сколько форм жизни существует на земле
Ученые: на Земле существует триллион видов живых существ
МОСКВА, 4 мая – РИА Новости. Ученые провели самую масштабную в истории планеты перепись живых существ, в ходе которой они насчитали примерно триллион видов, населяющих поверхность, океаны, недра и воздух Земли, говорится в статье, опубликованной в журнале Proceedings of the National Academy of Sciences.
«До недавнего времени у нас просто не было инструментов для того, чтобы достаточно точно оценить число видов микробов в окружающей среде. Появление новых технологий секвенирования ДНК позволило нам получить доступ к гигантскому массиву информации, необходимой для решения этой задачи», — заявил Джей Леннон (Jay Lennon) из университета штата Индиана в Блумингтоне (США).
Леннон и его коллеги подчеркивают, что эта цифра – один триллион – является лишь достаточно достоверной оценкой общего числа видов, а не их точным количеством. Сегодня, по словам ученых, мы изучили и описали лишь 0,001% видов из этого триллиона. Это говорит о том, что мы почти ничего не знаем о тайнах жизни, особенно в самых низших ее проявлениях, на Земле.
Как объясняют ученые, все предыдущие оценки численности видов на Земле основывались на данных, накопленных при изучении многоклеточных существ, и относительно небольшого числа бактерий – около 100-200 штаммов самых распространенных микробов. Учитывая огромное видовое разнообразие микромира, подобные «переписи» были крайне неточными.
Группа Леннона попыталась исправить эту неточность, используя свои собственные данные, собранные в ходе изучения почвенных микробов, грибов и прочих жителей микромира, а также информацию, собранную крупными научными коллаборациями, изуч ающими разнообразие микрофлоры кишечника, океанов Земли и пресноводных водоемов.
10 возможных форм жизни
В поисках внеземного разума ученые часто получают обвинения в «углеродном шовинизме», поскольку ожидают, что другие жизнеформы во Вселенной будут состоять из тех же биохимических строительных блоков, что и мы, соответствующим образом выстраивая свои поиски. Но жизнь вполне может быть другой — и люди об этом задумываются — поэтому давайте изучим десять возможных биологических и небиологических систем, которые расширяют определение «жизни».
Метаногены
Жизнь на основе кремния
Кремний остается популярным именно потому, что очень похож на углерод и может образовывать четыре связи, подобно углероду, что открывает возможность создания биохимической системы полностью зависимой от кремния. Это самый распространенный элемент в земной коре, если не считать кислород. На Земле есть водоросли, которые включают кремний в свой процесс роста. Кремний играет вторую после углерода роль, поскольку тот может образовывать более стабильные и разнообразные комплексные структуры, необходимые для жизни. Углеродные молекулы включают кислород и азот, которые образуют невероятно крепкие связи. Сложные молекулы на основе кремния, к сожалению, имеют тенденцию распадаться. Кроме того, углерод чрезвычайно распространен во Вселенной и существует миллиарды лет.
Едва ли жизнь на основе кремния появится в окружении, подобном земному, поскольку большая часть свободного кремния будет заперта в вулканических и магматических породах из силикатных материалов. Предполагают, что в высокотемпературном окружении все может быть по-другому, но никаких доказательств пока не нашли. Экстремальный мир вроде Титана мог бы поддерживать жизнь на основе кремния, возможно, вкупе с метаногенами, так как молекулы кремния вроде силанов и полисиланов могут имитировать органическую химию Земли. Тем не менее на поверхности Титана преобладает углерод, тогда как большая часть кремния находится глубоко под поверхностью.
Астрохимик NASA Макс Бернштейн предположил, что жизнь на основе кремния могла бы существовать на очень горячей планете, с атмосферой богатой водородом и бедной кислородом, позволяя случиться комплексной силановой химии с обратными кремниевыми связями с селеном или теллуром, но такое, по мнению Бернштейна, маловероятно. На Земле такие организмы размножались бы очень медленно, а наши биохимии никак бы не мешали друг другу. Они, впрочем, могли бы медленно поедать наши города, но «к ним можно было бы применить отбойный молоток».
