сообщение радиация в нашей жизни

Источники радиации вокруг нас: От сигарет и бананов до сотовых телефонов

сообщение радиация в нашей жизни

Но, если задуматься, в повседневной жизни мы постоянно с сталкиваемся с радиацией в малых дозах. И это, в общем-то, не вызывает ни у кого беспокойства и страха.

Люди боятся того, что они подвергаются воздействию излучения все время, то ли от далекой ядерной аварии или мобильного устройства. Как правило, они ошибаются.

Редакция Gizmodo предлагает взглянуть на самые главные источники радиации, которые окружают нас едва ли не постоянно.

Что мы подразумеваем под «радиацией»?

Радиация — это просто красивое слово для обозначения энергии, которая распространяется от источника в виде волн.

Она включает в себя электромагнитное излучение, например радиоволны, микроволны, видимый свет, и рентгеновские лучи, а также некоторые элементы с высокой энергией излучения, которые со временем естественным образом теряют активность, — Альфа-частицы, Бета-частицы, и свободные нейтроны.

Когда мы пытаемся определить, является ли источник излучения вредным для человека, то мы рассматриваем два фактора: сила электромагнитного поля вокруг объекта (т. е., сколько радиации), и «энергетический уровень» излучения волн, которые связаны с их частотой (чем выше частота — тем большая энергия).

Источники и материалы, которые могут привести к повреждению биологических тканей или ДНК, называются непосредственно ионизирующим излучением. Они включает в себя высокоэнергетические электромагнитные волны — гамма-лучи, X-лучи, и в верхней части УФ-спектра, а также энергетические частицы, образующиеся при радиоактивном распаде.

Для измерения эффективной и эквивалентной доз ионизирующего излучения была введена единица Зиверт (зв), которая определяет относительную биологическую эффективность различных источников ионизирующего излучения.

Чаще используется кратная единица — Микрозиверт (мкзв), равная 1/1000000 Зиверта.

Имея это в виду, давайте взглянем на некоторые из радиационных источников, с которыми мы можем столкнуться в нашей повседневной жизни.

Вот наиболее радиоактивные объекты в окружающем нас мире, а также правдивая информация о том, какие из них вызывают проблемы со здоровьем.

Источники радиации в повседневной жизни

Бананы

Некоторые натуральные продукты содержат природный радиоактивный изотоп углерод-14, а также калий-40. К ним можно отнести картофель, бобы, семечки подсолнечника, орехи, а еще — бананы.

Кстати, калий-40, если верить ученым, имеет самый большой период полураспада — более миллиарда лет.

Еще один интересный момент: в «теле» среднего по величине банана каждую секунду происходит порядка 15 актов распада калия-40. В связи с этим в научном мире даже придумали шуточную величину под названием «банановый эквивалент». Так стали называть дозу облучения, сравнимую со съедением одного банана.

Стоит отметить, что никакой опасности для здоровья человека бананы, несмотря на содержание калия-40, не несут. Кстати, ежегодно с пищей и водой человек получает дозу радиации в размере порядка 400 мкЗв.

Сканеры в аэропортах

За последние несколько лет многие крупные аэропорты обзавелись сканерами для досмотра. От обычных металлодетекторных рамок они отличаются тем, что «создают» на экране полное изображение человека, используя технологию обратно-рассеянного излучения Backscatter X-ray. При этом лучи не проходят насквозь – они отражаются. В результате пассажир, проходящий досмотр, получает малую дозу рентгеновского излучения.

В ходе сканирования разные по плотности предметы окрашиваются на экране в разные цвета. Например, металлические вещи отобразятся черным пятном.

Сканеры весьма маломощны — пассажр получает дозу рентгеновского излучения от 0,015 до 0,88 мкзв, что совершенно безопасно для него. Для сранения, человеку понадобится пройти 1-2 тысячи раз через сканер аэропорта, чтобы получить дозу радиации сравнимую с одним рентгеновским исследованием грудной клетки.

