самый древний этап жизни земли кроссворд
ГДЗ по истории 5 класс, рабочая тетрадь Чернова, тема 2, упр 16. Решите кроссворд «Первобытные земледельцы и скотоводы».
Если вы правильно решите кроссворд, то в выделенных клетках по диагонали, прочтете название возникшего из собирательства занятия, обеспечивающего людей растительной пищей.
По горизонтали: 1. Металл, из которого первобытные люди изготавливали украшения. 2. Подарок, приносимый первобытными людьми духам и богам. 3. Первый металл, из которого люди научились делать орудия труда. 4. Просьба, с которой люди обращались к богам и духам. 5. Изготовление льняного полотна и шерстяной ткани из нитей. 6. Возникшее из охоты занятие, надежно обеспечивающее людей мясной пищей. 7. Изготовление нитей из шерсти животных или из волокон растений. 8. Орудие для пахоты, пришедшее на смену мотыге. 9. Изображение духа или бога (обычно из дерева, глины или камня). 10. Несколько родовых общин, живших в одной местности.
По горизонтали: 1. Металл, из которого первобытные люди изготавливали украшения (золото). 2. Подарок, приносимый первобытными людьми духам и богам (жертва). 3. Первый металл, из которого люди научились делать орудия труда (медь). 4. Просьба, с которой люди обращались к богам и духам (молитва). 5. Изготовление льняного полотна и шерстяной ткани из нитей (ткачество). 6. Возникшее из охоты занятие, надежно обеспечивающее людей мясной пищей (скотоводство). 7. Изготовление нитей из шерсти животных или из волокон растений (прядение). 8. Орудие для пахоты, пришедшее на смену мотыге (плуг). 9. Изображение духа или бога (обычно из дерева, глины или камня) (идол). 10. Несколько родовых общин, живших в одной местности (племя).
Ответ по диагонали: Земледелие.
Основные геологические эры и периоды Земли в хронологическом порядке
Наша Вселенная существует 13 миллиардов лет. Планета Земля образовалась примерно 4,5 млрд лет назад из газа и пыли, возникших в ходе образования Солнца. Вначале планета была раскалена из-за ударов астероидов и остаточного тепла, но со временем Земля остыла и на её поверхности образовалась земная кора.
Несколько позже, в результате столкновения Земли с неким небесным телом возникла Луна. Остатки вещества вместе с земной мантией были выброшены в космос, на околоземную орбиту. Так появился естественный спутник Земли.
Геологическая история Земли – это последовательность сменяющих друг друга эпох и периодов. Эти эпохи и периоды включают в себя такие процессы как образование ландшафтов и материков, формирование флоры и фауны, смена климата, зарождение жизни.
Жизнь на нашей планете появилась около 3,8 млрд лет назад. В это время уже оформляется земная кора. Впоследствии непрерывного движения тектонических плит, происходило её постоянное изменение.
Первые живые организмы появляются в воде, а на сушу выбираются спустя несколько миллионов лет. Процесс геологического развития Земли происходит и сейчас.
Всю историю Земли учёные делят на временные отрезки – эоны. Существуют 2 крупных эона в истории Земли: Докембрий и Фанерозой. В свою очередь эоны делятся на эры, а эра на периоды. Каждый из этапов характеризуется важными событиями в формировании условий для жизни на Земле. Смена этапов происходит в результате масштабных природных катаклизмов.
Геологической эрой называют отрезок на геологической временной шкале истории Земли, подинтервал эона, например: Архей (Архейская эра). Большинство геологических эр подразделяются на меньшие временные отрезки, называемые геологическими периодами.
В геологической истории Земли важное значение имеют 5 основных эр, о которых речь пойдёт ниже.
Архейская эра
Архей – самый древнейший этап жизни в истории Земли. Сам термин был предложен геологом Дж. Дана в 1872 году.
