среднее время жизни нейтрона
Загадка со временем жизни нейтрона усложняется, а тёмной материи до сих пор не видно
Два метода измерения жизни нейтрона дают разные результаты, что создаёт неопределённость в космологических моделях. Но никто не знает, в чём проблема
Когда физики вырывают нейтроны из атомных ядер, засовывают их в бутылку и считают, сколько нейтронов останется в ней через какое-то время, они предполагают, что нейтроны испытывают радиоактивный распад в среднем через 14 минут 39 секунд. Но когда другие физики создают лучи нейтронов и подсчитывают количество появляющихся протонов – частиц, являющихся продуктами распада свободных нейтронов – у них получается среднее время жизни порядка 14 минут 48 секунд.
Расхождения между измерениями в бутылке и луче существуют с тех пор, когда методы подсчёта времени жизни нейтрона начали давать свои результаты в 1990-х. Сначала все измерения были настолько неточными, что никто не волновался по этому поводу. Но постепенно оба метода улучшались, и всё равно расходились в оценках. Сейчас исследователи из Национальной лаборатории Лос-Аламос провели наиболее точное бутылочное измерение времени жизни нейтрона, использовав новый тип бутылок, устраняющий возможные источники ошибок, присущие предыдущим схемам. Результат, который вскоре появится в журнале Science, подкрепляет различие с измерениями в опытах с лучами и увеличивает шансы на появление новой физики вместо простой ошибки в эксперименте.
Но какой именно новой физики? В январе два физика-теоретика выдвинули захватывающую гипотезу о причине упомянутого несоответствия. Бартоц Форнал и Бенджамин Гринштейн из Калифорнийского университета в Сан-Диего утверждают, что нейтроны иногда могут распадаться на тёмную материю – невидимые частицы, составляющие до шести седьмых всей материи Вселенной, если учитывать их гравитационное влияние, и при этом ускользающие в течение десятилетий их экспериментальных поисков. Если нейтроны иногда таинственным образом превращаются в частицы тёмной материи вместо протонов, они должны исчезать из бутылок быстрее, чем появляются протоны в лучах – а именно так и происходит.
Эксперимент в UNCtau в Лос-Аламосе, использующий бутылочный метод для измерения времени жизни нейтронов
Форнал и Гринштейн определили, что в простейшем случае масса гипотетической частицы тёмной материи должна находиться в пределах 937.9 — 938.8 МэВ, и что нейтрон, распадающийся на такую частицу, будет испускать гамма-луч определённой энергии. «Это весьма конкретный сигнал, который можно искать в экспериментах», — сказал Форнал в интервью.
Команда эксперимента UCNtau в Лос-Аламосе – названная в честь ультрахолодных нейтронов и тау, греческой буквы, обозначающей время жизни нейтрона – услышала о работе Форнала и Гринштейна в прошлом месяце, когда готовилась к очередному экспериментальному подходу. Почти сразу же Чжао Вен Тан [Zhaowen Tang] и Крис Моррис, участники коллаборации, поняли, что могут прикрутить германиевый детектор к своей бутылке для обнаружения гамма-лучей, исходящих в результате распада нейтронов. «Чжао Вен пошёл и сделал стенд, мы собрали части, необходимые для нашего детектора, разместили их рядом с резервуаром и начали сбор данных», — сказал Моррис.
Анализ данных тоже провели быстро. 7 февраля, всего через месяц после появления гипотезы Форнала и Гринштейна, команда UCNtau сообщила о результатах экспериментальных тестов на сайте arxiv.org. Они утверждают, что исключили наличие характерных гамма-лучей с определённостью в 99%. Рассказывая о результате, Форнал отметил, что гипотезу тёмной материи они полностью не исключили: есть и другой вариант, при котором нейтрон распадается на две частицы тёмной материи, вместо одной частицы и гамма-луча. Но без чётких экспериментальных признаков этот вариант будет гораздо сложнее проверить.
Детектор протонов в Национальном институте стандартов и технологии, используемый в лучевом методе
Свидетельств наличия тёмной материи не найдено. Однако расхождение во времени жизни нейтрона установлено чётко, как никогда ранее. А живёт ли нейтрон в среднем 14 минут 39 секунд или 48 секунд, имеет большое значение.