Рентгеновский снимок

Еще один источник так называемой «бытовой радиации» — рентгеновское обследование. Например, при одном снимке зуба пациент получает дозу радиации от 1 до 5 мкзв. А при рентгеновском снимке грудной клетки — от 30 до 300 мкзв.

Напомним, что опасной дозой считается разовая доза 1 зв, а смертельной — 3-10 зиверт.

Электро-лучевые трубки (дисплеи старых телевизоров и компьютеров)

Дисплеи излучают электромагнитые излучения, но только малая доля этого излучения (в рентгеновской части) несет потенциальную опасность, и только если вы используете ЭЛТ-дисплей (ЖК-и плазменные экраны не способны испускать рентгеновское излучение).

Среднегодовая доза от просмотра телевизоров с ЭЛТ-дисплеем составляет 10 мкзв в год, а ЭЛТ-дисплей старого компьютера даст дозу 1 мкзв в год.

В воде также содержится радиоактивные частицы, но в ничтожно малых количествах. Основным источником радиации в воде явлется тритий — естественный радиоактивный изотоп водорода, получаемый при соударениях космических лучей с молекулами воды в воздухе.

В среднем, мы поглощаем около 50 мкзв радиации от трития в нашей питьевой воде каждый год.

Бетон

Бетон является вторым наиболее используемым материалом на Земле после воды, и в нем также содержатся источники следов радиоактивных элементов.

В среднем, люди получают 30 мкзв радиации от бетона тротуаров, дорог и зданий в год.

Фоновое излучение Вселенной

Реликтовое космическое излучение есть везде, это следы Большого Взрыва.

На Земле мы защищены от его воздействия благодаря атмосфере и ее озоновому слою. Тем не менее, некоторые космические излучения проходят через этот естественный фильтр на землю.

На уровне моря годовая доза радиации от реликтового излучения Вселенной составляет примерно 3 мкзв, — что эквивалентно примерно 10 флюорографий.

Ваше Собственное Тело

Да, ваш организм также вырабатывает биологически эффективную радиацию! В основном, мы говорим о распаде радиоактивных атомов калия (будь прокляты эти бананы!).

В теле среднего человека содержит около 30 мг радиоактивного калия-40, который производит радиоактивные бета-частицы, когда распадается.

В результате, мы получаем от своего тела дозу радиации около 3,9 мкзв каждый год. Хорошая работа! 🙂

Собственное излучение Земли

Земля сама по себе является источником радиации, благодаря медленному распаду изотопов урана и тория в земной коре и мантии.

На самом деле, из-за естественной радиактивности наша планета производит примерно 50% тепла и это дает свои плоды!

И эта земная радиация дает нам дозу примерно 4,8 мкзв в год.

Реакторы ядерных электростанций

Не считая катастраофических аварий наподобие Чернобыльской, а также других нештатных ситуаций радиационная безопасноть ядерные реакторы достаточно высока.

К примеру, годовой предел дозы для облучения радиацией работника ядерной электростанции в США составляет 500 мкзв.

Космическое Пространство

Космическое пространство, как мы знаем, не очень благоприятная среда для деятельности человека.

Вне защиты озонового слоя Земли, уровень ультрафиолетового и космического излучения в сотни раз выше, чем на Земле.

Шестимесячное пребывание на Международной космической станции (МКС) эквивалентно примерно 800 мкзв дополнительного облучения, в то время как в шестимесячное путешествие к Марсу могло бы в теории дать дозу до 2500 мкзв (на основе измерений, сделанных аппаратом NASA Curiosity во время его путешествия длиной 350 миллионов миль).

Радиационное облучение является одной из самых больших медицинских проблем для любых будущих длительных космических миссий.

Сигареты

Всем изветно, что курение вызывает рак. Отчасти, это потому, что сигареты буквально радиоактивные!

Исследователи подсчитали, что осаждение радиоактивного свинца в легких курильщиков приводит к годовой дозе в 1600 мкзв. Это эквивалентно дозе, получаемой космонавтом, проведших год в космическом пространстве.

