Пс 35 кв энергомаш что это
Содержание материала
Трансформаторные подстанции напряжением 35/6 — 10 кВ.
Этот тип подстанций является основным при электроснабжении сельскохозяйственных районов от сетей энергетических систем. Такие подстанции обычно выполняются как районные; их устанавливают на окраинах населенных пунктов для распределения электрической энергии на напряжении 10 кВ по примыкающему сельскому району.
По схеме подключения к питающей сети напряжением 35 кВ они могут быть выполнены как тупиковые с односторонним и как проходные с двусторонним питанием с установкой одного или двух силовых трансформаторов мощностью от 630 до 6300 кВА, номинальным напряжением 35/10 кВ (вторичное напряжение 6 кВ для таких подстанций применяется значительно реже). Наибольшее распространение получили понижающие подстанции, выполненные по сетке схем первичных соединений. Высоковольтная часть подстанций выполняется в виде открытого распределительного устройства (ОРУ), а низковольтная — в виде комплектных шкафов наружной установки типа КРУН, КРН или закрытого РУ. Количество шкафов или ячеек РУ определяется мощностью и схемой трансформаторной подстанции. Открытые распределительные устройства низкого типа выполняют на деревянных, железобетонных стойках, а также в виде металлических порталов.
На рис. 102 показаны схемы сборных комплектных трансформаторных подстанций серии СКТП-35/10 кВ. Тупиковые однотрансформаторные подстанции могут защищаться предохранителями стреляющего типа — схема СКТП-35/10-1 х 630 — 1600 кВА (рис. 102, а) или с помощью короткозамыкателя и отделителя в цепи трансформатора — схема СКТП-35/10-1×1600 — 6300 кВА (рис. 102, б).
Схемы транзитных однотрансформаторных подстанций тех же типов показаны на рис. 102, в и г. Схема двухтрансформаторной транзитной подстанции мощностью 2 X (1600—6300 кВА) с масляным выключателем иа отходящей питающей линии и секционным выключателем на шинах 10 кВ приведена на рис. 102, д, а подстанции с предохранителями — на рис. 102, е.
Рис. 102. Схемы оборудования сборных комплектных трансформаторных подстанций СКТП-35/10 кВ
Рис. 103. Районная понижающая подстанция напряжением 35/10 кВ, мощностью 1600—5300 кВА с двусторонним питанием:
1— распределительное устройство, 2 — промежуточная стойка, 3— силовой трансформатор, 4, 5, 6 — стойки, 7, 8— разъединители, 9-масляные выключатели, 10 — трансформаторы напряжения
Установка оборудования таких подстанций выполняется на унифицированных железобетонных стойках типа УСО или металлоконструкциях типа УМО. Последние применяются для установки разъединителей, короткозамыкателей, отделителей, выключателей, разрядников и релейных шкафов.
Рассмотрим более детально размещение основного оборудования и аппаратов на примере районной сельскохозяйственной подстанции (рис. 103). Силовой трансформатор 3 устанавливается на металлической раме, закрепленной на фундаменте. Подстанция имеет двустороннее питание по линии 35 кВ, поэтому с обеих сторон точки подключения трансформатора предусмотрена установка масляных выключателей 9 типа ВМ-35/600. Они устанавливаются на стойках под порталами, от которых имеются спуски для разъединителей 8 типа РЛНД2-35/600. Разъединители устанавливаются с обеих сторон выключателей для получения видимого разрыва при ревизиях и ремонтах выключателей. Защита трансформатора осуществляется с помощью отделителя ОД-35 с приводом ШПО, установленного на стойке 6 и короткозамыкателя КЗ-35, смонтированного на стойке 5. Для их подключения к шинам служит разъединитель 7 типа РЛНД16-35, смонтированный под порталом. Установка разъединителя облегчает проведение ремонтных работ и ревизий отделителя. На вводе к трансформатору предусмотрен комплект разрядников РВС-35, установленных на стойке 4. Дня измерительных трансформатора напряжения 10 типа НОМ-35 установлены на вводе рядом с масляным выключателем ВМ-35.
Ввод от трансформатора 3 к распределительному устройству 1 выполнен жесткими шинами, укрепленными на промежуточной стойке 2 с опорными изоляторами. Распределительное устройство 10 кВ размещено в девяти комплектных шкафах наружной установки типа КРН-10. В пяти шкафах расположена аппаратура отходящих линий, в остальных шкафах — аппаратура ввода, трансформатор собственных нужд, пятистержневой измерительный трансформатор с разрядниками на 10 кВ, аппараты связи и телесигнализации. Вся территория подстанции закрыта внешним ограждением.