Физикам необходимо знать время жизни нейтрона для подсчёта относительного количества водорода и гелия, появившегося в первые минуты жизни Вселенной. Чем быстрее в то время нейтроны распадались на протоны, тем меньше их должно было остаться позже, когда они встраивались в ядра гелия. «Баланс водорода и гелия – первая из многих чувствительных проверок динамики Большого взрыва, — сказал Джеффри Грин, физик-ядерщик из Университета в Теннеси и Национальной лаборатории Оак-Ридж, — а ещё он говорит о том, как в следующий миллиард лет будут формироваться звёзды», поскольку галактики, содержащие больше водорода, формируют более массивные, и в итоге, более подверженные взрывам звёзды. Поэтому время жизни нейтрона влияет на предсказания далёкого будущего Вселенной.
Затянувшееся дело с девятисекундной неопределённостью во времени жизни нейтрона нужно разрешить. Но никто не имеет ни малейшего понятия, в чём тут проблема. Грин, ветеран лучевых экспериментов, сказал: «Мы все тщательно изучали эксперименты друг друга, и если бы мы знали, в чём состоит проблема, мы бы её нашли».
По вертикали – время жизни нейтрона в секундах. Красным отмечены результаты опытов с лучами, синим – с бутылками.
Впервые расхождение стало серьёзной проблемой в 2005-м, когда группа под руководством Анатолия Сереброва из Петербургского института ядерной физики и физики из Национального института стандартов и технологий (NIST) в Гейтерсберге, Мэриленд, сообщили, соответственно, результаты измерений по бутылкам и лучам, сами по себе очень точные – погрешность бутылочного оценивалась в одну секунду, а лучевого – в три секунды – но отличавшиеся друг от друга на восемь секунд.
Спустя множество улучшений схем работы, независимых проверок и задумчивого почёсывания учёных голов, разница между средним временем для бутылки и луча лишь немного возросла – до девяти секунд – а погрешности уменьшились. Получается два варианта, как говорит Питер Гелтенборт, физик-ядерщик из Института Лауэ-Ланжевена во Франции, в 2005-м работавший в команде Сереброва, а сейчас работающий в UCNtau: «Либо перед нами некая весьма экзотическая новая физика, либо все мы переоценили точность измерений».
Практикующие лучи учёные из NIST и других лабораторий работали над тем, чтобы разобраться и минимизировать множество источников неопределённости в опытах, включая интенсивность нейтронного луча, объём детектора, через который он проходит, эффективность детектора, воспринимающего протоны, порождённые распадающимися нейтронами по всей длине луча. Годами Грин особенно скептически относился к измерениям интенсивности луча, но независимые проверки устранили сомнения. «Сейчас у меня нет лучшего кандидата на незамеченное нами систематическое явление», — сказал он.
Что касается бутылок, эксперты подозревали, что нейтроны могут поглощаться стенками бутылок, несмотря на покрытие их гладким и отражающим материалом, даже после корректировки поглощений через изменение размеров бутылок. Кроме того, может что-то пропускать стандартный способ подсчёта количества выживших в бутылке нейтронов.
Но новый эксперимент в UCNtau исключил оба объяснения. Вместо хранения нейтронов в материальных бутылках, учёные поймали их при помощи магнитных полей. А вместо перемещения выживших нейтронов к внешнему детектору, они использовали местный детектор, погружаемый в магнитную бутылку и быстро поглощающий все имеющиеся внутри нейроны. Каждое поглощение характеризуется вспышкой света, которую регистрируют фотоэлементы. Однако их итоговый результат поддержал итоги предыдущего опыта.
Остаётся только двигаться дальше. «Все двигаются дальше», — сказал Моррис. Он с командой UCNtau всё ещё собирают данные и заканчивают анализ, куда входит в два раза больше данных, чем в работе, которая скоро появится в журнале Science. Они намереваются измерить тау с погрешностью всего в 0,2 секунды. Что до лучей, группа из NIST под руководством Джеффри Нико собирает данные уже сейчас и ожидает, что результаты появятся в течение двух лет, а погрешность будет ограничена одной секундой – в то время, как в Японии проходит свой эксперимент, J-PARC.
NIST и J-PARC либо подтвердят результат UCNtau, навсегда определив время жизни нейтрона, либо эта сага продолжится.
«На улучшение экспериментов мотивирует эта напряжённость, создаваемая расхождением в двух независимых методах», — сказал Грин. Если бы была разработана только одна из технологий, бутылка или луч, физики бы могли действовать дальше с неправильной величиной для тау, встроенной в их вычисления. «Преимущество обладания двумя независимыми методами состоит в том, что они поддерживают честность. Когда я работал в Национальном бюро стандартов, там ходила поговорка: „Человек с одними часами всегда точно знает, который час; человек с двумя часами никогда в этом не уверен“.