На практике это число может варьироваться в зависимости от того, являетесь ли вы заядлым курильщиком или любителем.

А как насчет сотовых телефонов, маршрутизаторов WiFi и Bluetooth?

Оказывается, эти технологии хоть и имеют радиацию, но излучают очень мало энергии, к тому же, неионизирующих формы, что не ведет к повреждению тканей человека.

Наши телекоммуникационных системы используют низкие формы энергии излучения именно потому, что эти виды излучения были признаны безвредными для живых организмов.

Радиволны, которые используют телекоммуникационные системы, являются электромагнитными полями, которые в отличие от ионизирующего излучения, такого как рентгеновские лучи или гамма-лучи, не могут ни разрывать химические связи, ни вызывают ионизацию в организме человека.

Большое количество исследований проведенных за последние два десятилетия, чтобы оценить, насколько мобильные телефоны представляют собой потенциальную опасность для здоровья человека, не установили никаких негативных последствий для здоровья.

Мобильные телефоны работают на частотах от 450 МГц и 2,7 ГГц. Главная опасность в этом частотном диапазоне, по данным ВОЗ, является тепло. Но, максимальная выходная мощность наших сотовых телефонов обычно находится в диапазоне от 0,1 до 2 Вт. Этой мощности явно недостаточно, чтобы вызвать даже ожог первой степени от телефона.

Нет также никакой опасности от беспроводных сетей (WiFi и др.), которые работаеют в радиочастотных диапазонах: 2.4 ГГц, 3.6 ГГц, 4.9 ГГц, 5 ГГц и 5,9 ГГц.

За последние 15 лет исследования, проведенные с целью изучения потенциальной связи между радиочастотными-передатчиками и заболеваемостью раком, не предоставили доказательства того, что воздействие радиоизлучения от передатчиков повышает риск развития рака.

Более того, долгосрочные исследования на животных не выявили повышенный риск развития рака от воздействия радиочастотных полей, даже на уровнях, которые значительно выше, чем базовых сотовых станций и беспроводных сетей.

Источник

Сообщение радиация в нашей жизни

сообщение радиация в нашей жизни

сообщение радиация в нашей жизни

сообщение радиация в нашей жизни

сообщение радиация в нашей жизни

сообщение радиация в нашей жизни

РОЛЬ РАДИАЦИИ В ЖИЗНИ ЧЕЛОВЕКА

сообщение радиация в нашей жизни

Автор работы награжден дипломом победителя III степени

Радиация. Это слово воспринимается многими людьми крайне неприязненно. Лучевая болезнь, рак щитовидной железы, лейкоз – всё это очень страшно. Большие дозы радиации самым негативным образом влияют на человеческий организм. Но не всё так однозначно. Радиация непрерывно, в течение всей жизни воздействует на человека, значит, есть и безопасные дозы радиации?! А каков он – допустимый уровень радиации? Как сохранить жизнь человека с точки зрения данной проблемы?

Актуальность темы «Роль радиации в жизни человека» растёт в связи с увеличением использования в хозяйственной деятельности человека источников радиоактивных излучений. С другой стороны, интерес вызывает вопрос о происхождении радиационного фона и его составляющих.

Для себя мы обозначили проблему так: роль радиации в жизни человека в большей мере положительная или отрицательная? Цель нашей работы была такова: выяснить роль радиоактивных излучений в жизни человека. Перед нами были поставлены такие задачи:

найти область применения радиоактивных излучений;

установить, в чем опасность радиации для человека;

познакомиться с принципом работы дозиметра;

исследовать уровень радиации на территории нашей школы.

На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре.

Химический элемент уран, открытый в 1840 г. химиком Пелиго Эжен Мелькиором, проявил свою способность к самопроизвольному излучению благодаря французскому ученому Анри Беккерелю. Эта способность позже была обнаружена и у других химических элементов и получила название радиоактивности. Такого рода исследованиями занимались Э.Резерфорд, П.Кюри, М.Склодовская- Кюри и др. Не сразу они поняли об опасности, исходящей от этих излучений. Многие из них впоследствии умерли от лучевой болезни.