Рассмотренный тип подстанции применяется для электрификации не только сельскохозяйственных потребителей, но и предприятий местной промышленности и других объектов, расположенных в сельской местности.
Понижающие трансформаторные подстанции напряжением 110/6- 10 кВ.
В настоящее время напряжение 110 кВ используется для сельскохозяйственных питающих линий наравне с напряжением 35 кВ. Поэтому в сельской местности сооружают подстанции с двухобмоточными трансформаторами напряжением 110/6-10 кВ. На таких подстанциях устанавливают трансформаторы номинальной мощности 2500 и 4000 кВА, специально изготовляемые для электрификации сельского хозяйства. Подстанции выполняют по упрощенной схеме первичных соединений с установкой предохранителей на стороне высшего напряжения и применением комплектных распределительных устройств наружной установки типа КРУН для распределения электроэнергии на напряжении 6—10 кВ.
На рис. 104 показан разрез комплектной трансформаторной подстанции сельскохозяйственного назначения типа КТПС-110/2500, мощностью 2500 кВА, напряжением 110/10 кВ. Подстанция выполнена на железобетонных основаниях с размещением оборудования ОРУ на унифицированных железобетонных стойках, с металлическим приемным порталом.
Силовой трансформатор 6 подключается к линейному вводу через двухколонковый разъединитель 2 типа РЛНД2-110/600 и предохранители 4 типа ПСН-110. Спуск от ввода к разъединителю и предохранителям выполняется гибким проводом. Разъединитель с приводом расположен на железобетонных стойках, предохранители закреплены на металлическом портале 5 на высоте 4,7 м от земли. К спуску между разъединителем и предохранителями присоединяется комплект разрядников РВС-110, установленных на стойках 3. Они помещены в пределах внутреннего ограждения, ограничивающего подход к высоковольтному оборудованию и зону выхлопа предохранителей ПСН-110. Ввод οт предохранителей к силовому трансформатору выполняется жесткими шинами, закрепленными в промежуточной точке на опорном изоляторе, смонтированном на металлическом портале. Ввод напряжением 10 кВ от силового трансформатора к распределительному устройству 8 типа КРУН-10 выполняется в закрытом токопроводе 7.
Для выполнения высокочастотной связи на подстанции предусмотрена аппаратура обработки линии 110 кВ, расположенная на стойке /. Наружное освещение подстанции выполняется на опорах внешнего ограждения.
Распределительное устройство 10 кВ может быть выполнено ячейками КРУН-10 типа К-ХШ или ячейками КРУН-10 типа К-30. Эти ячейки выполнены в виде металлических шкафов наружной установки со встроенной в них аппаратурой коммутации, защиты и вспомогательными элементами. Они предназначены для комплектования подстанций КТПС-110 и подставляются в полностью собранном виде на общей раме, что позволяет значительно ускорить монтаж подстанции. Габаритные размеры ячеек К-30 без рамы следующие: ширина 750, глубина 1400, высота 1500 мм; габаритные размеры шкафа высокочастотной связи: ширина 1357, глубина 1700, высота 2610 мм. Секции ячеек К-30 монтируются на расстоянии 500 мм друг от друга и соединяются шинами. Шкафы содержат стационарную часть (корпус шкафа) и выкатную часть (тележку), на которой установлены масляные выключатели, трансформаторы тока и аппаратура вторичной коммутации в специальном отсеке на амортизаторах.
При использовании ячеек типа К-ХШ ошиновка ввода от трансформатора в КРУН выполняется жесткими, открыто проложенными шинами, а не в закрытом токопроводе 7, как показано на рис. 104. Ввод от трансформатора к ячейкам шкафов может быть выполнен также высоковольтным кабелем. Такие вводы выполняют при значительном расстоянии между силовым трансформатором и распределительным устройством 10 кВ.
Комплектные подстанции напряжением 110/6—10 кВ выполняются по упрощенным схемам с использованием унифицированных конструкций для ОРУ и комплектных шкафов для РУ-10 кВ. Поэтому их широко применяют в тех сельских районах, по которым проходят линии напряжением 110 кВ, и где невыгодно применять многоступенчатую схему электроснабжения с установкой трехобмоточных трансформаторов напряжением 110/35/10 кВ.