Почему время жизни нейтрона до сих пор неизвестно и как это изменить
Загадка времени жизни нейтрона не решается десятилетиями. И это несмотря на то, что нейтрон — фундаментальная часть Вселенной. Рассказываем, почему так происходит и как ситуацию поможет исправить сверхтекучий гелий-4.
Читайте «Хайтек» в
Сколько времени живет нейтрон?
Время жизни нейтрона столь фундаментально и важно для понимания Вселенной, что можно логично предположить, что оно давно известно. Однако это не так. Нельзя сказать, что ученые не пытались это выяснить. Десятилетия и сотни измерений высокой точности не дали никакой конкретики. Два принципиально разных типа эксперимента показывали два результата — 879,4 +/- 0,6 секунды бутылочного метода для измерения времени жизни против 888 +/- 2,0 секунды лучевого.
Разница в 8-9 секунд в четыре раза превышает погрешность измерения в две секунды. Шанс, что они согласуются друг с другом, составляет около 60 на 1 млн, что практически невозможно. Эти секунды и составляют загадку времени жизни нейтрона.
Два метода — два результата
Итак, ученые использовали два метода определения жизни нейтрона. Как они работают?
В бутылочном методе нейтроны могут быть запечатаны в вакуумной бутылке из нейтронно-безопасного материала или удерживаться магнитными полями и гравитацией. У них чрезвычайно низкая кинетическая энергия и они движутся со скоростью несколько метров в секунду. Их называют ультрахолодными нейтронами (УХН). Физики отделяют нейтроны от ядер атомов, помещают их в бутылку, а затем подсчитывают, сколько их остается там через некоторое время. В результате ученые делают вывод, что нейтроны радиоактивно распадаются в среднем за 14 минут и 39 секунд.
В лучевых экспериментах используются машины, которые создают потоки нейтронов. Ученые измеряют количество нейтронов в определенном объеме пучка. Затем они направляют поток через магнитное поле в ловушку для частиц, образованную электрическим и магнитным полями. Нейтроны распадаются в ловушке, где физики измеряют количество протонов, оставшихся в итоге. В таких экспериментах они определяют среднее время жизни нейтрона на уровне 14 минут 48 секунд.
На данный момент существует семь результатов высокоточных бутылочных измерений с различными настройками и только два — лучевых. В обоих измерениях пучка использовался один и тот же метод — ловушка Пеннинга. Продукт распада, протоны, улавливаются ею и подсчитываются хорошо откалиброванным детектором.
Сама по себе ловушка Пеннинга представляет собой устройство, использующее однородное статическое магнитное поле и пространственно неоднородное электрическое поле для хранения заряженных частиц. Этот тип ловушек часто используется при точных измерениях свойств ионов и стабильных субатомных частиц, обладающих электрическим зарядом.
Нет сомнений в том, что для сравнения и проверки требуется больше экспериментов не только с лучом, но и вообще.
Есть ли другие способы?
В лучевом методе физики определяют, сколько нейтронов претерпело бета-распад. Напомним, бета-распад нейтрона — спонтанное превращение свободного нейтрона в протон с излучением β-частицы (электрона) и электронного антинейтрино.
Прецизионные измерения параметров бета-распада нейтрона (время жизни, угловые корреляции между импульсами частиц и спином нейтрона) имеют важное значение для определения свойств слабого взаимодействия. Это фундаментальное взаимодействие, ответственное в частности за процессы бета-распада атомных ядер и слабые распады элементарных частиц, а также нарушения законов сохранения пространственной и комбинированной чётности в них. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики и физики высоких энергий (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого из фундаментальных взаимодействий, гравитационного.
Обнаружить антинейтрино сложно. Ведущие в мире детекторы часто бывают гигантскими и нацелены на интенсивный источник потока, такой как Солнце или атомная станция. При этом за год случается лишь несколько событий. Так что антинейтрино тут не поможет.
После десятилетий усилий можно предположить, что все возможные пути лучевого метода должны быть тщательно исследованы.
Или есть еще варианты?
Время сверхтекучего гелия
Недавно в своей статье «Новый эксперимент по времени жизни нейтрона с распадом пучка холодных нейтронов в сверхтекучем гелии-4», опубликованной в Journal of Physics G: Nuclear and Particle Physics доктор Ваньчунь Вэй предложил новый подход. А именно использовать сверхтекучий сцинтиллятор гелия-4 для обнаружения продукта распада нейтрона — электрона. Автор исследования получил докторскую степень по физике в университете Брауна, США и закончил докторантуру в Национальной лаборатории Лос-Аламоса. Сейчас он работает инженером-исследователем в Радиационной лаборатории Келлогга Калифорнийского технологического института, США (Caltech).
