сочинение физика в моей жизни
Сочинение на тему: Физика в моей жизни
У вас нет времени на сочинение или вам не удаётся написать сочинение? Напишите мне в whatsapp — согласуем сроки и я вам помогу!
В статье «Как научиться правильно писать сочинения», я написала о правилах и советах написания лучших сочинений, прочитайте пожалуйста.
Собрала для вас похожие темы сочинений, посмотрите, почитайте:
Сочинение на тему: Физика в моей жизни
Наука играет важную роль в жизни человека. Трудно представить, но около 100 лет назад в домах не было ни электричества, ни проточной воды, ни телефона, ни даже радио. Но кто сделал все эти изобретения? Люди науки, ученые, изобретатели. Их работа основывалась на знаниях, полученных в результате наблюдений, описания и экспериментов. Трудно представить себе современные достижения науки, эта сфера жизни устремилась далеко вперед. Развитие медицины, освоение космоса, технологический прогресс — это лишь малая часть современных научных достижений, основанных на знаниях, накопленных веками.
Есть много наук. Есть науки, которые изучают людей, эта психология, анатомия, физиология. Другие изучают мир вокруг нас, его феномены: биологию, физику, химию. Большое значение имеет также наука о прорыве — история. Это основа жизни человеческого общества. В наше время наука проникла почти во все сферы человеческой жизни. Почти все профессии связаны с этим. Примером может служить работа врача. Если врач не знает, как работает человеческое тело, он не сможет помочь пациенту. Наука также играет важную роль в работе юриста, преподавателя, инженера, архитектора, экономиста. Мы постоянно используем достижения науки в нашей жизни: Телевидение, интернет, самолет.
Развитие страны определяется развитием науки, научно-техническим прогрессом. Все больше и больше людей занимаются интеллектуальной работой. Благодаря развитой области науки, процветание страны растет. Именно поэтому страны, уделяющие особое внимание исследованиям, занимают лидирующие позиции на мировой арене.
Особое место занимает научный прогресс в области медицины: Для многих болезней человечество смогло найти «противоядие». Проблема пересадки органов решена: Новые органы выращиваются в лаборатории, чтобы заменить те, которые не функционируют в человеческом организме.
Благодаря достижениям науки человечество присвоило почти все пространство земного шара. Мы живем в разных широтах, у нас разные климатические условия, рельеф отличается разнообразием рельефа, природных ресурсов. Человечество научилось справляться с неблагоприятными погодными условиями, прогнозировать стихийные бедствия: землетрясения, наводнения, ураганы. Это позволяет человеку заранее принять спасательные меры.
Мы знакомимся с достижениями науки с раннего детства, в школьные годы современная наука формирует мировоззрение человека. Эта область тесно связана с технологическим прогрессом, который определяет развитие общества.
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
«Физика вокруг нас»
Сочинение «Физика вокруг нас».
Казалось бы, насколько сложно устроен мир вокруг нас. Но ведь, если вникнуть в суть всего, что нас окружает, то сразу станет ясно – всё до невозможности просто! Во всяком случае, я так думаю. А причина кроется в законах физики. Наверняка, каждый с ней знаком из школьной программы.
Всё, что нас окружает подчинено этим законом.
К примеру снег, почему же когда он тает, то покрывается корочкой, и к тому же, становится рыхловатым? Ответ прост, нужно только вспомнить уроки физики. Когда днём термометры показывают ноль градусов, снежок начинает понемногу таять и соответственно преобразовывается в обычную воду. В слою снега появляются небольшие канальчики. А когда ночь сменяет день, температура снижается, снег замерзает и превращается в лёд. Элементарно!
Давайте посмотрим на машины. Наверное, все замечали, что на скользкой поверхности они ездят гораздо медленнее, а перед светофором начинают торможение ранее, чем обычно. Конечно, И тут без физики тоже не обошлось. Так как земля покрыта льдом, сила, притягивающая машины к себе в разы меньше. Следовательно, тормозной путь у автомобиля увеличивается.
А когда вы решили попить чай, но вам необходимо его остудить, каковы будут ваши действия? В этом вопросе тоже поможет физика? Достаточно переливать напиток из одной кружки в другую. При этом чай контактирует с воздухом, отдавая при этом свое тепло и соответственно понемногу остывает.
В быту мы тоже часто сталкиваемся с физикой, порой сами того не осознавая. К примеру, когда со стола что-либо падает, почему же это что-то не остается висеть в воздухе? Потому что здесь работает закон притяжения, когда звонят в дверь – мы слышим этот звук, кипение воды в чайнике… Всё это физика!
Окружающая нас действительность связана с этой наукой. Даже наше дыхание и употребления пищи, непосредственно, связаны с физикой. А самое заманчивое, так это то, что практически в любой сложившейся ситуации, зная определенные правила, мы сможем предугадать, что может произойти дальше.
Я считаю, что физика иметь большое значение для нас. И, если мы хотим понимать, Как происходит то или иное событие, обязательно нужно изучать физическую науку.
Так же вы можете прочитать сочинения на темы
Сочинение на тему физика в моей жизни
7 вариантов
Я часто замечал, что мир вокруг нас устроен очень сложно, но, при более внимательном рассмотрении оказывается, что все достаточно просто. По крайней мере, как мне кажется. И виной тому обыкновенные физические законы, которые я изучал в школе. Да этим законам подчиняются все вокруг. Вот, например, взять снег, начинает немного теплеть и он покрывается коркой и рыхлеет. Вроде непонятно и странно. А достаточно немного подумать и все становится ясным. Днем температура повышается выше нуля градусов, становится тепло, снег под солнечными лучами начинает таять и превращаться в воду, проделывая канальчики в снежном слое. А ночью верхний подтаявший слой замерзает, превращаясь в лед. Вот и вся премудрость.