Контрольные вопросы
Оптимальная автоматизация подстанции 35 кВ
Для массового применения на ПС 35 кВ необходимы простые и недорогие решения.
Очевидно, что для этого класса объектов неприменима архитектура цифровой подстанции, разработанная для объектов магистральных сетей. Для массового применения на ПС 35 кВ необходимы простые и недорогие решения с оптимальным (а вовсе не максимальным) использованием новых технологий. Чтобы преодолеть консерватизм эксплуатации, необходимо предложить решение, которое сможет повысить надежность, улучшить эксплуатационные характеристики, снизить капитальные и операционные затраты, а также будет соответствовать действующим НТД и сложившимся сферам ответственности различных служб заказчика.
До оптимизации
На двухтрансформаторной подстанции 35/10 кВ проводилась реконструкция с заменой ОРУ-35 кВ и КРУН-10 кВ на оборудование закрытого исполнения с установкой трех блочно-модульных зданий (ЗРУ-35 кВ, ЗРУ-10 кВ, ОПУ). Большинство терминалов РЗА установлены в ячейках ЗРУ-35 кВ и ЗРУ-10 кВ.
Исходное проектное решение предусматривало установку в ОПУ:
Итого — 9 шкафов в ОПУ! И это без учета автоматики РПН, АИИСКУЭ, связи, СОПТ, ЩСН. Также было сравнительно большое для ПС 35 кВ количество контрольных кабелей между ОПУ и зданиями ЗРУ. Функциональность систем управления — минимальная: простейшая ТМ, отдельная ОБ, отсутствие интеграции вторичных подсистем в ТМ и АСТУ. Именно так и выполняются сегодня большинство проектов по строительству и реконструкции ПС 35–110 кВ.
Рис. 1. Исходная схема расстановки устройств РЗА, ТМ, местного управления.
Условия проекта потребовали существенного сокращения стоимости и габаритов оборудования вторичных систем. Поставка выполнялась в кратчайшие сроки с одновременной корректировкой проектного решения и разработкой РД. Состав устройств РЗА был принят в соответствии с проектом и действующими нормативными документами «Россетей». Что же касается общеподстанционных устройств и систем управления и сигнализации, то здесь понадобилась существенная оптимизация.
Оптимизация технических решений с использованием цифровых технологий
В описываемом проекте было применено оборудование РЗА серии «Бреслер-0107» производства «НПП Бреслер» и ПТК АСУ ТП «ИНБРЭС». Выполненные мероприятия описаны в следующих подразделах.
Организация централизованной селективной защиты от ОЗЗ с интеграцией в АСТУ
В сетях с изолированной или компенсированной нейтралью остро стоит проблема селективного определения поврежденного фидера при однофазных замыканиях на землю (ОЗЗ). Исходное проектное решение предусматривало использование функции защиты от ОЗЗ, встроенной в устройства РЗА ячеек 6–10 кВ. Селективность данной функции ниже 50%, поэтому даже на новых и условно цифровых ПС поиск «земли», как правило, производится по месту в ручном режиме, что означает необходимость выезда ОВБ на объект и поочередное отключение отходящих фидеров.
Для повышения селективности ЗОЗЗ до 80–90% необходимо применение централизованных защит, работающих по принципу относительного замера и анализирующих токи нулевой последовательности (3Io) всех фидеров секции. Данный принцип реализован в терминале определения поврежденного фидера (ОПФ) «Бреслер-0107.081». Терминалы защиты и управления присоединений 6–10 кВ серии «Бреслер-0107.200» выполняют оцифровку токов 3Io своего присоединения и передают их в векторной форме по цифровой шине в центральный терминал ОПФ. Такая реализация ЗОЗЗ является ярким примером использования технологии цифровой подстанции для повышения селективности работы РЗА без ущерба для надежности.
Повышение надежности и безопасности местного и дистанционного управления коммутационными аппаратами
Также мы обратили внимание на множество шкафов, обслуживающих цепи ТС, ТУ, ОБ коммутационных аппаратов (КА). Функции этих шкафов формально различны, но по смыслу тесно связаны, а подведенные к ним цепи на 80% дублируют друг друга.
И здесь хотелось бы поспорить с консерваторами, утверждающими, что автономная работа различных устройств и подсистем повышает надежность работы энергообъекта. Автономная работа шкафов ТМ, ОБ, ЩУ допускает одновременно:
Без применения дополнительных технических решений и организационных мероприятий данная концепция несет в себе существенные риски для безопасности персонала ОВБ при его нахождении на объекте.