Идея Вэя звучит необычно, и вот почему.
Большинство экспериментов по времени жизни нейтронов проводится в условиях высокого вакуума, чтобы исключить рассеяние нейтронов на частицах газа. Исключением является эксперимент J-PARC, где TPC требуется рабочий газ для усиления заряда бета-распада электрона до обнаруживаемого тока. Для выявления и устранения фоновых событий, вызванных рассеянными нейтронами, необходимо применять сложный анализ.
Новый метод сработает благодаря удивительным свойствам сверхтекучего гелия, квантовой жидкости. Она образует макроскопическую квантовую волновую функцию, и большая ее часть конденсируется в основное состояние. Элементарные возбуждения в квантовой жидкости были предсказаны Ландау в 1947 году и подтверждены неупругим рассеянием нейтронов.
Особенность сверхтекучего гелия-4 состоит в том, что он течет без трения по любой поверхности, протекает через очень мелкие поры, подчиняясь только своей собственной инерции.
Если пропустить пучок нейтронов через газ проблематично, зачем рассматривать жидкость?
Сверхтекучий гелий-4 как сцинтиллятор
Первый сцинтилляционный детектор представлял собой экран, покрытый слоем cульфидом цинка (ZnS). Вспышки, возникавшие при попадании в него заряженных частиц, фиксировались с помощью микроскопа. Именно с таким детектором Гейгер и Марсден в 1909 году провели опыт по рассеянию альфа-частиц атомами золота, приведший к открытию атомного ядра. Начиная с 1944 года световые вспышки от сцинтиллятора регистрируют фотоэлектронными умножителями (ФЭУ). Позже для этих целей стали использовать также фотодиоды.
Сцинтиллятор может быть органическим (кристаллы, пластики или жидкости) или неорганическим (кристаллы или стекла). Используются также газообразные сцинтилляторы.
Сверхтекучий гелий-4 хорошо изучен как кандидат на сцинтилляционный детектор нейтрино и темной материи. Когда заряженные частицы с высокой кинетической энергией сталкиваются со сверхтекучим гелием-4, атомы гелия ионизируются, возбуждаются и излучают сцинтилляционный свет. Процесс довольно сложный, но в целом количество испускаемых фотонов линейно пропорционально энергии заряженной частицы. Отдающийся электрон несет кинетическую энергию в диапазоне от нуля до 782 кэВ из высвобождаемой ядерной энергии в бета-распаде. Таким образом, количество распавшихся нейтронов можно подсчитать по частоте сцинтилляции.
А пока необходимо контролировать нейтронный поток импульсного пучка. Это можно сделать с помощью изотопа гелий-3, который захватывает нейтрон, превращается в протон и тритон и выделяет 764 кэВ энергии. Скорость таких событий захвата пропорциональна потоку пучка. Эти события представляют собой отдачу ядер. Напротив, распад — это отдача электронов. Следовательно, события захвата и затухания имеют различный набор сигнатур в сцинтилляционном сигнале. В мгновенном свечении событие захвата производит намного меньше фотонов на единицу вложенной энергии, чем событие распада. Событие захвата имеет короткий диапазон остановки в десятки микрон, тогда как событие распада имеет длинный след до 2 см. По аналогии один выглядит как сверхновая, а другой — как метеор. Кроме того, они имеют отчетливое поведение в скорости затухания послесвечения.
Предельная точность
Ключом к разгадке загадки времени жизни нейтрона является высокая точность. Новый эксперимент имеет смысл только в том случае, если точность может достигать 0,1% или менее 1 секунды.
Кроме того, важно подавление фоновых событий, особенно связанных с рассеянными нейтронами. Отсутствие рассеяния нейтронного пучка на сверхтекучем гелии — это уже хорошее начало. Все паразитные нейтроны, рассеянные из окон объема, будут захвачены поглотителями нейтронов, окружающими детектор, чтобы минимизировать активацию нейтронов.
Что в итоге?
Этот новый метод кардинально отличается от существующих пучковых экспериментов. Не требует сильного магнитного поля. В нем используется импульсный пучок с нейтронами гораздо меньшей энергии. А сцинтилляционный детектор сверхтекучего гелия предлагает четкий набор систематических эффектов. Конечно, предстоит преодолеть множество технических трудностей. В свое статье, рассказывающей о новом подходе, Вэй, экспериментатор в области изучения частиц в сверхтекучем гелии, заявил, что уверен — новая идея в конечном итоге поможет разрешить загадку времени жизни нейтрона и даст новые возможности для открытия новой физики.