Другие биохимические варианты
Другая возможная форма жизни, которая привлекла определенное внимание, это жизнь на основе мышьяка. Вся жизнь на Земле состоит из углерода, водорода, кислорода, фосфора и серы, но в 2010 году NASA объявило, что нашло бактерию GFAJ-1, которая могла включать мышьяк вместо фосфора в клеточную структуру без всяких последствий для себя. GFAJ-1 живет в богатых мышьяков водах озера Моно в Калифорнии. Мышьяк ядовит для любого живого существа на планете, кроме нескольких микроорганизмов, которые нормально его переносят или дышат им. GFAJ-1 стала первым случаем включения организмом этого элемента в качестве биологического строительного блока. Независимые эксперты немного разбавили это заявление, когда не нашли никаких свидетельств включения мышьяка в ДНК или хотя бы каких-нибудь арсенатов. Тем не менее разгорелся интерес к возможной биохимии на основе мышьяка.
В качестве возможной альтернативы воде для строительства форм жизни выдвигался и аммиак. Ученые предположили существование биохимии на основе азотно-водородных соединений, которые используют аммиак в качестве растворителя; он мог бы использоваться для создания протеинов, нуклеиновых кислот и полипептидов. Любые формы жизни на основе аммиака должны существовать при низких температурах, при которых аммиак принимает жидкую форму. Твердый аммиак плотнее жидкого аммиака, поэтому нет никакого способа остановить его замерзание при похолодании. Для одноклеточных организмов это не составило бы проблемы, но вызвало бы хаос для многоклеточных. Тем не менее существует возможность существования одноклеточных аммиачных организмов на холодных планетах Солнечной системы, а также на газовых гигантах вроде Юпитера.
Сера, как полагают, послужила основой для начала метаболизма на Земле, и известные организмы, в метаболизм которых включена сера вместо кислорода, существуют в экстремальных условиях на Земле. Возможно, в другом мире формы жизни на основе серы могли бы получить эволюционное преимущество. Некоторые считают, что азот и фосфор могли бы также занять место углерода при довольно специфических условиях.
Меметическая жизнь
Подобные мемы существовали до человечества, в социальных призывах птиц и усвоенном поведении приматов. Когда человечество стало способно абстрактно мыслить, мемы получили дальнейшее развитие, управляя племенными отношениями и формируя основу для первых традиций, культуры и религии. Изобретение письма еще больше подтолкнуло развитие мемов, поскольку они смогли распространяться в пространстве и времени, передавая меметичную информацию подобно тому, как гены передают биологическую. Для некоторых это чистая аналогия, но другие считают, что мемы представляют уникальную, хотя немного рудиментарную и ограниченную форму жизни.
Некоторые пошли еще дальше. Георг ван Дрим разработал теорию «симбиосизма», которая подразумевает, что языки — это сами по себе формы жизни. Старые лингвистические теории считали язык чем-то вроде паразита, но ван Дрим полагает, что мы живем в сотрудничестве с меметическими сущностями, населяющими наш мозг. Мы живем в симбиотических отношениях с языковыми организмами: без нас они не могут существовать, а без них мы ничем не отличаемся от обезьян. Он считает, что иллюзия сознания и свободной воли вылилась из взаимодействия животных инстинктов, голода и похоти человека-носителя и лингвистического симбионта, воспроизводящегося с помощью идей и смыслов.
Синтетическая жизнь на основе XNA
Жизнь на Земле основана на двух переносящих информацию молекулах, ДНК и РНК, и долгое время ученые размышляли, можно ли создать другие похожие молекулы. Хотя любой полимер может хранить информацию, РНК и ДНК отображают наследственность, кодирование и передачу генетической информации и способны адаптироваться с течением времени в процессе эволюции. ДНК и РНК — это цепи молекул-нуклеотидов, состоящих из трех химических компонентов — фосфата, пятиуглеродной сахарной группы (дезоксирибоза в ДНК или рибоза в РНК) и одного из пяти стандартных оснований (аденин, гуанин, цитозин, тимин или урацил).