Начинается этот период примерно 4,5 млрд лет назад, когда планета Земля только формировалась. Сохранившиеся горные породы этого времени свидетельствуют о развитии прокариотической (доядерной) формы жизни.
Первые фотосинтезирующие организмы сохранились до наших дней в виде окаменелостей и их возраст насчитывает 3,4 млрд лет.
В атмосфере присутствовал хлор, водород и аммиак. В Архее формируются залежи серы, никеля, железа. Уровень радиации в это время был достаточно высок, а температура доходила до 80 градусов по Цельсию.
От удара с небесным телом, в результате которого сформировалась Луна, увеличивается скорость вращения Земли и её наклон.
Начинает зарождаться атмосфера и океан. Первая жизнь зародилась в этом так называемом «первичном бульоне».
Протерозойская эра
Протерозойская эра начинается примерно 2,5 млрд лет назад и длится до 540 млн лет назад. Это самый длительный геологический период в истории Земли. Происходит формирование почвы и одноклеточных организмов, появляются первые водоросли, черви и моллюски.
С начала периода кислород в атмосфере отсутствует, но со временем его начинают выделять бактерии, жившие в «первичном бульоне». У некоторых из них появляется способность к аэробному дыханию.
Солнце начинает давать больше света, однако его недостаточно для прогрева Земли. Наоборот, — Земля значительно охлаждается в этот период. Вся планета покрывается ледником, отсюда появляется гипотеза Земля-снежок. Вероятно, похолодание было связано с резким увеличением кислорода в атмосфере.
Период от 1,8 до 0,72 млрд лет назад называют «скучным миллиардом». Он характеризуется климатической стабильностью, низким уровнем кислорода, а также медленной эволюцией живых существ.
Палеозойская эра
Этот период известен как эра древней жизни. Палеозой делится на 6 периодов:
Мезозойская эра
В свою очередь мезозой делится на 3 периода:
Кайнозойская эра
Кайнозой – это современная эра Земли. Начинается 65 млн лет назад. Этот период истории Земли отличается большим разнообразием видов животных и растений, наземных млекопитающих. Кайнозой также является эрой саванн, цветковых растений и насекомых. Происходит эволюция птиц.
Эпоха Кайнозоя ознаменовалась появлением на Земли человека разумного.
Подведение итогов
Геологическая история Земли, безусловно, важна для современной науки. Современные формы жизни представляют собой результат того, что происходило за все эти эпохи. Эволюция жизни на Земле идёт и по сей день. Изучение истории Земли в ретроспективе позволит понять, откуда возникло самое удивительное явление во Вселенной – жизнь.
Деление истории Земли на эры и периоды
Зарождение жизни на Земле произошло около 3,8 млрд. лет назад, когда закончилось образование земной коры. Ученые выяснили, что первые живые организмы появились в водной среде, и только через миллиард лет произошел выход на поверхность суши первых существ.
Формированию наземной флоры способствовало образование у растений органов и тканей, возможность размножаться спорами. Животные также значительно эволюционировали и приспособились к жизни на суше: появилось внутреннее оплодотворение, способность откладывать яйца, легочное дыхание. Важным этапом развития стало формирование головного мозга, условных и безусловных рефлексов, инстинктов выживания. Дальнейшая эволюция животных дала основу для формирования человечества.
Деление истории Земли на эры и периоды, дает представление об особенностях развития жизни на планете в разные временные промежутки. Ученые выделяют особо значимые события в формировании жизни на Земле в отдельные отрезки времени – эры, которые делятся на периоды.
Существует пять эр:
Архейская эра
Архейская эра началась около 4,6 млрд. лет назад, когда планета Земля только стала формироваться и признаков живого на ней не было. Воздух содержал хлор, аммиак, водород, температура доходила до 80°, уровень радиации превышал допустимые границы, при таких условиях зарождение жизни было невозможным.