А посмотреть на автомобили, видно, что на льду они едут гораздо медленней и начинают тормозить перед светофором намного раньше. И тут видно, что действует физика. Сила, которая прижимает автомобили к земле, намного меньше из-за льда, поэтому, чтобы затормозить, нужно большее расстояние.
А дома, когда мама готовит горячий чай, а я опаздываю, то, чтобы он быстрее остыл, я быстро размешиваю его ложкой или переливаю из одной чашки в другую. Физика тут действует так: когда я переливаю чай, то он больше соприкасается с воздухом, отдает ему свое тепло, а значит, охлаждается. Так же происходит, когда я наливаю чай в блюдце. Холодный воздух встречается с горячим чаем и охлаждает его, чтобы их температура выровнялась.
Физические явления можно встретить и дома. Падает книга со стола (земля притягивает ее к себе), звонит телефон, и мы его слышим, вода кипит в чайнике, зажигается электрическая лампочка, включается и работает компьютер. Везде работают законы физики.
Я часто замечал, что мир вокруг нас устроен очень сложно, но, при более внимательном рассмотрении оказывается, что все достаточно просто. По крайней мере, как мне кажется. И виной тому обыкновенные физические законы, которые я изучал в школе. Да этим законам подчиняются все вокруг. Вот, например, взять снег, начинает немного теплеть и он покрывается коркой и рыхлеет. Вроде непонятно и странно. А достаточно немного подумать и все становится ясным. Днем температура повышается выше нуля градусов, становится тепло, снег под солнечными лучами начинает таять и превращаться в воду, проделывая канальчики в снежном слое. А ночью верхний подтаявший слой замерзает, превращаясь в лед. Вот и вся премудрость.
А посмотреть на автомобили, видно, что на льду они едут гораздо медленней и начинают тормозить перед светофором намного раньше. И тут видно, что действует физика. Сила, которая прижимает автомобили к земле, намного меньше из-за льда, поэтому, чтобы затормозить, нужно большее расстояние.
А дома, когда мама готовит горячий чай, а я опаздываю, то, чтобы он быстрее остыл, я быстро размешиваю его ложкой или переливаю из одной чашки в другую. Физика тут действует так: когда я переливаю чай, то он больше соприкасается с воздухом, отдает ему свое тепло, а значит, охлаждается. Так же происходит, когда я наливаю чай в блюдце. Холодный воздух встречается с горячим чаем и охлаждает его, чтобы их температура выровнялась.
Физические явления можно встретить и дома. Падает книга со стола (земля притягивает ее к себе), звонит телефон, и мы его слышим, вода кипит в чайнике, зажигается электрическая лампочка, включается и работает компьютер. Везде работают законы физики.
Если хорошо присмотреться, можно заметить влияние физики на все что угодно, что происходит вокруг нас. Идет дождь, влага собирается в облака. Течет вода из-под крана, работает вентилятор, да просто всего не перечесть, все происходит по законам физики, даже то, что мы дышим и едим. Что самое интересное, мы любые действия с предметами можем посчитать по определенным правилам и предсказать, что с ними произойдет дальше.
Поэтому, физическая наука очень важная, ее нужно изучать, чтобы можно было при помощи формул посчитать, что может произойти с любым нужным нам предметом.
Я часто замечал, что мир вокруг нас устроен очень сложно, но, при более внимательном рассмотрении оказывается, что все достаточно просто. По крайней мере, как мне кажется. И виной тому обыкновенные физические законы, которые я изучал в школе. Да этим законам подчиняются все вокруг. Вот, например, взять снег, начинает немного теплеть и он покрывается коркой и рыхлеет. Вроде непонятно и странно. А достаточно немного подумать и все становится ясным. Днем температура повышается выше нуля градусов, становится тепло, снег под солнечными лучами начинает таять и превращаться в воду, проделывая канальчики в снежном слое. А ночью верхний подтаявший слой замерзает, превращаясь в лед. Вот и вся премудрость.
А посмотреть на автомобили, видно, что на льду они едут гораздо медленней и начинают тормозить перед светофором намного раньше. И тут видно, что действует физика. Сила, которая прижимает автомобили к земле, намного меньше из-за льда, поэтому, чтобы затормозить, нужно большее расстояние.
А дома, когда мама готовит горячий чай, а я опаздываю, то, чтобы он быстрее остыл, я быстро размешиваю его ложкой или переливаю из одной чашки в другую. Физика тут действует так: когда я переливаю чай, то он больше соприкасается с воздухом, отдает ему свое тепло, а значит, охлаждается. Так же происходит, когда я наливаю чай в блюдце. Холодный воздух встречается с горячим чаем и охлаждает его, чтобы их температура выровнялась.
Физические явления можно встретить и дома. Падает книга со стола (земля притягивает ее к себе), звонит телефон, и мы его слышим, вода кипит в чайнике, зажигается электрическая лампочка, включается и работает компьютер. Везде работают законы физики.
Если хорошо присмотреться, можно заметить влияние физики на все что угодно, что происходит вокруг нас. Идет дождь, влага собирается в облака. Течет вода из-под крана, работает вентилятор, да просто всего не перечесть, все происходит по законам физики, даже то, что мы дышим и едим. Что самое интересное, мы любые действия с предметами можем посчитать по определенным правилам и предсказать, что с ними произойдет дальше.
Поэтому, физическая наука очень важная, ее нужно изучать, чтобы можно было при помощи формул посчитать, что может произойти с любым нужным нам предметом.