В 2012 году группа ученых из Англии, Бельгии и Дании первой в мире разработала ксенонуклеиновую кислоту (КНК, XNA), синтетические нуклеотиды, функционально и структурно напоминающие ДНК и РНК. Они были разработаны путем замены сахарных групп дезоксирибозы и рибозы различными субститутами. Такие молекулы делали и раньше, но впервые в истории они были способны воспроизводиться и эволюционировать. В ДНК и РНК репликация происходит с помощью молекул полимеразы, которые могут читать, транскибировать и обратно транскрибировать нормальные последовательности нуклеиновых кислот. Группа разработала синтетические полимеразы, которые создали шесть новых генетических систем: HNA, CeNA, LNA, ANA, FANA и TNA.
Одна из новых генетических систем, HNA, или гекситонуклеиновая кислота, была достаточно надежной, чтобы хранить нужное количество генетической информации, которая может послужить в качестве основы для биологических систем. Другая, треозонуклеиновая кислота, или TNA, оказалась потенциальным кандидатом на таинственную первичную биохимию, царившую на рассвете жизни.
Есть масса потенциальных применений этих достижений. Дальнейшие исследования могут помочь в разработке лучших моделей появления жизни на Земле и будут иметь последствия для биологических измышлений. XNA может получить терапевтическое применение, ведь можно создать нуклеиновые кислоты для лечения и связи с конкретными молекулярными целями, которые не будут портиться так быстро, как ДНК или РНК. Они даже могут лечь в основу молекулярных машин или вообще искусственной формы жизни.
Но прежде чем это станет возможно, должны быть разработаны другие энзимы, совместимые с одной из XNA. Некоторые из них уже разработали в Великобритании в конце 2014 года. Есть также возможность, что XNA может причинять вред РНК/ДНК-организмам, поэтому безопасность должна быть на первом месте.
Хромодинамическая жизнь могла бы быть основана на сильном ядерном взаимодействии, которое считается сильнейшим из фундаментальных сил, но только на чрезвычайно коротких расстояниях. Фрейтас предположил, что такая среда может быть возможна на нейтронной звезде, тяжелом вращающемся объекте 10-20 километров в диаметре с массой звезды. С невероятной плотностью, мощнейшим магнитным полем и гравитацией в 100 миллиардов раз сильнее, чем на Земле, у такой звезды было бы ядро с 3-километровой коркой кристаллического железа. Под ней было бы море с невероятно горячими нейтронами, различными ядерными частицами, протонами и ядрами атомов и возможные богатые нейтронами «макроядра». Эти макроядра в теории могли бы сформировать крупные сверхъядра, аналогичные органическим молекулам, нейтроны выступали бы эквивалентом воды в причудливой псевдобиологической системе.
Гравитационные существа тоже могут существовать, поскольку гравитация является самой распространенной и эффективной фундаментальной силой во Вселенной. Такие существа могли бы получать энергию из самой гравитации, получая неограниченное питание из столкновений черных дыр, галактик, других небесных объектов; существа поменьше — из вращения планет; самые маленькие — из энергии водопадов, ветра, приливов и океанических течений, возможно, землетрясений.
Формы жизни из пыли и плазмы
Группа Цытовича обнаружила, что когда электронные заряды отделяются и плазма поляризуется, частицы в плазме самоорганизуются в форму спиральных структур вроде штопора, электрически заряженных, и притягиваются друг к другу. Они также могут делиться, образуя копии оригинальных структур, подобно ДНК, и индуцировать заряды в своих соседях. По мнению Цытовича, «эти сложные, самоорганизующиеся плазменные структуры отвечают всем необходимым требованиям, чтобы считать их кандидатами в неорганическую живую материю. Они автономны, они воспроизводятся и они эволюционируют».