Считают, что около 4 млрд. лет назад наша планета столкнулась с небесным телом, и следствием было формирование спутника Земли – Луны. Это событие стало значимым в развитии жизни, стабилизировало ось вращения планеты, поспособствовало очищению водных структур. Как следствие, на глубине океанов и морей зародилась первая жизнь: простейшие, бактерии и цианобактерии.
Протерозойская эра
Протерозойская эра длилась примерно с 2,5 млрд. лет до 540 млн. лет назад. Обнаружены остатки одноклеточных водорослей, моллюсков, кольчатых червей. Начинает формироваться почва.
Воздух в начале эры еще не был насыщен кислородом, но в процессе жизнедеятельности бактерии, населяющие моря, стали все больше выделять O2 в атмосферу. Когда количество кислорода находилось на стабильном уровне, многие существа сделали шаг в эволюции и перешли на аэробное дыхание.
Палеозойская эра
Палеозойская эра включает шесть периодов.
Кембрийский период (530 – 490 млн. лет назад) характеризуется возникновением представителей всех видов растений и животных. Океаны населяли водоросли, членистоногие, моллюски, появились первые хордовые (хайкоуихтис). Суша оставалась незаселенной. Температура сохранялась высокой.
Ордовикский период (490 – 442 млн. лет назад). На суше появились первые поселения лишайников, а мегалограпт (представитель членистоногих) стал выходить на берег для откладывания икры. В толще океана продолжают развиваться позвоночные, коралловые, губки.
Силурийский период (442 – 418 млн. лет назад). На сушу выходят растения, у членистоногих формируются зачатки легочной ткани. Завершается образование костного скелета у позвоночных, появляются сенсорные органы. Идет горообразование, формируются разные климатические зоны.
Девонский период (418 – 353 млн. лет назад). Характерно образование первых лесов, преимущественно папоротниковых. В водоемах появляются костные и хрящевые, амфибии стали выходить на сушу, формируются новые организмы – насекомые.
Каменноугольный период (353 – 290 млн. лет назад). Появление земноводных, происходит опускание материков, в конце периода было значительное похолодание, что привело к вымиранию многих видов.
Пермский период (290 – 248 млн. лет назад). Землю населяют пресмыкающиеся, появились терапсиды – предки млекопитающих. Жаркий климат привел к образованию пустынь, где смогли выжить только стойкие папоротники и некоторые хвойные.
Мезозойская эра
Мезозойская эра делится на 3 периода:
Триасовый период (248 – 200 млн. лет назад). Развитие голосеменных растений, появление первых млекопитающих. Раскол суши на континенты.
Юрский период (200 – 140 млн. лет назад). Возникновение покрытосеменных растений. Появление предков птиц.
Меловой период (140 – 65 млн. лет назад). Покрытосеменные (цветковые) стали господствующей группой растений. Развитие высших млекопитающих, настоящих птиц.
Кайнозойская эра
Кайнозойская эра состоит из трех периодов:
Нижнетретичный период или палеоген (65 – 24 млн. лет назад). Исчезновение большинства головоногих моллюсков, появляются лемуры и приматы, позднее парапитеки и дриопитеки. Развитие предков современных видов млекопитающих – носорогов, свиней, кроликов и др.
Верхнетретичный период или неоген (24 – 2,6 млн. лет назад). Млекопитающие населяют сушу, водные просторы, воздух. Появление австралопитеков – первых предков людей. В этот период сформировались Альпы, Гималаи, Анды.
Четвертичный период или антропоген (2,6 млн. лет назад – наши дни). Знаменательное событие периода – появление человека, сначала неандертальцев, а вскоре Homo sapiens. Растительный и животный мир обрел современные черты.
Самый древний этап жизни земли кроссворд
Архейская эра (4–2,5 млрд лет назад)
Самый древний этап жизни нашей планеты — архейская эра (от греческого «археос» — начало). Она началась около 4 млрд лет назад с бурлящих вулканов на раскаленной безжизненной Земле, на которую непрерывно падали метеориты из космоса, и продлилась примерно 1,5 млрд лет. К окончанию этого периода в морях нашей планеты уже появились первые живые существа. Именно с архейской эры начинается земная эволюция.