Эссе на тему:
«Моё отношение к физике»
Моё первое подробное знакомство с физикой произошло в седьмом классе, когда в наше школьное расписание ввели этот замечательный предмет. Самые первые занятия физикой меня очень заинтересовали, и в дальнейшем я стала изучать её с огромным удовольствием. До того момента я лишь листала объёмные книги на физическую тематику.
Ещё с детских лет я очень любила узнавать происхождение различных явлений, а также быть в курсе устройства некоторых механизмов и систем. Любознательность школьника, упорство и стремление познать в совершенстве окружающий мир помогли мне привить любовь к этой науке.
Шло время, менялись интересы, школа открывала для меня новые учебные дисциплины, но интерес к физике не угас и по сей день. Простые теоретические формулировки физических явлений сменялись более сложными законами. С начала курса физики поставлены десятки опытов и исследований, выведены сотни формул, решены тысячи задач, но постижение этой науки, ещё не закончено.
Моим наставником в изучении физики стала Смирнова Светлана Александровна. Именно благодаря её знаниям и преподавательскому мастерству даже самые сложные темы были легко усвоены. Прилежное отношение педагога к своему уроку и огромное терпение играют свою позитивную роль в учебном процессе.
На мой взгляд, физические знания полезны для человека. Физика в большей мере, чем любая из естественных наук расширила границы человеческого познания. В школе физика должна рассматриваться как один из предметов, выполняющих не только познавательную, но также развивающую и воспитательную функции, так как она содержит огромный потенциал, имеющий непосредственное отношение к развитию мышления и развитию духовности.
Астапова Татьяна, ученица 11 класса
МКОУ Лебедёвской СОШ
Физика просто очень интересная наука, которая рассказывает и объясняет как все устроено в природе, каким законам подчиняется все на свете, в том числе и человек. Не зная физики невозможно понять, как двигается кровь по сосудам и капиллярам, не объяснить как дышит человек и зачем он питается. Не зная физики сложно представить как работает глаз или слышат уши. Конечно, если человек не знает как функционирует его организм это не значит,что он вдруг забудет как дышать и умрет, но ведь это просто интересно, понимать как все устроено. Физика может пригодиться чтобы узнать с какой скоростью мы едим на поезде или путешествуем пешком, физика объяснит как летает самолет и почему земля вращается вокруг солнца. В мире столько всего интересного и всем эти заведует именно физика. Зная принципы распространения тока, можно не бояться случайного поражения им, а при случае можно даже починить проводку. Зная физику можно прочистить слив в раковине и даже определить какое яйцо вареное, а какое сырое. Это опять-таки не значит, что мы во многих случаях применяем законы физики осознанно, но если их знать, то можно это делать во много эффективнее. Так что физика очень полезная наука, без которой ни туда и ни сюда.
Интересные факты о физике. Физика вокруг нас: интересные факты
Зачем мне эта дурацкая физика? А вот зачем!
Самая распространенная жалоба школьника на трудность предмета звучит так: “Зачем мне эта дурацкая …. (тут можно поставить что угодно – физику, математику, историю, биологию), если я не собираюсь заниматься ей после школы?!”
Действительно, а нужно ли бедному ребеночку зубрить формулы и разбираться с законами Ньютона и Фарадея? Может, ну ее, эту пакость, займемся лучше чем-то интересным? Удивительно, но многие взрослые и сами не понимают, зачем учили физику в школе и искренне не видят связи между этой занимательной наукой и повседневной жизнью. Давайте же найдем эту связь!
Представьте себе свой обычный день. Вот вы встали с кровати, потянулись и посмотрели в зеркало. И законы физики заработали прямо с началом вашего дня!
Движение, отражение в зеркале, гравитация, которая заставляет вас идти по земле, а воду течь в раковину, а не вам в лицо, сила, которая требуется для того, чтобы поднять сумку или открыть дверь – все это физика.
Обратите внимание на лифт, легко и быстро поднимающий вас на нужный этаж, автомобиль или другой транспорт, компьютеры, планшеты и телефоны. Без физики все это никуда бы не поехало, не включилось и не заработало.
Развитие физики можно приравнять к прогрессу.
Сначала люди поняли законы оптики и изобрели простые очки, чтобы те, кто плохо видит, могли лучше ориентироваться, читать и писать. А затем на свете появились микроскопы, с помощью которых ученые сделали невероятные открытия в таких областях, как биология и медицина. И телескопы, в которые астрономы увидели планеты, звезды и целые галактики и смогли сделать выводы об устройстве Вселенной. Каждое открытие в физике помогает человечеству сделать новый шаг вперед.
Хорошо, скажете вы. Но ведь для всего перечисленного, для всех этих открытий и разработок существуют физики. То есть люди, сознательно выбравшие именно эту науку своей основной профессией. Причем же здесь остальные, да еще и гуманитарии? Им-то на что эти знания, если можно просто прочитать инструкцию к своему телефону и этого будет достаточно для его использования?
Мы уже писали, что в каждом гуманитарии может обнаружиться и технарь, но кроме этого, приведем несколько примеров из повседневной жизни, когда базовое знание физики может пригодиться каждому. Причем, разберем только один раздел физики, практически полностью созданный Исааком Ньютоном, — механику.
Реферат по физике «Физика вокруг нас».
Фи́зика (от др.-греч. φύσις «природа») — область естествознания, наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Законы физики лежат в основе всего естествознания.
Термин «физика» впервые появился в сочинениях одного из величайших мыслителей древности — Аристотеля, жившего в IV веке до нашей эры. Первоначально термины «физика» и «философия» были синонимичны, поскольку обе дисциплины пытаются объяснить законы функционирования Вселенной. Однако в результате научной революции XVI века физика выделилась в отдельное научное направление.