Некоторые скептики считают, что такие заявления являются больше попыткой привлечь внимание, нежели серьезными научными заявлениями. Хотя спиральные структуры в плазме могут напоминать ДНК, сходство в форме необязательно предполагает сходство в функциях. Более того, тот факт, что спирали воспроизводятся, не означает потенциал жизни; облака тоже так делают. Что еще больше удручает, большая часть исследований была проведена на компьютерных моделях.
Один из участников эксперимента также собщил, что хотя результаты действительно напоминали жизнь, в конце концов, они были «просто особой формой плазменного кристалла». И все же, если неорганические частицы в плазме могут перерасти в самовоспроизводящиеся, развивающиеся формы жизни, они могут быть наиболее распространенной формой жизни во Вселенной, благодаря вездесущей плазме и межзвездным облакам пыли по всему космосу.
Неорганические химические клетки
Группа Кронина начала с создания солей из отрицательно заряженных ионов крупных оксидов металла, связанных с небольшим положительно заряженным ионом вроде водорода или натрия. Раствор из этих солей затем впрыскивается в другой солевой раствор, полный больших положительно заряженных органических ионов, связанных с небольшими отрицательно заряженными. Две соли встречаются и обмениваются частями, так что крупные оксиды металла становятся партнерами с крупными органическими ионами, образуя что-то вроде пузыря, который непроницаем для воды. Изменяя костяк оксида металла, можно добиться того, что пузыри приобретут свойства биологических клеточных мембран, которые выборочно пропускают и выпускают химические вещества из клетки, что потенциально может позволить протеканию того же типа контролируемых химических реакций, который происходит в живых клетках.
Группа ученых также сделала пузыри в пузырях, имитируя внутренние структуры биологических клеток, и добилась прогресса в создании искусственной формы фотосинтеза, которая потенциально может быть использована для создания искусственных клеток растений. Другие синтетические биологи отмечают, что такие клетки могут никогда не стать живыми, пока не получат систему репликации и эволюции вроде ДНК. Кронин не теряет надежду на то, что дальнейшее развитие принесет свои плоды. Среди возможных применений этой технологии есть также разработка материалов для солнечных топливных устройств и, конечно, медицина.
По словам Кронина, «основная цель — это создать комплексные химические клетки с живыми свойствами, которые могут помочь нам понять развитие жизни и пойти этим же путем, чтобы привнести новые технологии на основе эволюции в материальный мир — своего рода неорганические живые технологии».
Зонды фон Неймана
Другие футурологи вроде Фримена Дайсона и Эрика Дрекслера довольно быстро применили эти идеи к области космических исследований и создали зонд фон Неймана. Отправка самовоспроизводящегося робота в космос может быть самым эффективным способом колонизации галактики, ведь так можно захватить весь Млечный Путь меньше чем за один миллион лет, даже будучи ограниченными скоростью света.
Как объяснил Мичио Каку:
«Зонд фон Неймана — это робот, предназначенный для достижения далеких звездных систем и создания фабрик, которые будут строить копии самих себя тысячами. Мертвая луна, даже не планета, может стать идеальным пунктом назначения для зондов фон Неймана, поскольку там будет проще садиться и взлетать с этих лун, а также потому что на лунах нет эрозии. Зонды могли бы жить за счет земли, добывая железо, никель и другое сырье для строительства роботизированных фабрик. Они бы создали тысячи копий самих себя, которые затем разошлись бы в поисках других звездных систем».
За долгие годы были придуманы различные версии базовой идеи зонда фон Неймана, включая зонды освоения и разведки для тихого исследования и наблюдения внеземных цивилизаций; зондов связи, разбросанных по всему космосу, чтобы лучше улавливать радиосигналы инопланетян; рабочие зонды для строительства сверхмассивных космических структур; зонды-колонизаторы, которые будут покорять другие миры. Могут быть даже путеводные зонды, которые будут выводить юные цивилизации в космос. Увы, могут быть и зонды-берсеркеры, задачей которых будет уничтожение следов любой органики в космосе, за чем последует строительство полицейских зондов, которые будут эти атаки отражать. Учитывая то, что зонды фон Неймана могут стать своего рода космическим вирусом, нам стоит осторожно подходить к их разработке.