Вулканы и зарождение будущих континентов (4–3 млрд лет назад)
Когда в распоряжении науки появился радиоизотопный метод, стало возможным определять возраст геологических пород. Суть его в следующем. У большинства химических элементов есть изотопы — атомы с одинаковыми химическими свойствами, но отличающиеся числом нейтронов в ядре.
Изотопы, в отличие от обычных атомов, неустойчивы и рано или поздно распадаются на части. Никто не может предсказать, когда это произойдет, но статистически известно, за какой срок разрушается половина атомов в выбранном образце. Это время называется периодом полураспада, который для каждого из существующих изотопов известен с высокой точностью. Легко подсчитать, что после промежутка времени, равного двум периодам полураспада, останется 1/4 (1/2×1/2) атомов данного изотопа, а после n периодов полураспада останется 1/2n таких атомов.
Пока какой-либо материал еще формируется, он обменивается атомами (в том числе и изотопами) с окружающей средой, например когда животное питается (или формируется горная порода), оно получает помимо обычного углерода с атомной массой 12 (углерод-12) также изотоп с атомной массой 14 (углерод-14). При этом концентрация последнего в костях животного, окружающей среде, съедаемой пище и т. п. будет одинакова. После смерти животного (или после окончания формирования горной породы) обмен атомами с окружающей средой прекращается: новые уже не поступают в образец, а имеющиеся к моменту окончания формирования материала разрушаются в соответствии с периодами полураспада, известными для каждого вида изотопов. Так, в образце их становится все меньше.
Это означает, что, сравнив концентрацию изотопа данного вида в исследуемом материале и окружающей среде, можно подсчитать, как давно не поступают в него новые атомы изотопа, сколько времени (сколько периодов полураспада) прошло с момента его формирования (будь это останки живого организма или горная порода). В разных случаях удобно использовать подсчет по несхожим видам атомов — в основном применяют радиоуглеродный (основанный на уже рассмотренном нами соотношении углерод-14:углерод-12), калий-аргоновый и уран-свинцовый методы радиоизотопного анализа.
Изучив изотопный состав горных пород нашей планеты, можно с высокой точностью установить время их формирования. Такие исследования позволили разделить всю историю Земли на пять этапов — геологических эр. Каждую из них характеризуют определенные события, которые изменяли облик планеты и влияли на развитие биосферы.
Архейская эра — самый древний этап существования Земли. Физико-химические процессы в ее раскаленных недрах, которые сопровождала постоянная метеоритная бомбардировка, 4 млрд лет назад шли еще полным ходом. Однако тепловой поток уже не растекался в окружающем планету космосе, а задерживался формирующейся земной корой.
Наша планета разогревалась все больше и из-за этого снижалась ее плотность и должен был возрастать объем, чему препятствовала земная кора. Такие противоборствующие процессы проще понять, если представить себе туго накачанный мяч, жесткая оболочка которого сдерживает внутреннее давление.
Если оно станет слишком высоким, мяч может лопнуть — его оболочка порвется. Похожие процессы происходили с земной корой, которая 4–3,6 млрд лет назад начала давать трещины и медленно расползаться, выпуская на поверхность избыток расплавленного вещества недр. Конечно, прежде чем начать расходиться в разные стороны, земная кора и лежащий под ней верхний слой мантии должны были остыть и затвердеть, но еще глубже по-прежнему находилась расплавленная магма — она и стала подниматься на поверхность планеты по образовавшимся гранитным разломам.