В русский язык слово «физика» было введено Михаилом Васильевичем Ломоносовым, когда он издал первый в России учебник физики в переводе с немецкого языка. Первый русский учебник под названием «Краткое начертание физики» был написан первым русским академиком Страховым.
В современном мире значение физики чрезвычайно велико. Всё то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий. Так, исследования в области электромагнетизма привели к появлению телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров.
Физическое понимание процессов, происходящих в природе, постоянно развивается. Большинство новых открытий вскоре получают применение в технике и промышленности. Однако новые исследования постоянно поднимают новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.
Одна из главных особенностей человека — способность (в определённой мере) предсказывать будущие события. Для этого человек строит мысленные модели реальных явлений (теории); в случае плохой предсказательной силы модель уточняется или заменяется на новую. Если создать практически полезную модель явления природы не удавалось, её заменяли религиозные мифы («молния есть гнев богов»).
Средств для проверки теорий и выяснения вопроса, какая из них верна, в древности было крайне мало, даже если речь шла о земных каждодневных явлениях. Единственная физическая величина, которую умели тогда достаточно точно измерять — длина; позже к ней добавился угол. Эталоном времени служили сутки, которые в Древнем Египте делили не на 24 часа, а на 12 дневных и 12 ночных, так что было два разных часа, и в разные сезоны продолжительность часа была разной. Но даже когда установили привычные нам единицы времени, из-за отсутствия точных часов большинство физических экспериментов были просто невозможно провести. Поэтому естественно, что вместо научных школ возникали полурелигиозные учения.
Преобладала геоцентрическая система мира, хотя пифагорейцы развивали и пироцентрическую, в которой звёзды, Солнце, Луна и шесть планет обращаются вокруг Центрального Огня. Чтобы всего получилось священное число небесных сфер (десять), шестой планетой объявили Противоземлю. Впрочем, отдельные пифагорейцы (Аристарх Самосский и др.) создали гелиоцентрическую систему. У пифагорейцев возникло впервые и понятие эфира как всеобщего заполнителя пустоты.
Первую формулировку закона сохранения материи предложил Эмпедокл в V веке до н. э.:
Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.
Позже аналогичный тезис высказывали Демокрит, Аристотель и другие.
Термин «Физика» возник как название одного из сочинений Аристотеля. Предметом этой науки, по мнению автора, было выяснение первопричин явлений:
Так как научное знание возникает при всех исследованиях, которые простираются на начала, причины или элементы путём их познания (ведь мы тогда уверены в познании всякой вещи, когда узнаём её первые причины, первые начала и разлагаем её впредь до элементов), то ясно, что и в науке о природе надо определить прежде всего то, что относится к началам.
Такой подход долго (фактически до Ньютона) отдавал приоритет метафизическим фантазиям перед опытным исследованием. В частности, Аристотель и его последователи утверждали, что движение тела поддерживается приложенной к нему силой, и при её отсутствии тело остановится (по Ньютону, тело сохраняет свою скорость, а действующая сила меняет её значение и/или направление).
Некоторые античные школы предложили учение об атомах как первооснове материи. Эпикур даже полагал, что свобода воли человека вызвана тем, что движение атомов подвержено случайным смещениям.
Кроме математики, эллины успешно развивали оптику. У Герона Александрийского встречается первый вариационный принцип «наименьшего времени» для отражения света. Тем не менее в оптике древних были и грубые ошибки. Например, угол преломления считался пропорциональным углу падения (эту ошибку разделял даже Кеплер). Гипотезы о природе света и цветности были многочисленны и довольны нелепы.
Конечно, ядерные взрывы, источники энергии, «беспредел» компьютеров и лазеров, создание новых материалов показывают, что круг интересов учёных простирается далеко за рамки «осколков позапрошлого века». Однако шаржированный образ учёного, да и всей науки — живуч. Хотя мало что может быть столь далеко от истины, как картина, созданная впечатлительным и горячим поэтом. Даже когда Маяковский писал свой стих, в науке и вокруг неё разыгрывались драмы вполне шекспировского масштаба. Чтобы меня правильно поняли, отмечу, что вопрос «Быть иль не быть» в применении к человечеству а не отдельному человеку, пусть и весьма значительному, был впервые поставлен именно в благодаря физикам и на основе достижений физики.
Это совсем не случайно, что уже примерно три века прошли под знаком этой науки. Люди, занятые ею, открывали и открывают фундаментальные законы природы, определяющие строение и движение материальных объектов в огромном диапазоне расстояний, времёни и масс. Диапазоны эти грандиозны — от малых, атомных и субатомных, до космических и Вселенских.
Конечно, это не физики сказали «Да будет свет», но именно они выяснили его природу и свойства, установив отличие от тьмы, и научились ими управлять.
В процессе своей работы физики, в решающей мере крупнейшие из них, выработали определённый стиль мышления, главными элементами которого является готовность полагаться на хорошо проверенные фундаментальные законы и способность в сложном природном, да и общественном, явлении выделить основной элемент, по возможности наиболее простой, что позволяет понять само рассматриваемое сложное явление.
Эти особенности подхода позволяют физикам весьма успешно заниматься проблемами, нередко лежащими далеко за рамками их узкой специализации.
Уверенность в единстве законов природы, основанная на обширном опытном материале, уверенность в их справедливости в сочетании с ясным пониманием ограниченной области применимости уже открытых законов, толкает физику вперёд, за границу неизвестного сегодня.
Физика — наука сложная. Она требует огромных интеллектуальных усилий от людей, которые ею занимаются. Она абсолютно несовместима с любительством. Помню, как по окончании Университета и Кораблестроительного института в 1958 г., я стоял на распутье — куда идти дальше. И мой отец, очень далёкий от науки, спросил меня, смогу ли я вернуться к инженерии после десятка лет занятий физикой. Мой ответ был безоговорочное «да». «А в физику после десяти лет инженерии?», — спросил он. Моё «нет» и определило дальнейший выбор, о котором не жалел и не жалею ни секунды.