Гипотеза Геи
Зарождение жизни и эволюция
Каким образом мы все появились на Земле? На протяжении многих веков люди задавали себе этот вопрос и пытались найти на него ответ. Это одна из самых сложных загадок для человеческого разума.
Формирование планеты Земля
Около 4,6 млрд лет назад Земля выглядела совсем по-другому. Вместо привычных зеленого, голубого и белого цветов наша планета была красно-оранжевой. Ее поверхность покрывал океан кипящей лавы. Вместо кислорода, которым мы дышим сегодня, воздух был насыщен смертельно ядовитыми газами.
На протяжении первых 500 млн лет своего существования Земля представляла собой огромный безжизненный шар огненной лавы. Затем в течение еще 300 млн лет планета была слишком горячей для появления воды. Потом она стала постепенно остывать. Повсюду начали идти дожди, причем настолько сильные, что образовались реки, озера, моря и океаны.
Но все водное и наземное пространство по-прежнему оставалось безжизненным: в воде не плавала рыба, по небу не летали птицы, не было ни людей, ни животных. Только песок и камень.
Появление жизни на Земле
По мнению биологов, жизнь на Земле образовалась в результате эволюции. Несмотря на видимую безжизненность древнего океана, он содержал химические соединения, которые были готовы преобразоваться в живые организмы. Ученые назвали эти строительные вещества первичным бульоном, т.е. возможным источником возникновения жизни на Земле. В состав этого бульона входили аминокислоты, белки, жиры, углеводы и другие основные компоненты клеток живого существа.
Когда на Земле зародилась жизнь?
Что возникло раньше: яйцо или курица?
Загадка кажется смешной, но в ней есть глубокий смысл. Подумай сам: если бы не было курицы, то не существовало бы и яиц, а с другой стороны, как появилась курица? Из яйца? Что все-таки было первым? Ответ на этот очень сложный вопрос касается не только курицы и яйца, но и всех форм жизни.
Чем питались первые клетки?
Первые клетки питались, скорее всего, первичным бульоном, тем, из которого они образовались. Большое количество белков, жиров и аминокислот позволяло клеткам жить и размножаться. Они стали родоначальниками клеток животных. На протяжении миллионов лет запасы продовольствия постепенно сокращались. В результате стали образовываться новые клетки — так называемые продуценты. Они смогли развить способность создавать для себя пищу из окружающего строительного материала, используя энергию Солнца или тепло Земли. Эти клетки положили начало всему растительному миру.
Клетка — это основной элемент живого существа. Она может питаться, двигаться и образовывать себе подобных. Первые клетки были достаточно примитивными, но они смогли взять необходимые элементы из первичного бульона и начать свою очень короткую жизнь.
Эволюционные изменения
Чтобы жизнь вокруг нас стала такой, какой мы ее видим сейчас, был пройден долгий и трудный путь превращения простейшей клетки в многоклеточный организм.
Кислород — основа жизни
Переломным моментом на этом пути стало использование клетками кислорода. Ты уже знаешь, что изначально в земной атмосфере кислород содержался в минимальных количествах или отсутствовал вообще, поэтому и первые клетки были устроены так, что не нуждались в нем.
Тем не менее клетки развивались и выделяли кислород в атмосферу. В течение довольно длительного времени атмосфера Земли из смеси смертельно ядовитых газов превратилась в среду, благоприятную для живых существ.
Следующий этап развития
Развитие многоклеточных организмов — следующий этап эволюционного развития. Жизнь больше не ограничивалась одноклеточными существами. Стали появляться новые организмы, состоящие из двух, десяти, тысячи и даже миллиардов клеток. Более того, клетки с разным строением стали специализироваться на выполнении разных работ. Например, одни исполняли роль глаз, другие — сердца, третьи — мозга, тем самым усложняя и совершенствуя устройство живого организма.
Естественный отбор: выживают сильнейшие
Почему так происходит? Давай разбираться. Жизнь на Земле началась с простейших клеток, которые впоследствии развились в растения, животных и все остальные организмы. Но кто решил, как будет выглядеть каждый из них?