Ученые измерили время жизни нейтрона с рекордной точностью
Американские физики, работающие в рамках эксперимента UCNtau, цель которого — с максимальной точностью измерить продолжительность жизни свободного нейтрона, объявили об очередном достижении. Согласно их данным, время жизни такого нейтрона составляет 877,75±0,28 секунды (14 минут 38 секунд). Точность этих измерений вдвое превосходит предыдущее достижение, что очень важно для понимания процессов формирования материи во Вселенной в первые мгновения после Большого взрыва. Статья об этом публикуется в журнале Physical Review Letters и доступна на сайте препринтов arXiv.org.
Нейтроны — тяжелые нейтральные частицы, наряду с протонами входящие в состав почти всех атомных ядер. Однако при этом нейтроны, в отличие от протонов, стабильными могут оставаться лишь в составе этих ядер, свободный нейтрон распадается на протон с испусканием электрона и электронного антинейтрино, так как по своей массе он немного превосходит протон. Изучение особенностей распада свободного нейтрона важно с точки зрения изучения свойств слабого взаимодействия, а также для поиска нарушений временной инвариантности, нейтрон-антинейтронных осцилляций и др. Теперь с точностью до десятых долей процента удалось выяснить, как долго нейтрон может существовать вне атомного ядра, прежде чем распадется на протон.
Эксперимент UCNtau проводится в Лос-Аламосской национальной лаборатории, при этом так называемые ультрахолодные нейтроны, охлаждаемые почти до температуры абсолютного нуля, содержатся в магнито-гравитационной ловушке — чашеобразной камере, заполненной тысячами постоянных магнитов, заставляющих нейтроны левитировать в условиях вакуума. Магнитное поле предотвращает деполяризацию нейтронов и в сочетании с гравитацией удерживает их внутри камеры, позволяя таким образом сохранять частицы на протяжении 11 дней. В ходе эксперимента нейтроны в ловушке находятся в течение 30-90 минут, затем подсчитывается количество оставшихся частиц. В ходе многократно повторенных циклов таких исследований, проведенных в 2017-2019 годы, экспериментаторы насчитали более 40 млн нейтронов, получив достаточно статистики для того, чтобы вычислить среднюю продолжительность жизни частиц с максимальной точностью.
Уточненные данные помогут наложить важные ограничения на модели образования в ранней Вселенной обычного вещества из кварк-глюонной плазмы, а также темной материи. Полученная информация, в частности, даст возможность проверить обоснованность так называемой матрицы Кабиббо — Кобаяси — Маскавы (матрицы смешивания кварков), которая описывает поведение кварков в соответствии со Стандартной моделью физики элементарных частиц.
Ученые пытаются понять, сколько живет нейтрон. Почему это так сложно и важно?
Девять секунд. Вечность в некоторых научных экспериментах; невообразимо малое количество времени в масштабах Вселенной. Именно это время сбивает с толку физиков-ядерщиков, изучающих время жизни нейтрона. Когда физики отделяют нейтроны от ядер атомов, помещают их в бутылку, а затем подсчитывают, сколько их остается там через некоторое время, они делают вывод, что нейтроны радиоактивно распадаются в среднем за 14 минут и 39 секунд. Но когда другие физики генерируют пучки нейтронов и подсчитывают возникающие протоны — частицы, на которые распадаются свободные нейтроны, — они определяют среднее время жизни нейтрона на уровне 14 минут 48 секунд. Расхождение между измерениями «бутылки» и «пучка» сохраняется с тех пор, как оба метода измерения долговечности нейтрона начали давать результаты в 1990-х годах. Сначала все измерения были настолько неточными, что это никого не волновало. Однако постепенно оба метода улучшились, но данные все еще расходятся. Рассказываем, как ученые ломают голову над тем, сколько на самом деле живет нейтрон, почему это время так важно, а найти ответ — до сих пор сложно.
Читайте «Хайтек» в
Загадка жизни нейтрона
Нейтрон является одним из строительных блоков материи. Само название подсказывает, что эта тяжелая частица — нейтральный аналог элементарной частицы, положительно заряженного протона. Как и многие другие субатомные частицы, нейтрон способен недолго находиться вне ядра. В течение примерно 15 минут он распадается на протон, электрон и крошечную частицу — антинейтрино.
Но сколько времени нужно нейтрону, чтобы «развалиться на части», остается загадкой. И вот почему.