Сложность физики и важность полученных ею результатов, позволяющих создать картину мира и стимулирующей распространение её идей далеко за рамки самой этой науки, определяют общественный интерес к ней. Приведу некоторые из таких идей, в порядке поступления. Это научный (не умозрительный!) атомизм, открытие электромагнитного поля, механическая теория теплоты, установление относительности пространства и времени, понятие расширяющейся Вселенной, квантовые скачки и принципиально, не из-за погрешности, вероятностная природа физических процессов, в первую очередь, на микро-уровне, великое объединение всех взаимодействий, установление существования непосредственно не наблюдаемых субатомных частиц — кварков.
Тут то и появляются популярные книги, которые призваны не учить физике начинающих, а пояснить её интересующимся. Есть и другая цель популярных книг, особо известной среди которых для людей моего поколения является «Занимательная физика» Якова Перельмана, не родственника М. Е. Перельмана. Я имею в виду демонстрацию того, сколь многое в повседневной жизни, привычной для нас технике и технологии, можно качественно понять, основываясь лишь на уже хорошо известных фундаментальных законах физики, в первую очередь — законах сохранения энергии и импульса, и уверенности, что они универсально применимы.
Объектов применения законов физики великое множество. Почему не стоит лить воду в кипящее масло, почему мерцают звёзды на небе, почему закручивается вода, вытекая из ванной, почему щёлкает кнут и зачем возница раскручивает его над головой, чтоб усилить звук щелчка, почему когда-то норовили спрыгнуть с рельсов паровозы, но никогда не делают этого электровозы? А почему грозно ревёт приближающийся самолёт, а, удаляясь, он переходит на фальцет, и почему танцовщики или фигуристы начинают вращение, широко распахнув «объятия», но затем стремительно прижимают руки к телу? Таких «почему» встречает каждого в повседневной, не говоря уже о не повседневной, жизни великое множество. Их полезно учиться видеть, тренировать себя на поиск непонятного.
Книги М. Е. Перельмана содержат рекордное количество подобных вопросов «почему?» (более пятисот), дают им ответы, в большинстве случаев — однозначно правильные, иногда — зовущие к дискуссии, изредка — скорее всего неверные, провоцирующие несогласие. Есть и вопросы, на которые у науки на сегодняшний день простого и общепринятого ответа нет. Значит, у читателя есть простор для интенсивной интеллектуальной работы.
Попутно автор объясняет общеизвестное для профессионалов, но вызывающее столь сильное недоумение у посторонних. Именно, автор подчёркивает операционный характер многих определений в такой общепризнано точной науке, как физика. Профессионалам известно, что даже наиболее фундаментальные из понятий, которыми оперирует физика, такие как время и энергия, пространство и импульс уточняются по мере развития самой науки.
Даже вакуум, когда-то бывший аналогом абсолютной пустоты, отсутствия чего бы то ни было в самоочевидном «пустом» пространстве, со временем «оброс» отнюдь нетривиальными чертами, из примитивного став сложнейшим объектом изучения. Универсальность физического подхода диктует сходное отношение к определениям нетривиальных понятий и в других областях, весьма далёких от физики.
Читать упомянутые книги М. Е. Перельмана интересно и профессионалам — чтобы спорить, находить другие, допускающие простое, иногда наглядное, объяснение вопроса. Ну а неспециалист сможет расширить свой кругозор, не обязательно торопясь дать своё, отличное от авторского, объяснение. Стоит помнить, что написанное — словесный слепок, нередко сильно упрощенный, с иногда очень сложного физического построения, основанного на далёкой от простоты в обиходном смысле этого слова физической теории. Не надо следовать примеру того реального персонажа, директора одного московского НИИ который отрицал частную теорию относительности Эйнштейна (общую он не читывал!) потому, что в формулы входит скорость света! «А что будет, если свет выключить?», — писал в отдел науки ЦК КПСС маститый оружейник.
Изучая физику, начиная понимать её законы, приобщаешься к особой красоте, возникает реально дополнительное измерение в восприятии окружающего мира. Об этом писал когда — то великий физик Р. Фейнман, отмечая, что понимание природы свечения звёзд, механизма их рождения и смерти делает картину ночного звёздного неба ещё более прекрасной и романтичной.
Хочу, в заключение, отметить один, несколько неожиданный, аспект пользы знания физики, притом отнюдь не поверхностного. О нём как-то рассказал академик А. Б. Мигдал. Он загорал в горах, а рядом расположилась парочка. Молодой человек объяснял своей приятнейшей спутнице, почему дневное небо синее. Он рассказывал ей про рассеяние света, упомянул лорда — теоретика Рэлея. Девушка сидела с открытым ртом, восхищённо глядя на эрудита. А того несло, и он, проявив неосторожность и невнимание к старшим, сказал, что вероятность рассеяния излучения пропорционально кубу частоты.
Но Мигдал уже был начеку. Припоминая классика, здесь уместного лишь в весьма ослабленной форме, сказать: возможно, академик «в мыслях, под ночною тьмою, уста невесты целовал». «Молодой человек, вероятность рассеяния не может быть пропорциональна кубу частоты — это бы очевидным образом противоречило инвариантности теории относительно изменения знака времени. У Релея, как и должно быть, вероятность пропорционально не кубу, а четвёртой степени частоты!»,- своим обычным тоном, не допускающим возражений, заявил Мигдал. Нет нужды говорить, что треугольник изменил свою форму, и толстопузая гипотенуза стала катетом, достигнув вершины.
Словом, читайте про физику, а кому не поздно — учите её. Это окупится.