В самом начале архея земная кора стала трескаться в разных местах. Многочисленные разломы расширялись. В неустойчивой еще земной коре стали появляться особо подвижные зоны — протогеосинклинали. Там и происходили самые бурные вулканические извержения, дававшие выход огромному количеству расплавленной базальтовой лавы. Архейская эра — время гигантских вулканов и мощнейших землетрясений, которые тревожили еще непрочную и тонкую оболочку планеты.
Обычно цепи вулканов находились в центре протогеосинклиналей. Первичная земная кора дробилась, между подвижными протогеосинклиналями возникали их противоположности — устойчивые плиты, которые называют протоплатформами. Водяные пары охлаждались высоко над землей, конденсировались в огромные облака и проливались дождем на разогретые скалы. Потоки воды собирались в глубоких расширяющихся трещинах земной коры — так появлялись обширные водные пространства.
Раскаленная лава мчалась вниз с огнедышащих гор, впадала в новообразованные моря и океаны — гигантские столбы водяного пара поднимались высоко в атмосферу. Грозно и неприветливо выглядела юная планета! Если бы 3–3,5 млрд лет назад на архейскую Землю ступил человек, он был бы поражен обилием гигантских вулканов, безбрежными океанами, в которых все время бушевали цунами (огромные волны, вызываемые подводными землетрясениями), и постоянными движениями земной коры.
Бурные геологические процессы архейской эры создали для будущего человечества неисчислимые запасы полезных ископаемых. Вулканы выплескивали на поверхность Земли магму, богатую металлами, — так появились месторождения медной и железной руды, обширные залежи гранитов. Вдоль образовавшихся глубоких разломов земной коры начиналось новое накопление осадочных горных пород.
На странной Земле архейского периода не было континентов, ведь ее кора еще находилась в постоянном движении. Только миллионы вулканов, изливая на поверхность невероятное количество лавы, медленно образовывали горы и каменные плоскогорья, а разломы, покрывавшие поверхность, создавали глубокие океанические впадины.
Уже в архейскую эру, как мы знаем, появились протоплатформы — островки устойчивости между постоянно колеблющимися протогеосинклиналями. Эти неподвижные плиты положили начало древнейшим ядрам континентов — щитам. Принято считать, что примерно 3,5 млрд лет назад в архее на Земле возник самый ранний из них — гигантский Ваальбара. Он просуществовал около 700 млн лет и раскололся на сегменты, которые стали отдельными участками тверди.
В эту бурную геологическую эру великих потрясений сформировалась некоторая доля современной континентальной коры. Пока нельзя сказать, какая именно: по разным методам измерения получается от 5 до 40%, что составляет различие в восемь раз. Вот как мало мы еще знаем о древнейшем периоде развития Земли!
Изменение климата — путь к возникновению жизни (4–3,6 млрд лет назад)
Молодая планета, сотрясаемая подземными толчками, озаряемая огнем вулканов и почти полностью лишенная атмосферного кислорода, вращалась вокруг собственной оси гораздо быстрее, чем сегодня. Сутки архейской эры (полный оборот Земли вокруг своей оси) составляли всего девять часов. Календарный год включал девятьсот таких коротких временных промежутков.
Луна находилась намного ближе к нашей планете, и ее воздействие на земные процессы было более существенным, чем сегодня. Пробиваясь сквозь густые облака, свет огромного спутника озарял безжизненную Землю. Гидросфера на земной поверхности в самом начале архея была представлена достаточно скромно: разрозненные мелкие водоемы покрывали впадины коры — они еще не успели слиться в единый океан. Температура воды в таких озерах достигала 70–90 °C, поэтому время для возникновения жизни пока не наступило.
Атмосфера архея была менее плотной, чем современная (этим и объясняется обилие метеоритов, достигавших земной поверхности). Кислород, как мы уже отметили, в воздухе почти не содержался, азот составлял намного меньшую часть, чем теперь (всего лишь 10–15%), большинство других газов быстро разлагалось под действием жесткой солнечной радиации. В атмосфере, которая тогда существовала, господствовал углекислый газ, и из-за этого создавался сильнейший парниковый эффект, температура могла достигать 120 °C и более.