Один метод измеряет измерения дает результат в 887,7 секунд, плюс-минус 2,2 секунды.
Результаты другого метода показывают 878,5 секунд, плюс-минус 0,8 секунды.
Вот они, те самые девять секунд, которые сбивают с толку ученых.
Сначала казалось, что это различие связано с чувствительностью измерения. Вполне допустимая теория. Однако ученые продолжают проводить серию все более точных экспериментов, а коварное расхождение все равно остается.
Такое постоянство в разнице данных явно указывает на какой-то неизвестный тип физики, уверены ученые. Это может свидетельствовать о неизвестном до сих пор процессе распада нейтрона. Или столь принципиальное расхождение может указывать на науку, выходящую за рамки стандартной модели, которую в настоящее время используют ученые для объяснения всей физики элементарных частиц. В конце-концов, есть ряд явлений, которые Стандартная модель не объясняет полностью.
По сути, она не является теорией всего, так как не описывает тёмную материю, тёмную энергию и не включает в себя гравитацию. Однако экспериментальное подтверждение существования промежуточных векторных бозонов в середине 80-х годов завершило построение Стандартной модели и её принятие как основной.
И, все же, необходимость расширения модели возникла в 2002 году после обнаружения нейтринных осцилляций. Кстати, именно подтверждение существования бозона Хиггса в 2012 году завершило экспериментальное обнаружение предсказываемых Стандартной моделью элементарных частиц.
Чтобы разгадать странное несоответствие во времени жизни нейтрона Управление науки Министерства энергетики США (DOE) работает с другими федеральными агентствами, национальными лабораториями и университетами.
Зачем изучать нейтрон?
Физики-ядерщики первыми начали изучать время жизни нейтрона из-за его важной роли в физике. «В природе есть некоторые фундаментальные величины, которые важны всегда», — объясняет Джефф Грин, профессор Университета Теннесси и физик из Национальной лаборатории Ок-Ридж при Министерстве энергетики. Он исследовал время жизни нейтрона большую часть своей жизни — около 40 лет. «Теории приходят и уходят, но время жизни нейтрона остается центральным параметром во множестве процессов».
На самом деле нейтрон — полезное руководство для понимания других частиц. Это — простейшая радиоактивная частица, следовательно она регулярно распадается на другие частицы. Таким образом, именно нейтрон дает хорошее представление ученым о слабом взаимодействии. О той самой силе, которая определяет, превращаются ли нейтроны в протоны или нет. Часто этот процесс высвобождает энергию и заставляет ядра распадаться. Процессы слабого взаимодействия также играет важную роль в ядерном синтезе, где два протона соединяются.
Время жизни нейтрона может также дать представление ученым о том, что произошло сразу после Большого взрыва. Заманчиво, не так ли?
Всего через несколько секунд после образования протонов и нейтронов, но до того, как они соединились в элементы, началось время. Вселенная быстро остывала. В какой-то момент она остыла настолько, что протоны и нейтроны почти мгновенно соединились с образованием гелия и водорода. Если бы нейтроны распались на протоны немного быстрее или медленнее, это оказало бы огромное влияние на весь процесс мироздания. Во Вселенной был бы совсем другой баланс элементов; вполне вероятно, что самой жизни не было бы вообще.
Ученые надеются получить однозначное число для определения времени жизни нейтрона, чтобы его можно было бы включить в различные уравнения, описывающие Вселенную. Неопределенность продолжительности жизни нейтрона допустима, но когда она менее секунды. Однако добиться уверенности во всего одном числе оказалось сложнее, чем физики предполагали.
Время жизни нейтрона — один из наименее известных фундаментальных параметров Стандартной модели.
Чжаоуэн Танг, физик из Лос-Аламосской национальной лаборатории Министерства энергетики США (LANL).
Да, конечно, различные индивидуальные эксперименты смогли достичь требуемого уровня точности. Но несоответствие между различными типами экспериментов не позволяет ученым определить конкретное число жизни нейтрона.
Как было обнаружено несоответствие в данных
Обнаружение того, что вообще существует какая-то разница в данных, возникло из-за желания физиков дать ответы на все вопросы о Вселенной. Использование двух или более методов для измерения одного и того же количества — лучший способ гарантировать точное измерение. Но ученые не могут установить таймеры на нейтроны, чтобы увидеть, как быстро они распадаются. Вместо этого они находят способы измерения нейтронов до и после их распада, чтобы рассчитать время их жизни.
И вот в чем основная проблема.