Медицинская физика – это наука о системе, которая состоит из физических приборов и излучений, лечебно-диагностических аппаратов и технологий.
Цель медицинской физики – изучение этих систем профилактики и диагностики заболеваний, а также лечение больных с помощью методов и средств физики, математики и техники. Природа заболеваний и механизм выздоровления во многих случаях имеют биофизическое объяснение.
Медицинские физики непосредственно участвуют в лечебно-диагностическом процессе, совмещая физико-медицинские знания, разделяя с врачом ответственность за пациента.
Развитие медицины и физики всегда были тесно переплетены между собой. Еще в глубокой древности медицина использовала в лечебных целях физические факторы, такие как тепло, холод, звук, свет, различные механические воздействия (Гиппократ, Авиценна и др.).
Первым медицинским физиком был Леонардо да Винчи (пять столетий назад), который проводил исследования механики передвижения человеческого тела. Наиболее плодотворно медицина и физика стали взаимодействовать с конца XVIII – начала XIX вв., когда были открыты электричество и электромагнитные волны, т. е. с наступлением эры электричества.
Назовем несколько имен великих ученых, сделавших важнейшие открытия в разные эпохи.
Конец XIX – середина ХХ вв. связаны с открытием рентгеновских лучей, радиоактивности, теорий строения атома, электромагнитных излучений. Эти открытия связаны с именами В. К. Рентгена, А. Беккереля,
М. Складовской-Кюри, Д. Томсона, М. Планка, Н. Бора, А. Эйнштейна, Э. Резерфорда. Медицинская физика по-настоящему стала утверждаться как самостоятельная наука и профессия только во второй половине ХХ в. – с наступлением атомной эры. В медицине стали широко применяться радиодиагностические гамма-аппараты, электронные и протоновые ускорители, радиодиагностические гамма-камеры, рентгеновские компьютерные томографы и другие, гипертермия и магнитотерапия, лазерные, ультразвуковые и другие медико-физические технологии и приборы. Медицинская физика имеет много разделов и названий: медицинская радиационная физика, клиническая физика, онкологическая физика, терапевтическая и диагностическая физика.
Самым важным событием в области медицинского обследования можно считать создание компьютерных томографов, которые расширили исследования практически всех органов и систем человеческого организма. ОКТ были установлены в клиниках всего мира, и большое количество физиков, инженеров и врачей работало в области совершенствования техники и методов доведения ее практически до пределов возможного. Развитие радионуклидной диагностики представляет собой сочетание методов радиофармацевтики и физических методов регистрации ионизирующих излучений. Позитронная эмиссионная томография-визуализация была изобретена в 1951 г. и опубликована в работе Л. Ренна.
Физика и литература
В жизни, порой, не замечая этого, физика и литература тесно переплетаются. Ещё с древности люди для того, чтобы донести до потомков литературное слово, использовали изобретения, основываясь на знаниях физики. О жизни немецкого изобретателя Иоганна Гуттенберга известно мало. Однако, великий изобретатель, чтобы донести до нас литературные шедевры, изучал законы физики и механики. В организованной им типографии, он напечатал первые в Европе книги, что сыграло огромную роль в развитии человечества.
Первый русский печатник – Иван Фёдоров, современникам был известен, как учёный и изобретатель. Он, например, умел отливать пушки, изобрёл многоствольную мортиру. А первые замечательные образы литературного и полиграфического искусства — «Апостол» (1564 г.) и «Часовник» (1565 г.) навеки останутся в народной памяти. Имя Михаила Васильевича Ломоносова мы называем одним из первых в ряду самых замечательных представителей отечественной науки и культуры. Великий физик, он оставил ряд трудов, имеющих важное значение для промышленного развития России. Большое место в его научных трудах занимала оптика. Он сам изготовлял оптические приборы и оригинальные зеркальные телескопы. Исследуя небо с помощью своих приборов, вдохновлённый бесконечностью Вселенной, Ломоносов писал прекрасные стихи: Открылась бездна звезд полна. Звездам числа нет, бездне – дна…
Без такой науки, как физика не было бы такого литературного жанра, как научно – фантастический роман. Одним из создателей этого жанра стал французский писатель Жюль Верн (1828 – 1905 гг.) Вдохновлённый великими открытиями XIX века, знаменитый писатель окружил физику романтическим ореолом. Все его книги «С Земли на Луну» (1865 г.), «Дети капитана Гранта» (1867-68 гг.), «20 000 лье под водой» (1869-70 гг.), «Таинственный остров» (1875 г.) проникнуты романтикой этой науки.
В свою очередь, многих изобретателей и конструкторов вдохновляли невероятные приключения героев Жюля Верна. Так, например, швейцарский учёный – физик Огюст Пиккар, словно повторяя пути фантастических героев, поднимался на изобретённом им стратостате в стратосферу, делая первый шаг на пути к раскрытию тайны космических лучей. Следующим увлечением О. Пиккара была идея покорения морских глубин. Изобретатель сам погружался на морское дно, на построенном им батискафе (1948 год).
Ещё около 160 лет назад в журнале «Отечественные записки» были опубликованы «Письма об изучении природы» (1844 – 1845 гг.) А. И. Герцена – одно из самых значительных и оригинальных произведений в истории как философской, так и естественно-научной русской мысли. Революционера, философа, автора одного из шедевров русской классической литературы сочинения «Былое и думы» — Герцена, тем не менее, живо интересовали естественные науки, в том числе физика, что он неоднократно подчёркивал в своих сочинениях.