Для решения названной проблемы в этом проекте мы применили многофункциональный цифровой шкаф управления и оперативной блокировки (ШУ) на базе контроллера присоединений «ИНБРЭС-КПГ», оснащенный экраном для отображения мнемосхем и ключом выбора места управления (местное/дистанционное). Таким образом исключается возможность одновременного местного и дистанционного управления КА, запрещаются попытки подачи команд, не разрешенных логикой ОБ, а информация о состоянии блокировки каждого КА автоматически предоставляется персоналу ОВБ и ЦУС. Также персоналу ОВБ доступна функция аварийной деблокировки, защищенная отдельным паролем.
Создание легкой АСУ ТП с интеграцией МП РЗА
Цифровой шкаф управления служит основой для дальнейшего построения АСУ ТП. Установив шкаф телемеханики с контроллерами и 3G-модемами и подключив к нему ШУ и цифровые измерительные приборы, мы получили ПТК ССПИ, обеспечивающий полную наблюдаемость объекта и возможность безопасного телеуправления.
Также была реализована интеграция МП РЗА в ПТК. Для этого был выбран протокол стандарта IEC 60870-5-104, так как по быстродействию он существенно превосходит протокол стандарта IEC 60870-5-103, а переход на IEC 61850 привел бы к превышению бюджета проекта.
Отдельно отметим, что интеграция защиты от ОЗЗ в АСТУ исключает необходимость выезда на объект для обнаружения и отключения поврежденного присоединения. Это позволяет повысить надежность электроснабжения потребителей и безопасность персонала, а также снизить повреждаемость основного электрооборудования.
На выходе мы получили:
Объект был введен в работу в 2017 году.
Рис. 2. Схема расстановки устройств РЗА, ТМ, местного управления после оптимизации.
Читатель ждет уж рифмы «IEC 61850», а что сказать? Скажем правду: в разбираемом проекте по автоматизации подстанции 35 кВ этот стандарт не нашел применения. Использование IEC 61850-8-1 могло бы упростить организацию ОБ, исключить большинство кабельных связей между зданиями, но заказчик не согласовал данное предложение. Но это не трагедия: для эффективной работы ПС в составе интеллектуальных сетей функции ПТК АСУ ТП более полезны и важны, чем выбор протокола связи внутри объекта.
Мы считаем, что выбранное решение оптимально для массового применения на новых и реконструируемых ПС 35 кВ, а также в качестве ПТК объектового уровня для построения «умных» сетей.
Подстанция 110-10 кВ, сеть электр. 110 кВ
Расшифровка
Параметры ТДН 10000/110/6
Sн, МВА | Uвн, кВ | Uсн, кВ | Uнн, кВ | ΔPx, кВт | ΔPквн, кВт | ΔPквс, кВт* | Uкв-с, % | Uкв-н, % | Uкс-н, % | Ix, % | Sнн, МВА |
10 | 115 | — | 6,6 | 14 | 58 | — | — | 10,5 | — | 0,9 | — |
*Обычно приводится для автотрансформаторов.
Sн Полная номинальная мощность трансформатора (автотрансформатора) в МВА; Uвн Номинальное напряжение обмотки высшего напряжения в кВ; Uсн Номинальное напряжение обмотки среднего напряжения в кВ; Uнн Номинальное напряжение обмотки низшего напряжения в кВ; ΔPx Потери мощности холостого хода в кВт; ΔPквн Потери мощности короткогозамыкания (высокая — низкая) в кВт; ΔPквс Потери мощности короткогозамыкания (высокая — средняя) в кВт; Uкв-с Напряжение короткого замыкания (высокая — средняя) в %; Uкв-н Напряжение короткого замыкания (высокая — низкая) в %; Uкс-н Напряжение короткого замыкания (средняя — низкая) в %; Ix Ток холостого хода в %; Sнн Полная номинальная мощность обмотки низкого напряжения. Близкие по типу ТДН 16000/110/6
Подстанция 110-10 кВ, сеть электр. 110 кВ
Введение
Электроснабжение сельскохозяйственных районов может осуществляться от районных энергетических систем (централизованное электроснабжение) или от районных или поселковых электростанций (местное или децентрализованное электроснабжение).