Еще до открытия Беккереля профессор физики В.Рентген открыл Х-лучи, которые проникали через книгу, стекло и даже руку, предоставляя возможность видеть кости скелета на специальном экране. А если закрепить это изображение на фотопластинке? Так был получен первый «рентгеновский снимок».

Н.Тесла тоже экспериментировал с этими лучами, и именно он предложил использовать их для обнаружения опухолей человеческих органов. Ему удалось получить снимки животных, птиц и самого себя. Сначала он был уверен, что эти лучи безвредны и иногда даже засыпал под ними. Но после одного из опытов ученый получил сильный ожог и догадался об опасности этих лучей. Сейчас всем хорошо известно: рентгеновское излучение является ионизирующим.

Радиация (хотя специалисты говорят – ионизирующее излучение) – это поток частиц, способных ионизировать среду, то есть превращать нейтральные атомы и молекулы среды в частицы, имеющие положительный или отрицательный заряд (ионы).

2.2. Применение радиоактивных излучений (положительная роль радиации).

Применение радиоактивных излучений:

Для исследования обмена веществ в организме человека

По химическим свойствам радиоактивные атомы не отличаются от обычных атомов. Их можно обнаружить по их излучению. Это своего рода метка, с помощью которой можно проследить за поведением данного химического элемента.

Таким способом было доказано, что за сравнительно небольшое время организм подвергается почти полному обновлению. Лишь железо, которое входит в состав гемоглобина, поступает в кровь в том случае, когда его запасы в организме иссякают, и оно начинает усваиваться организмом.

А вот еще пример. Известная фирма «Лего» добавляет в свою продукцию сульфат бария для того, чтобы обнаружить игрушку, попавшую в пищевод ребенка, ведь сульфат бария хорошо заметен в рентгеновских лучах.

(Сульфат барияBaSO4 – это средство для проведения рентгенологических исследований пищевода, желудка и кишечника человека. Оно не всасывается из желудочно-кишечного тракта и не попадает в системный кровоток. В промышленных масштабах сульфат бария получают из тяжелого шпата, который является природным минералом.)

Для лечения онкологических заболеваний, рентгенодиагностика, рентгенотерапия

Назначается курс облучения (лучевая терапия) для подавления раковых клеток на разных стадиях течения болезни (кобальтовая пушка), а также для диагностики, обследования человека.

В промышленности: контроль износа поршневых колец в двигателях внутреннего сгорания; слежение за процессами в доменных печах; исследование структуры металлических отливок с целью обнаружения дефектов.

В сельском хозяйстве: увеличение урожайности при облучении семян растений; осуществлениеконтроля за усвоением растениями удобрений во время роста и созревания.

В археологии: определение возраста органических соединений, организмов методом радиоактивного углерода.

Периодически население нашей страны проходит медицинское обследование. При флюорографическом обследовании человека используют рентгеновские лучи, которые относятся к проникающей радиации. При воздействии радиации на организм человека процесс ионизации идет непосредственно в клетках тканей и органов. И если источник излучения обладает большой мощностью, это может привести к неприятным последствиям. Под действием ионизирующего излучения в живой клетке появляются чужеродные химически агрессивные соединения. Если таких соединений накапливается слишком много, то клетка гибнет. Опасность излучений осложняется тем, что они не вызывают никаких болевых ощущений даже при смертельных дозах.

Необходимо отметить, что все медицинские мероприятия, связанные с облучением человека, назначаются тогда, когда ожидаемый полезный эффект намного превышает возможный вред от воздействия радиации.

Компьютерная томография дает больше радиации, чем рентгеновский снимок, но позволяет выявить злокачественные опухоли и другие заболевания на ранних стадиях. Лечение назначается до того, как болезнь разовьется, и шансы на благополучный исход значительно возрастают.