Теперь необходимо обратиться к литературному наследию Л. Н. Толстого. Во-первых, потому что великий писатель был педагогом – практиком, а во-вторых, что многие его произведения касаются естественных наук. Наиболее известна комедия «Плоды просвещения». Писатель крайне негативно относился «ко всяким суевериям», он считал, что они «препятствуют истинному учению и мешают ему проникать в душу людей». Толстой так понимал роль науки в жизни общества: во-первых, он являлся сторонником организации жизни общества на строгой научной основе; во-вторых, он делает мощный акцент на нравственно – этические нормы, и в силу этого естественные науки в трактовке Толстого оказываются науками второстепенными. Именно поэтому Толстой осмеивает в «Плодах просвещения» московское барство, в головах которого перемешаны наука и антинаука.
Надо сказать, что во времена Толстого с одной стороны тогдашняя физика переживала тяжёлый кризис в связи с опытной проверками основных положений теории электромагнитного поля, которые опровергли гипотезу Максвелла о существовании мирового эфира, то есть той физической среды, которая передаёт электромагнитное взаимодействие; а с другой стороны было повальное увлечение спиритизмом. В своей комедии Толстой описывает сцену спиритического сеанса, где отчётливо просматривается естественнонаучный аспект. Особенно показательна лекция профессора Кругосветлова, где делается попытка дать медиумическим явлениям естественнонаучное толкование.
Если же говорить о современном значении комедии Толстого, то, пожалуй, следует отметить следующее:
1. Когда по каким – либо причинам, то или иное явление природы не получает своевременного объяснения, то его псевдонаучное, а порой и антинаучная интерпретация является весьма распространённым делом.
2. Знаменателен сам факт рассмотрения писателем научной тематики в художественном произведении.
Позже, в заключительной главе трактата «Что такое искусство?» (1897 год) Лев Николаевич подчёркивает взаимосвязь науки и искусства, как двух форм познания окружающего мира с учётом, разумеется, специфики каждой из этих форм. Познание через разум в одном случае и через чувства в другом.
Видимо не случайно великий известный американский изобретатель Томас Алва Эдисон (1847 – 1931 гг.) один из своих первых фонографов послал Л. Н. Толстому, и благодаря этому для потомков сохранён голос великого русского писателя.
Русскому учёному Павлу Львовичу Шиллингу суждено было войти в историю благодаря его работам в области электричества. Однако одно из главных увлечений Шиллинга – востоковедение – сделало его имя широко известным. Учёный собрал огромную коллекцию тибетско-монгольских литературных памятников, ценность которой трудно преувеличить. За что в 1828 году П. Л. Шиллинг был избран членом – корреспондентом Петербургской академии наук по разряду литературы и древностей Востока.
Невозможно себе представить мировую литературу без поэзии. Физика в поэзии занимает отведённую ей достойную роль. Поэтические образы, навеянные физическими явлениями, придают зримость и предметность миру мыслей и чувств поэтов. Какие только писатели не обращались к физическим явлениям, возможно даже сами, не ведая того, описывали их. У любого физика фраза «Люблю грозу в начале мая…» вызовет ассоциации с электричеством.
Передачу звука многие поэты описывали по-разному, но всегда гениально. Так, например, А. С. Пушкин в своём стихотворении «Эхо» прекрасно описывает это явление: Ревёт ли зверь в лесу глухом, Трубит ли рог, гремит ли гром, Поёт ли дева за холмом — На всякий звук Свой отклик в воздухе пустом Родишь ты вдруг.
У Г. Р. Державина «Эхо» выглядит немного по-другому: Но, вдруг, отдавшись от холма Возвратным грохотанием грома, Гремит и удивляет мир: Так ввек бессмертно эхо лир.
Также обращались к теме звука почти все поэты, воспевая и неизменно восхищаясь передачей его на расстояние.
Кроме того, почти все физические явления вызывали у творческих людей вдохновение. Трудно найти такого поэта в мировой литературе, который бы хоть раз не написал произведения о земле и небе, о солнце и звёздах, о грозе и молнии, о кометах и затмениях: И, как и всякая комета, Смущая блеском новизны, Ты мчишься мёртвым комом света, Путём, лишённым прямизны! (К. К. Случевский) У неба учишься и следуешь за ним: Сама в движении, а полюс недвижим. (Ибн Хамдис)
Ещё наши родители помнят спор, который разгорелся на рубеже 60–ых – 70–ых между «физиками» и «лириками». Каждый старался найти приоритеты именно в своей науке. Не победителей, не проигравших в том споре не было, и не могло быть, так как невозможно сравнивать две формы познания окружающего мира.
Хотелось бы закончить отрывком из произведения Роберта Рождественского (знаменитого шестидесятника), посвященным физикам – атомщикам. Произведение называется «Людям, чьих фамилий я не знаю»: Сколько вы б напридумали разного! Очень нужного и удивительного! Вы – то знаете, что для разума Никаких границ не предвидено. Как бы людям легко дышалось! Как бы людям светло любилось! И какие бы мысли бились В полушарьях земного шара. Но пока что над миром веет Чуть смягчающее недоверье. Но пока дипломаты высокие Сочиняют послания мягкие,- До поры и до времени всё-таки Остаётесь вы безымянными. Безымянными. Нелюдимыми. Гениальными невидимками… Каждый школьник в грядущем мире Вашей жизнью хвастаться будет… Низкий – низкий поклон вам, люди. Вам, Великие.
Физика и искусство
Изобразительное искусство хранит богатейшие возможности для эстетического воспитания в процессе преподавании физики. Часто способные к живописи ученики тяготятся уроками, на которых точные науки преподаются им в виде свода законов и формул. Задача учителя — показать, что людям творческих профессий знания по физике просто необходимы профессионально, поскольку «…художнику, не обладающему определенным мировоззрением, в искусстве ныне делать нечего – его произведения, блуждающие вокруг частностей жизни, никого не заинтересуют и умрут, не успев родиться». Кроме того, очень часто интерес к предмету начинается именно с интереса к учителю, и учитель обязан знать хотя бы основы живописи и быть художественно образованным человеком, чтобы между ним и его учениками зародились живые связи.