В настоящее время сельскохозяйственные потребители в основном имеют централизованное электроснабжение, осуществляемое от шин станций и трансформаторных подстанций(ТП) энергосистем или тяговых ТП электрифицированных железных дорог. Местное электроснабжение характерно для малонаселенных и труднодоступных районов.
Основная особенность электроснабжения сельского хозяйства по сравнению с электроснабжением промышленности и городов — это подвод электроэнергии к большому количеству сравнительно маломощных рассредоточенных объектов.
В настоящее время в связи с переходом сельского хозяйства на промышленную основу, строительством крупных животноводческих комплексов, ростом электропотребления на производстве и в быту единичные мощности электропотребителей растут. Но структура организации сельскохозяйственного производства, малая плотность населения сельских районов определяют малую плотность электрических нагрузок и значительную протяженность электрических сетей.
Основой системы сельского электроснабжения являются электрические сети напряжением 0,38 — 110 кВ, от которых снабжаются электроэнергией преимущественно (более 50% по расчетной нагрузке) сельскохозяйственные потребители, включая коммунальнобытовые, объекты мелиорации и водного хозяйства, а также предприятия и организации, предназначенные для бытового и культурного обслуживания сельского населения.
Электрические сети сельскохозяйственного назначения делятся на два вида: питающие и распределительные.
Питающие сети служат для передачи электроэнергии от шин станций и ТП энергосистем к промежуточным трансформаторным ТП. Эти сети состоят из линий 35 и 110 кВ и ПС 35110/10 кВ.
Распределительные сети состоят из линий напряжением 6, 10, 20 кВ и ПС 6/0,4; 10/0,4; 20/0,4 кВ.
Напряжение 6 кВ допускается только при расширении существующих сетей данного напряжения. Распределительные сети 20 кВ нашли применение лишь в ряде районов страны (например, в Прибалтике).
При расположении сельскохозяйственных объектов вблизи линий 35 кВ и при значительном удалении их от подстанций 35/10 кВ электроснабжение потребителей целесообразно осуществлять от ТП ПС 35/0,4 кВ (подстанций «глубокого ввода»).
Распределительные сети низкого напряжения состоят из линий напряжением 0,38 кВ и непосредственно питают электроэнергией присоединенные к ним электроприемники.
В настоящее время в основном применяется трехступенчатая система распределения электроэнергии 110/35/10/0,4 кВ с двухступенчатыми подсистемами 110/35/0,4 кВ и 110/10/0,4 кВ.
Основной проблемой, которую можно встретить при рассматривании электроснабжения сельскохозяйственных потребителей является надежность электроснабжения. Повышение уровня надежности электроснабжения является технико-экономической задачей. Выбор средств обеспечения надежного электроснабжения можно проводить исходя из минимума приведенных затрат с учетом ущерба от перерывов в электроснабжении или при отсутствии данных об ущербах — по допустимому нормированному времени отключения потребителей.
Для обеспечения надежности электроснабжения сельскохозяйственных потребителей предусматриваются следующие технические мероприятия; повышение надежности отдельных элементов электрических сетей и в том числе за счет применения новых материалов; секционирование сетей при помощи выключателей с АПВ, автоматических отделителей и разъединителей; резервирование как сетевое, так и местное, энергетическое и технологическое; приближение напряжений 35 — 110 кВ к потребителям, разукрупнение ПС 35 — 110 кВ, позволяющее сократить протяженность электрических сетей 10 кВ; увеличение количества двухтрансформаторных ПС 35 — 110 кВ и подстанций с двусторонним питанием; разукрупнение ТП напряжением 10/0,4 кВ и раздельное питание от них производственных и коммунально-бытовых потребителей; применение батарей статических конденсаторов для компенсации реактивной мощности.
Секционирование ВЛ, уменьшая отключаемую при авариях протяженность сети, снижает число отключений понизительных ПС. Применяется неавтоматическое и автоматическое секционирование. Неавтоматическое секционирование в первую очередь снижает число и длительность преднамеренных отключений; оно выполняется при помощи линейных разъединителей в дополнение к автоматическому секционированию. Наличие секционирующих разъединителей облегчает отыскание замыканий на землю, уменьшает число потребителей, отключаемых при ремонтных работах. На распределительных линиях напряжением до 35кВ включительно необходимо устанавливать разъединители на всех ответвлениях, длина которых больше 1,52км, а на ВЛ 35 кВ, питающих ТП 35/10 кВ, на всех ответвлениях длиной более 0,5км. При длине ответвлений к потребительским ТП 100200м рекомендуется устанавливать подстанционные разъединители в начале ответвлений.