Парниковым эффектом называется ситуация, когда солнечный луч, который проникает через атмосферу, отражается от поверхности планеты и уже не может уйти в космическое пространство, так как богатая углекислым газом воздушная оболочка не выпускает его наружу. Большая часть тепловой энергии, поступающей на Землю, остается в пределах атмосферы, постоянно нагревая и воздух, и земную поверхность. Однако к концу архейской эры содержание углекислого газа значительно снизилось.
Обильные ливни и конденсация водяных паров неуклонно увеличивали количество воды на Земле. Мелкие озера сливались в единый океан, поднимая его уровень и затопляя целые хребты молодых гор. Из гранитов, слагавших земную кору, вымывались оксид кремния, соли угольной кислоты, соединения железа, марганца и, конечно же, углекислый газ.
Как считают ученые, уровень солей в первичном океане был еще не очень высок — не более 2,5 %, в то время как в современных океанах достигает примерно 3,5 %.
Когда на нашей планете сформировались воздушная и водная оболочки, возникли и климатические пояса — солнечное тепло уже не одинаково нагревало все земные широты. Мы можем судить о существовании таких зон архейской эры по обнаруженным в Сибири, Северной Америке и Центральной Африке тиллитам — отложениям древних ледниковых пород. На основании этого открытия был сделан вывод о том, что в архейскую и последовавшую за ней протерозойскую эры уже происходили оледенения Земли. Когда же между периодами похолодания все таяло, появлялись озера ледникового происхождения.
В те далекие времена льды, вероятно, сковывали только горные хребты, которые высоко поднимались над поверхностью планеты. В других, равнинных зонах, скорее всего, оставался достаточно теплый климат.
При сохранении пока еще бескислородной атмосферы изменения климата, происходившие на Земле 4–3,6 млрд лет назад, подготовили условия, в которых смогли появиться сложные органические молекулы, а впоследствии — возникнуть первые примитивные формы жизни.
Загадка появления жизни на Земле (3,8–3,3 млрд лет назад)
Зарождение жизни, возникновение на Земле первых примитивных одноклеточных организмов было одним из важнейших событий архейской эры.
Сами одноклеточные существа, конечно, не могли сохраниться в окаменевшем виде, но обнаружены древнейшие (3,5–3,6 млрд лет назад) горные породы, химический состав которых свидетельствует о работе микроорганизмов. В этих породах содержится много графита, который получился в результате химических превращений тех веществ, из которых состояли первые на земле живые организмы. Принято считать, что в архейскую эру на Земле появились одноклеточные прокариоты — бактерии и сине-зеленые водоросли. Об этом мы можем судить, изучая многочисленные следы их жизнедеятельности, которые сохранились в отложениях древнейших пород.
В раннем архее условия на Земле очень отличались от современных: температура воздуха и земной поверхности достигала 95–140 °C, а кислорода не было. Попробуйте представить себе перегретую баню, из которой откачан воздух, а взамен него смесь ядовитых газов — место для жизни, что и говорить, не очень уютное. Очевидно, что привычные для нас формы жизни не могли появиться в подобной ситуации. Организмам, которые дышат кислородом, на такой планете явно делать нечего. Однако жизнь, несмотря на это, уже существовала, и она была тоже бескислородной! Бескислородные, или анаэробные (от греческих слов «ан» — отрицательная частица, «аер» — воздух и «биос» — жизнь), существа живут рядом с нами и по сей день.
Есть веские основания считать их самыми первыми обитателями Земли. В основном анаэробы составляют особую группу организмов, которая настолько не похожа на все прочие формы жизни, что выделена биологами в отдельное царство живых существ с говорящим названием архебактерии. С тех древних времен они не изменили своих свойств: большинство архебактерий и поныне анаэробы, многие из них способны находиться в таких экстремальных условиях, где иным формам жизни не место, например в горячих источниках.