Почему у животных есть глаза, уши, нос и другие органы? Почему существует так много видов живых существ?
Да, и этот «кто-то» — естественный отбор. Согласно закону естественного отбора, сильный выживает, а слабый погибает. Например, в стае львов только самые сильные и здоровые животные способны к воспроизведению, т.е. выведению потомства.
Каким образом определяется внешний вид животных?
Ты сам можешь дать ответ на этот вопрос. Посмотри на себя в зеркало. На кого ты похож? На своих родителей, бабушек и дедушек.
То же происходит и с животными. У львов рождаются львята, у сов — совята и т.д. И если у львов длинный хвост, то такой же будет у львенка, когда он вырастет. Маленький совенок очень похож на своих взрослых родителей, и вряд ли ты его перепутаешь с птенцом павлина или цыпленком. Детеныши перенимают все внешние признаки своих родителей.
Эволюция в действии — совершенствование поколений
Представь, миллионы лет назад на Земле жили птицеподобные животные, которые не могли летать. Со временем у некоторых из них развилась способность высоко прыгать и, возможно, даже пролетать небольшие дистанции. Совершенно очевидно, что это умение давало им неоспоримые преимущества перед другими видами живых существ. Прыгучие животные могли беспрепятственно скрываться от погони, быстрее перемещались и находили пищу. Поэтому выжили именно эти особи, а их детеныши унаследовали способность высоко прыгать и пролетать небольшие расстояния. И так происходило с каждым поколением, причем потомки еще выше прыгали и еще дольше могли находиться в воздухе. А выживали самые сильные и здоровые, и у них появлялись детеныши, обладавшие выдающимися качествами своих родителей.
В конце концов спустя миллионы лет птицы стали непревзойденными асами полета.
Происхождение жизни на Земле: доказанная теория или нераскрытая тайна
Валерий Спиридонов, первый кандидат на пересадку головы, для РИА Новости
Человечество на протяжении многих лет пытается разгадать истинную причину и историю появления жизни на нашей планете. Еще чуть более ста лет назад практически во всех странах люди даже не думали подвергать сомнению теорию божественного вмешательства и сотворения мира высшим духовным существом.
Ситуация изменилась после выхода в ноябре 1859 года величайшего труда Чарльза Дарвина, и сейчас вокруг этой темы существует немало споров. Число сторонников дарвиновской теории эволюции в Европе и Азии насчитывает больше 60-70%, приблизительно 20% в США и около 19% в России по данным конца прошлого десятилетия.
Во многих странах сегодня призывают исключить труд Дарвина из школьной программы или хотя бы изучать его наравне с другими вероятными теориями. Если не говорить о религиозной версии, к которой склоняется большая часть населения планеты, сегодня существует несколько основных теорий происхождения и эволюции жизни, описывающих ее развитие на самых разных этапах.
Панспермия
Сторонники идеи панспермии убеждены, что на Землю первые микроорганизмы были принесены из космоса. Так считал известный немецкий ученый-энциклопедист Герман Гельмгольц, английский физик Кельвин, российский ученый Владимир Вернадский и шведский химик Сванте Аррениус, считающийся сегодня родоначальником этой теории.
Научно подтвержден факт, что на Земле неоднократно были обнаружены метеориты с Марса и других планет, возможно с комет, которые могли прибыть даже из чужих звездных систем. В этом сегодня никто не сомневается, однако пока не понятно как жизнь могла возникнуть на других мирах. По сути, апологеты панспермии переносят «ответственность» за происходящее на инопланетные цивилизации.
Теория о первичном бульоне
Рождению этой гипотезы поспособствовали эксперименты Гарольда Юри и Стэнли Миллера, проведенные в 1950-е годы. Они смогли воссоздать почти те же условия, которые существовали на поверхности нашей планеты до зарождения жизни. Через смесь молекулярного водорода, угарного газа и метана пропустили небольшие электрические разряды и ультрафиолет.