Использовать эти сведения можно по-разному: иллюстрировать художественными произведениями физические явления и события из жизни физиков или, наоборот, рассматривать физические явления в технике живописи и технологии живописных материалов, подчеркивать использование науки в искусствах или описывать роль цвета на производстве. Но при этом необходимо помнить, что живопись на уроке физики не цель, а лишь помощница, что любой пример должен быть подчинен внутренней логике урока, ни в коем случае не следует сбиваться на художественно-искусствоведческий анализ.
Ученик встречается с искусством уже на первых уроках физики. Вот он открывает учебник, видит портрет М.В.Ломоносова и вспоминает знакомые по урокам литературы слова А.С.Пушкина, что Ломоносов «сам был нашим первым университетом». Здесь можно рассказать об экспериментах ученого с цветным стеклом, показать его мозаичное панно «Полтавская битва» и зарисовки полярных сияний, прочитать его поэтические строки о науке, о радости, которая приходит с приобретением новых знаний, очертить сферу интересов ученого как физика, химика, художника, литератора, привести слова академика И.Артоболевского: «Искусство для ученого – не отдых от напряженных занятий наукой, не только способ подняться к вершинам культуры, а совершенно необходимая составляющая его профессиональной деятельности».
Особенно выигрышным в этом отношении является раздел «Оптика»: линейная перспектива (геометрическая оптика), эффекты воздушной перспективы (дифракция и диффузное рассеяние света в воздухе), цвет (дисперсия, физиологическое восприятие, смешение, дополнительные цвета). Полезно заглянуть и в учебники живописи. Там раскрыто значение таких характеристик света, как сила света, освещенность, угол падения лучей. Рассказывая о развитии взглядов на природу света, учитель говорит о представлениях ученых древности, о том, что они объясняли свет как истечение с величайшей скоростью тончайших слоев атомов от тел: «Эти атомы сдавливают воздух и образуют отпечатки образов предметов, отражаемых во влажной части глаза. Вода является посредником видения, и потому влажный глаз видит лучше сухого. Но воздух есть причина, почему неясно видны удаленные предметы».
Различные ощущения света и цвета можно описать при изучении глаза, рассмотреть физическую основу оптических иллюзий, самой распространенной из которых является радуга.
Первым понял «устройство» радуги И.Ньютон, он показал, что «солнечный зайчик» состоит из различных цветов. Очень впечатляющим является повторение в классе опытов великого ученого, при этом хорошо процитировать его трактат «Оптика»: «Зрелище живых и ярких красок, получившихся при этом, доставляло мне приятное удовольствие».
Позднее физик и талантливый музыкант Томас Юнг покажет, что различия в цвете объясняются различными длинами волн. Юнг является одним из авторов современной теории цветов наряду с Г.Гельмгольцем и Дж.Максвеллом. Приоритет же в создании трехкомпонентной теории цветов (красный, синий, зеленый – основные) принадлежит М.В.Ломоносову, хотя гениальную догадку высказывал и знаменитый архитектор эпохи Возрождения Леон Батиста Альберти.
В подтверждение огромного влияния на впечатление силы цвета можно привести слова известного специалиста по технической эстетике Жака Вьено: «Цвет способен на все: он может родить свет, успокоение или возбуждение. Он может создать гармонию или вызвать потрясение: от него можно ждать чудес, но он может вызвать и катастрофу». Необходимо упомянуть, что свойствам цвета можно дать «физические» характеристики: теплые (красный, оранжевый) — холодные (голубой, синий); легкие (светлые тона) — тяжелые (темные). Цвет можно «уравновесить».
Хорошей иллюстрацией физиологического восприятия смешения цветов может послужить картина В.И.Сурикова «Боярыня Морозова»: снег на ней не просто белый, он небесный. При близком рассмотрении можно увидеть множество цветных мазков, которые издали, сливаясь воедино, и создают нужное впечатление. Этот эффект увлекал и художников-импрессионистов, создавших новый стиль – пуантилизм — живопись точками или мазками в форме запятых. «Оптическая смесь» – решающий фактор в технике исполнения, например, Ж.П.Сера, позволяла ему добиваться необыкновенной прозрачности и «вибрации» воздуха. Ученики знают результат механического смешения желтый + синий = зеленый, но неизменно удивляются эффекту, возникающему при наложении рядом на холст мазков дополнительных цветов, например зеленого и оранжевого, – каждый из цветов становится ярче, что объясняется сложнейшей работой сетчатки глаза.
Много иллюстраций можно подобрать на законы отражения и преломления света. Например, изображение опрокинутого пейзажа на спокойной поверхности воды, зеркала с заменой правого на левое и сохранением размеров, формы, цвета. Иногда художник вводит зеркало в картину с двойной целью. Так, И.Голицын в гравюре с изображением В.А.Фаворского, во-первых, показывает лицо старого мастера, вся фигура которого обращена к нам спиной, а во-вторых, подчеркивает, что зеркало здесь — еще и инструмент для работы. Дело в том, что офорт или гравюру на дереве или линолеуме режут в зеркальном отражении, чтобы оттиск получился нормально. В процессе работы мастер проверяет изображение на доске по отражению в зеркале.
Известный популяризатор науки физик М.Гарднер в своей книге «Живопись, музыка и поэзия» заметил: «Симметрия отражения – один из древнейших и самых простых способов создавать изображения, радующие глаз».
Итак, мы убедились, что физика окружает нас везде и всюду.