Когда физики вырывают нейтроны из атомных ядер, засовывают их в бутылку и считают, сколько нейтронов останется в ней через какое-то время, они предполагают, что нейтроны испытывают радиоактивный распад в среднем через 14 минут 39 секунд. Но когда другие физики создают лучи нейтронов и подсчитывают количество появляющихся протонов – частиц, являющихся продуктами распада свободных нейтронов – у них получается среднее время жизни порядка 14 минут 48 секунд.
Расхождения между измерениями в «бутылке» и «луче» существуют с тех пор, когда методы подсчёта времени жизни нейтрона начали давать свои результаты в 1990-х. Сначала все измерения были настолько неточными, что никто не волновался по этому поводу. Но постепенно оба метода улучшались, и всё равно расходились в оценках.
В лучевых экспериментах используются машины, которые создают потоки нейтронов. Ученые измеряют количество нейтронов в определенном объеме пучка. Затем они направляют поток через магнитное поле в ловушку для частиц, образованную электрическим и магнитным полями. Нейтроны распадаются в ловушке, где физики измеряют количество протонов, оставшихся в итоге.
Напротив, эксперименты с бутылкой улавливают ультрахолодные нейтроны в контейнере. Ультрахолодные нейтроны движутся намного медленнее, чем обычные — несколько метров в секунду по сравнению с 10 миллионами метров в секунду в результате реакций деления. Ученые измеряют, сколько нейтронов находится в контейнере вначале, а затем снова через определенный период времени. Изучив разницу, они могут вычислить, насколько быстро распадались нейтроны.
«В эксперименте с бутылкой измеряются „выжившие“, в лучевом эксперименте — „мертвые“», — объясняет Грин. «Эксперимент с бутылкой звучит легко, но на самом деле очень труден. С другой стороны, эксперимент с лучами звучит сложно и на деле его проводить также сложно».
Грин и его сотрудники провели новые измерения в 2013 году в NIST, которые помогли им еще точнее пересчитать эксперимент пучка, который они проводили в той же лаборатории в 2005 году. К этому моменту ученые завершили пять экспериментов с бутылкой и два — с пучками. Грин был убежден, что предыдущие эксперименты с пучком упускали из виду один из самых больших источников неопределенности. А именно — точный подсчет количества нейтронов в пучке. Физики улучшили свои измерения этой переменной, чтобы сделать их в пять раз точнее. Но восемь лет напряженной работы оставил их ни с чем. Точнее, с тем же самым разрывом в результатах.
Ученые, работающие над экспериментами с бутылками, столкнулись со своими трудностями. Одной из самых больших проблем в измерениях было предотвратить потерю нейтронов при взаимодействии с материалом, из которого сделан контейнер. Утечка изменяет количество нейтронов в конце распада и мешает расчетам.
Чтобы решить эту проблему, в последнем эксперименте с бутылкой в LANL, который проводился при поддержке Министерства науки США, были устранены физические стены. Вместо этого физики-ядерщики использовали магнитные поля и гравитацию, чтобы удерживать нейтроны на месте.
«Я был убежден, что если мы сделаем это, мы сможем заставить нейтрон жить дольше и согласиться со временем жизни нейтрона в результате экспериментов с пучком», — заявила Чен-Ю Лю, женщина-профессор Университета Индианы, руководившая экспериментом. «Это было мое личное предубеждение».
Но разница осталась. «Это было для меня большим шоком», — призналась она позже, рассказывая о результатах, опубликованных в 2018 году. Вероятность того, что разница возникнет из-за случайного совпадения, составляет менее одного из 10 000. Но это все же могло быть вызвано ошибкой в экспериментах.
Почему возникает ошибка?
Ученые сталкиваются с двумя типами неопределенностей или ошибок в экспериментах: статистическими или систематическими. Статистические ошибки возникают из-за недостатка данных. Это не позволяет делать твердые выводы. Получение больших данных уменьшает ошибки.
Систематические ошибки являются фундаментальной неопределенностью эксперимента. Кстати, зачастую они неочевидны. Два типа экспериментов по времени жизни нейтронов имеют совершенно разные потенциальные систематические ошибки. Если бы результаты совпадали, эксперименты стали бы отличной проверкой друг друга. Но этого не происходит.
«Самое сложное в измерении времени жизни нейтрона — это то, что оно одновременно слишком короткое и слишком длинное», — заявляет Хугерхайде. «Оказывается, 15 минут — действительно неудобное время для измерения в физике».
Поэтому ученые-ядерщики продолжают работу по сбору дополнительных данных и минимизации систематических ошибок.