Современные цифровые аппараты для флюорографического обследования позволяют снизить дозу в 10 раз по сравнению с устаревшей аппаратурой. Именно об этом нам рассказал врач-рентгенолог клиники «МEDСИ» Шустова В.Г. и рентген-лаборант Харитонова М.И.

Радиоактивные изотопы, образующиеся в процессе деятельности предприятий атомной энергетики (без взрывов и опасных выбросов), называют искусственными или техногенными. В то же время, в каждой вещи, в каждом предмете, которые нас окружают, в том числе в питьевой воде и самом воздухе, содержатся природные или естественные радиоактивные изотопы.

(Изотопы – это разновидности данного химического элемента, обладающие одинаковыми химическими свойствами, но различающиеся по массе атомных ядер и своей радиоактивностью).

Именно природные изотопы вносят наибольший вклад в годовую дозу облучения человека. Опасными они становятся при сильной концентрации в различных технологических процессах (добыча и транспортировка нефти и природного газа, сжигание угля и мазута на тепловых электростанциях).

В грунте, строительных материалах всегда содержится некоторое количество радия Ra-226 ( радиоактивный элемент), из которого образуется радиоактивный благородный газ радон (Rn-222). Газ радон не удерживается в строительных конструкциях, а свободно выходит в воздух. Он может накапливаться в закрытых, мало проветриваемых помещениях, а с воздухом попадает в легкие человека и разносится кровью по органам и тканям, что приводит к внутреннему облучению организма.

Наибольшее количество радона может скапливаться в душе, водяной пар способствует притоку радона.

Вот почему в строительстве надо использовать чистые материалы, прошедшие радиационно-гигиенический контроль. А в помещениях необходимо устраивать влажную уборку (ведь на частичках пыли могут оказаться продукты распада радона), регулярно их проветривать, над плитой обязательно должна быть вытяжка, а питьевую воду лучше кипятить. Все это позволит значительно снизить радоновую «дозу».

Так где же граница между безопасной и опасной дозой радиации? Воздействие излучений на живые организмы характеризуется дозой излучения. Поглощенной дозой излучения называют отношение поглощенной энергии ионизирующего излучения к массе облучаемого вещества. Она измеряется в грэях (Гр). Естественный фон радиации за год на человека составляет 0,002 Гр. По нормам, установленным Международной комиссией по радиационной защите, для работающих с излучением лиц предельно допустимая за год поглощенная доза составляет 0,05 Гр.

1 Зв – эквивалентная доза, при которой доза поглощенного излучения равна 1 Гр.

Максимальное значение эквивалентной дозы, при получении которого происходит поражение организма, выражающееся в нарушении деления клеток, составляет 0,5 Зв.

Среднее значение эквивалентной дозы поглощенного излучения за счет естественного радиационного фона составляет 2 мЗв в год на человека.

Для обычного человека, не работающего с источниками радиации, допустимая годовая доза от техногенной радиации (исключая медицинское облучение) составляет 1 мЗв, а для сотрудников, работающих с источниками радиации – 20 мЗв.

Согласно Постановлению Главного государственного санитарного врача РФ Г. Г. Онищенко № 11 от 21.04. 2006г «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п.3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации».

Во время посещения клиники «МEDСИ» врач Шустова В.Г. сказала, что врачи и сотрудники, обслуживающие рентгеновский аппарат и компьютерный томограф, пользуются индивидуальными дозиметрами. (Правда, сфотографировать томограф и дозиметр они нам не разрешили.)