Кроме открытых Пастером организмов, живущих в масле, к анаэробам относятся бактерии почвы, глубин океана, горячих источников.
Изучая осадочные породы архейской эры, исследователи обнаружили, что часть из них имеет органическое происхождение и содержит компоненты, которые неустойчивы в присутствии кислорода воздуха. Это и положило начало гипотезе о существовании анаэробов в архейскую эру. Таким образом, первые живые существа нашей планеты не нуждались в кислороде для дыхания. Выработанную в различных химических превращениях энергию они научились запасать в виде аденозинтрифосфорной кислоты (АТФ), которая и сегодня является «молекулой-аккумулятором» энергии для всех живых существ (уже не только анаэробных. Эту книгу, например, вы сейчас читаете за счет запасов энергии, которая хранится в АТФ клеток глаз и мозга).
Размножаясь, первые анаэробы смогли достаточно быстро занять все пригодные для жизни на Земле того времени места обитания. Их дальнейший рост стал сдерживаться нехваткой пищи. Вероятно, именно в этот момент живым организмам пришлось переключиться на новый источник энергии — кислород, количество которого в атмосфере и водах все возрастало.
Как же произошло зарождение жизни — важнейшее событие в истории не только нашей планеты, но и всей Солнечной системы?
Наиболее убедительной гипотезой на данный момент является версия биохимической эволюции, предложенная еще в 1924 г. русским ученым, академиком Александром Ивановичем Опариным в книге «Происхождение жизни».
Ученый предложил объяснение того, как под воздействием химических и физических факторов первые одноклеточные формы жизни могли появиться из неживой материи. Как мы знаем, атмосфера архейской Земли была богата аммиаком, оксидами углерода и водяным паром. В более низких концентрациях в ней также присутствовали водород, азот и кислород. Таким образом, основные химические элементы, необходимые для сборки биологически активных молекул, к тому времени уже были доступны, а ультрафиолетовое излучение Солнца могло служить неисчерпаемым источником энергии для химических превращений. Энергия внутреннего тепла Земли (вулканических извержений), могучих грозовых разрядов и радиоактивного распада также, вероятно, участвовала в синтезе сложных молекул из более простых.
По мнению Опарина, биохимическая эволюция могла протекать в три этапа. На первом этапе происходил интенсивный синтез органических (то есть основанных на цепочках углерода) веществ из неорганических предшественников. Соли, растворенные в архейском океане, и атмосферные газы служили реагентами в гигантском химическом реакторе — литосфере древней Земли.
Часть органических молекул могла также возникать под действием грозовых разрядов, ультрафиолетовой радиации и тепла в атмосфере. В конечном итоге вся органика, синтезированная за миллионы лет, скапливалась в океане, ее концентрация в воде росла. Безжизненный океан стал «питательным бульоном», в котором могли появиться биологически активные молекулы белков (пептидов).
На втором этапе они появляются! Все те же источники энергии в виде ультрафиолета и электрических разрядов могли способствовать объединению коротких молекул (мономеров) в длинные цепочки-полимеры. Первичные органические молекулы объединялись, приобретали более сложную структуру и давали начало пробионтам — предкам живых организмов. В результате эволюции пробионты соединялись в коацерватные капли (или коацерваты — от латинского coacervātus — «собранный в кучу»), то есть в отдельно существующие структуры с высокой концентрацией сложных молекул. Коацерваты еще не были ни клетками, ни живыми существами вообще, но они уже поглощали нужные им вещества из окружающей их среды, взаимодействовали между собой, росли. От настоящих живых организмов их пока отличала неспособность размножаться.
На последнем третьем этапе эта способность у них появляется — различие между коацерватными каплями и клетками окончательно стирается. Капли конкурировали между собой за доступные питательные вещества и энергию — как и все живые организмы, они подвергались естественному отбору. Внутри капли, отделенной от окружающего мира слоем молекул, напоминавшим примитивную мембрану, происходили сложные химические процессы, характерные для метаболизма клеток. Вырастая до определенных размеров, капля делилась и давала начало дочерним образованиям, которые сохраняли ее свойства. Началось самовоспроизводство живых существ на Земле. Коацерватные капли стали первыми примитивными одноклеточными организмами.
Прямого экспериментального подтверждения гипотезы Опарина не существует, да и вряд ли оно появится — воспроизвести эволюционные процессы, на которые потребовались десятки миллионов лет, в лабораторных условиях непросто. Однако в 1953 г. два американских химика, Стэнли Миллер и Гарольд Юри, поставили красивый эксперимент, в ходе которого были добыты косвенные доказательства правоты Опарина. Идея ученых заключалась в том, чтобы воссоздать в лабораторной установке предполагаемые условия архейской Земли. Через смесь растворенных веществ и газов (аммиака, метана, водорода, монооксида углерода и водяных паров), характерных, как принято считать, для древних гидро- и атмосферы, пропускали электрические разряды («вспышки молнии»), подогревали ее («тепло вулканов») и облучали ультрафиолетом («солнечное излучение»).
Эксперимент был на редкость удачным, но и после него осталось немало загадок. Вот одна из них. Пусть получены и аминокислоты (составные части белков), и предшественники нуклеиновых кислот. Допустим, за миллионы лет (вместо недели) получились бы полноценные белки и нуклеиновые кислоты. В живой клетке нуклеиновые кислоты кодируют состав белка (последовательность сборки аминокислот), а белки помогают самовоспроизводству нуклеиновых кислот (репликации ДНК и транскрипции РНК). Однако как и те, и другие соединения смогли «договориться» о взаимной помощи? Этот важнейший для биологии вопрос пока остается без ответа.
Анализ результатов показал, что всего за неделю искусственного архея 10–15% углерода перешло в форму сложных органических молекул, среди них были 22 аминокислоты, сахара, липиды и предшественники нуклеиновых кислот, то есть практически все, что потребовалось бы для «сборки» живой клетки. Хотя их самих, разумеется, получено не было.
Первые живые организмы (3,5–2,5 млрд лет назад)
В распоряжении современной науки, как мы уже подчеркивали, имеются не сами останки древних одноклеточных организмов, а продукты их деятельности в виде некоторых минералов. Это позволило сделать вывод о том, что в архейскую эру уже сформировались бактерии и сине-зеленые водоросли. Принято считать, что возникновение жизни на Земле вскоре привело к появлению трех царств живых существ: архебактерий, современных бактерий (эубактерий) и надцарства (включающего согласно классификации несколько царств) эукариот. К последним относятся те, чьи клетки имеют более сложную организацию, — они включают окруженное мембраной ядро, содержащее ДНК в виде хромосом.
В составе цитоплазмы эукариотических клеток есть высокоразвитые органеллы (митохондрии, хлоропласты, эндоплазматический ретикулум и др.), которых нет у бактерий. Эукариоты — это царства животных, растений и грибов (которых в архейскую эру еще не было) и одноклеточных простейших (которые уже могли существовать).
В ходе эволюции ни архебактерии (жители бескислородной среды того времени), ни эубактерии не дали начала новым формам жизни. Эта участь выпала только эукариотам — простейшим архейских морей.
В архейских отложениях в Австралии найдены строматолиты (от греческих слов «строма» — подстилка и «литос» — камень) — слоистые включения большой плотности в известняках и доломитах. Строматолиты принято считать результатом жизнедеятельности сине-зеленых водорослей.
Однажды появившись, сине-зеленые водоросли стали обогащать атмосферу кислородом.
В конце архея эволюция вплотную приступила к созданию важнейших для живых существ приспособлений полового процесса и многоклеточности. Разговор о них впереди.