«Одна из вещей, которые мне больше всего нравятся в моей области, — это исключительное внимание к необходимым деталям и то, насколько глубоко вы должны понимать каждый аспект вашего эксперимента, чтобы провести надежное измерение», — признается Лия Бруссард, физик-ядерщик из ORNL.
В NIST Хугерхайде, Грин и другие ученые проводят новый эксперимент с пучком, который исследует каждую возможную проблему настолько полно, насколько это вообще возможно. К сожалению, каждая настройка для каждого эксперимента влияет на последующие результаты, поэтому эта работа по системе «два шага вперед — один шаг назад».
Другая работа направлена на поиск новых способов измерения времени жизни нейтрона.
Исследователи из Университета Джона Хопкинса и Даремского университета Великобритании при поддержке Министерства энергетики США выяснили, как использовать данные НАСА для измерения времени жизни нейтрона. Основываясь на нейтронах, исходящих от Венеры и Меркурия, они рассчитали время жизни 780 секунд с погрешностью в 130 секунд. Но, поскольку сбор данных не предназначен для этой цели, неопределенность слишком высока, чтобы определить разницу в сроках службы частицы. Чжаоуэн Танг, физик из Лос-Аламосской национальной лаборатории, ставит эксперимент, который представляет собой нечто среднее между экспериментами с бутылкой и пучком. Вместо измерения протонов в конце он будет измерять электроны.
Совершенно новый подход. Но, похоже, все остальные варианты исчерпали себя?
Новые теории. От радикальных идей до научной фантастики
Конечно, всегда есть вероятность, что разница в измерениях указывает прямым текстом на пробел в наших знаниях об этой фундаментальной частице — нейтроне.
Танг признается, что не собирается бросать эксперименты. «Есть так много примеров людей, которые наблюдали нечто экстраординарное, а потом просто сослались на ошибку, не поработали достаточно усердно… А кто-то другой — поработал, и получил Нобелевскую премию».
Одна из теорий загадки жизни нейтрона заключается в том, что он разрушается так, как ученые просто не знают. Он может распадаться на частицы, отличные от знакомой нам уже комбинации протона, электрона и антинейтрино. Если это так, то это объясняет, почему нейтроны исчезают в экспериментах с бутылками, но соответствующее количество протонов не обнаруживается в экспериментах с пучками.
Другие идеи еще более радикальны.
Некоторые теоретики предполагают, что нейтроны распадаются на гамма-лучи и загадочную темную материю. Темная материя составляет 75% материи во Вселенной, но, насколько известно ученым, взаимодействует с обычной материей только через гравитацию. Чтобы проверить эту теорию, группа ученых из LANL провела версию эксперимента с бутылкой, в котором они измеряли нейтроны и гамма-лучи. Но предложенные гамма-лучи не материализовались, и у ученых не осталось доказательств появления темной материи от нейтронов.
Зеркальная материя — еще одна возможная концепция, которая звучит как научная фантастика. Теоретически «недостающие» нейтроны могут превратиться в зеркальные нейтроны, а именно в точные копии, существующие в противоположной Вселенной. Развиваясь иначе, чем наша Вселенная, эта зеркальная Вселенная была бы намного холоднее и в ней преобладал бы гелий. В то время как некоторые ученые-ядерщики, такие как Грин, думают, что это «неправдоподобно», другие заинтересованы в испытании этой теории, просто «на всякий случай».
«Это относительно неизведанная территория. Для меня это звучит очень привлекательно, потому что у меня „на заднем дворе“ есть отличный источник нейтронов», — заявила Лия Бруссар, имея в виду источник нейтронов расщепления и реактор изотопов с высоким потоком, оба объекта принадлежат Управления науки Министерства энергетики в ORNL.
Чтобы проверить эту теорию, Бруссард анализирует данные процесса, который имитирует эксперимент по времени жизни пучка. Однако он настроен так, чтобы уловить признак потенциального невидимого партнера нейтрона. Запустив пучок нейтронов через определенное магнитное поле и затем остановив его материалом, который тормозит нормальные нейтроны, она и ее коллеги, возможно, смогут определить, существуют ли зеркальные нейтроны.
Какие бы результаты ни принес этот эксперимент, работа по выяснению времени жизни нейтрона будет продолжена. «Очень показательно, что существует так много попыток точно измерить время жизни нейтрона. Это говорит о крайне эмоциональной реакции ученых на несоответствие в этой области — „Я хочу, наконец-то, выяснить это!“» — заключает Бруссар. «Каждый ученый мотивирован желанием учиться, желанием понять».