Практическая часть нашей работы состояла в исследовании уровня радиационного фона на территории нашей школы. Разобравшись в принципе действия дозиметра «Снегирь», мы произвели замеры на первом этаже школы, где находится кабинет физики, в столовой, где учащиеся вкусно кушают, на втором этаже, где находится учительская, а также на третьем этаже нашей школы, в кабинете информатики, истории, в большом спортивном зале. Результаты таковы:

1 этаж – 0,11 мЗв; 2 этаж – 0,1 мЗв; столовая – 0,09 мЗв;

3 этаж – 0,1 мЗв; кабинет истории – 0,13 мЗв;

кабинет информатики – 0,14 мЗв; спортивный зал – 0,12 мЗв;

на футбольной площадке – 0,07 мЗв.

Эти исследования показали, что на территории нашей школы не превышен уровень радиационного фона.

В заключении хотелось бы сказать, что может скоро наступит будущее, когда роль радиации (и атомной энергетики в целом) будет только положительная, и фантастические идеи станут реальностью.

«В недалеком будущем на автомобилях могут быть установлены портативные атомные двигатели, а заправку их необходимым ядерным горючим произведут один раз – при изготовлении машин на заводе… Самолеты будут совершать рейсы в стратосфере, где воздух сильно разрежен. Атомный двигатель даст самолету колоссальные возможности, которых он сейчас не имеет».

И. К. Цацулин «Атомная крепость».

    Список использованных источников и литературы

Акатов А.А., Коряковский Ю.С. Радиация: от космических лучей до компьютерного томографа – М. Информационный центр по атомной энергии, 2014

Благодаров В.С., Равуцкая Ж.И. Физика 7-11 классы. Организация внеклассной работы – Волгоград. : Учитель, 2011

Воронцов-Вельяминов Б.А.Очерки о Вселенной – М.: Наука, 1980

Перевод с английского Банникова Ю.А.: Радиация. Дозы, эффекты, риск – М.: Мир, 1990

Источник

Радиация в повседневной жизни: стоит ли опасаться?

сообщение радиация в нашей жизни

Радиация не имеет ни запаха, ни вкуса, ее не увидеть и не услышать, и высокая ее доза смертельно опасна. В повседневности мы окружены предметами, которые излучают радиацию, но в малых дозах, поэтому не стоит пугаться.

Несмотря на распространенное мнение, мобильники и WI-FI-маршрутизаторы не создают угрозы облучения, в отличие от телевизоров с электронно-лучевой трубкой и таких же компьютерных мониторов (ныне перешедших в разряд антикварных диковинок). Но и от такого устройства за день можно получить лишь до 10 мкЗв, в то время как без угрозы для здоровья можно накопить в течение жизни до 700 тыс. мкЗв. Какие же еще устройства пугают обывателя мифами о опасном излучении?

1. Сканеры в аэропортах.

В современных аэропортах используется система обратно-рассеянного излучения Backscatter X-ray для более эффективного поиска запрещенных веществ. В этом случае лучи не проходят насквозь, а отражаются. Поэтому пассажир, проходящий досмотр, получает малую дозу рентгеновского излучения, которое безопасно для здоровья.

2. Рентгеновский снимок.

Обследование, к примеру, зуба выдает от 1 до 5 мкЗв (микрозиверт — единица измерения эффективной дозы ионизирующего излучения). А снимок живота — 20 мкЗв. Смертельной же считается доза радиации, равная примерно 1 зиверту.

3. Сигареты.

В 2008 году стало известно, что в них содержится токсический агент Полоний-210. По мнению ученых, человек, который курит не больше одной пачки в день, получает 1/5 часть допустимой суточной дозы этого изотопа.

4. Бананы и другая еда.

Некоторые натуральные продукты содержат природный радиоактивный изотоп Углерод-14, а также Калий-40. В их числе картофель, бобы, семечки подсолнечника, орехи, а еще — бананы. Ежегодно с пищей и водой человек получает дозу радиации в размере порядка 400 мкЗв.

5. Авиапутешествия и космическая радиация.

Излучение из космоса частично задерживается атмосферой Земли. Чем дальше в небо, тем выше уровень радиации, поэтому при путешествии на самолете человек получает немного повышенную дозу облучения. В среднем она составляет 5 мкЗв за один час полета, пишет INFOKAVA.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *