистого кремния. По сравнению с аналогами новый аккумулятор является более энергоемким и безопасным и, кажется, превосходит все конкурентные образцы. «Лента.ру» объясняет, почему все автопроизводители не могут перейти на твердотельные батареи и какие перспективы есть у нового комбинированного аккумулятора.
Используемые в современных электрокарах батареи неидеальны. Как правило, автопроизводители используют литий-ионные зарядные элементы. Несмотря на то что аккумуляторы позволяют хранить энергию длительное время и обеспечивать машины запасом хода на полтысячи миль, проблем с ними слишком много. Во-первых, батареи быстро изнашиваются. Во-вторых, они очень капризны: требовательны к температуре эксплуатации и не переносят постоянных или сильных вибраций. Именно поэтому при ДТП электрокар может загореться, а на тушение и локализацию возгорания может уйти несколько часов.
Также почти все батареи — начиная от элементов в пультах к телевизорам и заканчивая фабричными аккумуляторами — состоят из кобальта. Зависимость индустрии от этого материала крайне высока, так как 60 процентов всего кобальта добывают в Демократической Республике Конго.
В теории твердотельные батареи как минимум практичнее и безопаснее. Их конструкция предполагает использование минимума материалов. По словам ученых, чем меньше в аккумуляторе деталей, тем реже он будет ломаться и выходить из строя.
Использование кремниевого анода в батареях позитивно описывается Дарреном Ханом и его коллегами. Впервые данную наработку описали в 2002 году. Спустя почти 13 лет основатель Tesla Илон Маск заявил, что применение кремния в аккумуляторах его электрокаров увеличивает запас хода примерно на шесть процентов. Батареи на основе кремния обычно имеют гораздо большую удельную емкость, чем другие, — примерно 3600 миллиампер-часов на грамм материала.
Однако в заряженном состоянии данный тип анода в больших долях является крайне неустойчивым, а следовательно, опасным для применения. При длительном контакте с жидким электролитом кремний плохо держит энергию, что оборачивается значительной потерей мощности электрического двигателя. Поэтому современные аккумуляторы состоят из кремния лишь частично. В этой связи аноды коммерческих батарей могут содержать небольшое количество кремния, что весьма незначительно влияет на производительность. Например, на рынке существуют аккумуляторы, созданные на базе композитного электрода с кремниевой нанопроволокой. Информация о содержании этого материала в батареях производителей обычно не раскрывается, но можно считать, что доля кремния в них не превышает десяти процентов.
Учитывая все недостатки батарей на базе классического электролита и кремния, ученые решили синтезировать материал с твердым электролитом на основе сульфида. Использование твердой структуры решило проблему насыщения анодов жидким электролитом во время работы. По словам Хана, отсутствие углерода в аноде значительно снижает межфазный контакт, что приводит к нежелательным побочным реакциям с твердым электролитом.
Сравнительные тесты показали, что кремниевые аноды имеют в десять раз большую плотность энергии, чем графитовые. Пока что новое изобретение удалось воссоздать лишь в лабораторных условиях, но характеристики новой батареи удовлетворяют специалистов. Аккумулятор-прототип сохранил 80 процентов емкости после 500 циклов зарядки, удельная емкость энергии на грамм кремния составила около 2890 миллиампер-часов. Батарея оказалась стабильна и безопасна, что в будущем наверняка позволит использовать ее несколько десятков лет. По словам ученых, аккумуляторы нового типа смогут пережить сам автомобиль.
«Принцип твердотельного кремния преодолевает многие ограничения обычных батарей», — говорится в отчете изобретателей. Ученые считают, что созданные по комбинированному принципу аккумуляторы удовлетворят рыночный спрос на безопасные батареи с более высокой емкостью при более низких затратах. Ноу-хау можно использовать при создании как электрокаров, так и стационарных энергохранилищ.
Как было замечено, удачный прототип батареи пока был создан в лабораторных условиях и тестировался при комнатной температуре. Комфортная для аккумулятора работа происходит при температуре около 140 градусов по Фаренгейту (порядка 60 градусов по Цельсию). Даррен Хан признает, что от прототипа до первого коммерческого образца могут пройти годы, и соглашается со скептиками, что его коллегам предстоит много работы. Однако ученый уже зарегистрировал бренд Unigrid battery, под которым надеется выйти на рынок твердотельных аккумуляторов нового поколения.
О «кремниевой революции» все чаще говорят и крупные игроки на рынке электромобилей. Например, в 2020 году представители Tesla обнадежили потребителей и рынок, что планируют удвоить содержание кремния в батареях своих автомобилей.
До 1000 км на одном заряде: японские разработчики делают ставку на твердотельные аккумуляторы
Первый коммерческий литийионный аккумулятор был выпущен компанией Sony в 1991 году, но сегодня по объёмам их производства лидируют южнокорейские и китайские компании. Чтобы вернуть себе лидерство в технологической сфере, японские производители концентрируются на создании батарей с твердотельным электролитом.
Источник изображения: Nikkei Asian Review
Такие элементы питания, как уточняет Nikkei Asian Review, позволят электромобилям проходить до 1000 км на одном заряде, при этом в меньшей степени зависеть от температурного режима и довольствоваться меньшим весом. Огромное значение внедрение твердотельных аккумуляторов будет иметь и для стационарных систем хранения электроэнергии — это даст новый толчок к распространению ветровых и солнечных электростанций.
Твердотельные аккумуляторы смогут пополнять заряд быстрее, что не менее важно для электромобилей, чем увеличение запаса хода. Японские компании рассчитывают, что смогут первыми вывести на рынок аккумуляторы данного типа. Toyota Motor сотрудничает на этом направлении с Panasonic, готовясь предложить твердотельные аккумуляторы для электромобилей в 2025 году или даже раньше. Murata Manufacturing намеревается наладить производство твердотельных аккумуляторов для смартфонов и носимых устройств к апрелю следующего года.
На этом пути имеются и некоторые технические препятствия. В частности, применяемые для изготовления твердотельных аккумуляторов сульфиды могут выделять газы при контакте с воздухом, а это является проблемой с точки зрения безопасности. Производители также должны усовершенствовать техпроцесс таким образом, чтобы исключить воздействие атмосферной влаги на электролит. Murata сейчас работает над тем, чтобы дополнительно увеличить ёмкость твердотельных аккумуляторов и повысить эффективность их заряда. По мнению японских чиновников, прорыв в данной области позволит стране не отставать от китайских конкурентов.
Fisker патентует твердотельные литиевые батареи для электромобилей будущего
Компания Fisker Automitive, созданная экс-сотрудником Tesla Хенриком Фискером, объявила о прорыве в разработке аккумуляторов. Судя по информации, предоставленной Fisker, речь идет о твердотельных аккумуляторах нового типа, которые будут использоваться в собственных электромобилях компании. Эти батареи обеспечивают машине запас хода вплоть до 800 км, а заряжаются они менее, чем за минуту. Таким образом, разработка решает сразу две главные проблемы электромобилей — относительно малый запас хода и время зарядки.
Fisker подала патентную заявку на свое изобретение. Основные отличительные его черты — новый тип материалов, используемый для создания батарей и новый технологический процесс, критически важный для увеличения емкости батареи и скорости ее зарядки.
Благодаря особенностям электродов твердотельных батарей плотность энергии в них в 2,5 раз больше, чем в литиево-ионных аккумуляторах. Именно благодаря высокой плотности, как утверждают ученые из Fisker, запас хода электромобиля удается увеличить в несколько раз, по сравнению с аналогами на обычных батареях. В этом случае время зарядки аккумулятора электромобиля меньше, чем время, которое тратит водитель обычного авто на заправку бака топливом.
К сожалению, для производства аккумуляторов от Fisker необходимо создать полностью новое производство. А это возможно осуществить не ранее, чем через несколько лет. По словам представителей компании, наладить выпуск твердотельных аккумуляторов удастся не ранее 2023 года.
«Этот прорыв — начало новой эры твердотельных материалов и технических процессов. Мы сейчас решаем все проблемы, которые появляются на пути коммерциализации технологии, такие, как производительность при низких температурах, удешевление процесса производства, возможность миниатюризации аккумуляторов», — заявил Фабио Албано, вице-президент аккумуляторного подразделения в Fisker Inc.
Твердотельная технология Fisker предусматривает использование объемных электродов, площадь удельной поверхности которых в 25 раз больше площади удельной поверхности обычных пленочных электродов в литиево-ионных батареях
На данный момент у технологии, предложенной Fisker, действительно есть ряд нерешенных проблем. Главные — это возможность увеличения плотности размещения электродов, ограниченный температурный интервал эксплуатации, ограниченное количество материалов, которые можно использовать для создания батарей, немасштабируемый процесс производства. Тем не менее, в Fisker обещают найти решения для каждой из названных проблем. Именно для этого компании и требуется пять лет.
Уже предложена конструкция электродов, которая позволит производить универсальные аккумуляторы различных размеров и вольтажа. Но кроме чисто технических проблем, нужно решать еще и вопросы логистики — ведь сейчас нет готовых цепочек поставок необходимых материалов и оборудования для производства твердотельных батарей. Все это придется создавать с нуля.
Тем не менее, новая технология сулит отличные перспективы. Кроме запаса хода в 800 км, аккумуляторы после отладки процесса производства будут более дешевыми, чем нынешние батареи. На данный момент дороговизна электромобилей и относительно малый запас хода останавливают большинство потенциальных покупателей таких транспортных средств.
Руководство Fisker сейчас ведет переговоры с различными промышленными группами, пытаясь наладить производство аккумуляторов раньше 2023 года.
Как уже говорилось, изначально свои аккумуляторы компания будет устанавливать в электромобили собственной конструкции. Но в Fisker не исключают и возможность изготовления батарей меньшего размера, чтобы поставлять их представителям из других сфер электроники.
Максимальный запас хода на данный момент — у электрокаров Tesla. Это 540 километров у Tesla model S 100D. Минимальное время зарядки батареи машины составляет 30 минут. Ранее Tesla запустила проект станций быстрой замены аккумуляторов, но из-за технических сложностей эта система оказалась неэффективной и от нее было решено отказаться.