При автоматическом секционировании ВЛ разбивают на участки, в начале которых устанавливают специальные секционирующие аппараты, отключающие поврежденные участки, не нарушая нормальной работы остальной части линии. Оптимальные места установки секционирующих аппаратов определяются из условия максимального сокращения ущерба сельскохозяйственным потребителям от перерывов в электроснабжении. Для эффективного использования автоматического секционирования составляется карта секционирования, которая используется для выявления целесообразных мест установки секционирующих аппаратов, определения очередности секционирования отдельных линий, а также для расчета потребности в оборудовании.
Использование сетевого резервирования предполагает достаточно высокую надежность самих сетей. Наиболее целесообразна разомкнутая схема работы линий в нормальном режиме с автоматическим подключением неповрежденных участков к другому источнику энергии при авариях. Наряду с сетевым резервированием применяется местное резервирование, так как при неблагоприятных атмосферных условиях (гололеде, урагане, грозе и т. д.) возможно одновременное повреждение двух линий.
Резервные электростанции предназначаются для выборочного резервирования потребителей I и II категорий.
Для повышения надежности электроснабжения большое значение имеют также организационно-технические мероприятия, особенно в части, касающейся сокращения преднамеренных отключений.
Проведение ремонтных и других видов работ в сетях следует подчинить требованию минимального ущерба для потребителей, согласовав их с режимами работы сельскохозяйственных потребителей. Для сокращения числа отключений потребителей надо совмещать во времени работы, проводимые на разных степенях напряжения.
Эффективным средством повышения надежности электроснабжения является рациональная организация эксплуатации электрических сетей и установок. Поскольку точность технико-экономических расчетов надежности электроснабжения зависит от достоверности исходных данных, то важнейшая задача эксплуатации состоит в организации системы сбора и обработки информации для оценки показателей надежности электроснабжения и величин ущербов от перерывов в электроснабжении для конкретных потребителей (на основе тщательного экономического анализа фактических данных).
Важным фактором повышения надежности электроснабжения является строгое соблюдение обслуживающим персоналом правил технической эксплуатации. В частности, это касается обязательных регулярных обходов распределительных ВЛ и осмотров мачтовых ТП.
Историческая справка
Воздушные линии электропередачи с применением самонесущих изолированных проводов известны уже более 50 лет и находят все более широкое применение.
Впервые низковольтные изолированные провода были использованы в США и Канаде, а позднее в странах Западной Европы: Швеции, Финляндии, Норвегии и Франции. Начиная с 1980ых годов, в этих странах наблюдается значительное увеличение протяженности воздушных линий электропередач выполненных изолированными и защищенными проводами. Впервые СИП начал применятся в начале 1960ых годов.
Применение самонесущих изолированных и защищенных проводов является на сегодняшний день наиболее прогрессивным и перспективным путём развития электрических распределительных сетей.
По сравнению с традиционными воздушными линиями электропередачи (ВЛ) линии с применением самонесущих изолированных (СИП) и защищенных (ВЛЗ) проводов имеют ряд конструктивных особенностей — наличие изоляционного покрова на токоведущих проводниках, повышенная механическая прочность, прогрессивная сцепная и ответвительная арматура и др. Эти особенности обусловливают значительное повышение надёжности электроснабжения потребителей и резкое снижение эксплуатационных затрат, что, в свою очередь, и определяет высокую экономическую эффективность использования изолированных проводов в распределительных электрических сетях.
Проектирование воздушных линий электропередачи напряжением 620 кВ с защищенными проводами должно выполняться в соответствии с требованиями «Правил устройства электроустановок» (ПУЭ) [8], седьмое издание, глава 2.5. Воздушные линии электропередачи напряжением выше 1 кВ.
5.2 Общие сведения о воздушных линиях электропередачи напряжением 620 кВ с защищенными проводами
На сегодняшний день в качестве более перспективной и прогрессивной альтернативы неизолированным проводам для ВЛ 620 кВ можно рассматривать следующие варианты:
— защищенные провода СИП;
— силовые кабели для ВЛ 620 кВ;
Защищенный провод (марки СИП3, SAX, SAXW) представляет собой одножильный многопроволочный проводник, покрытый защитной оболочкой. Проводник изготавливается из алюминиевого сплава, защитный слой из светостабилизированного сшитого полиэтилена. Провод может изготавливаться с водонабухающим слоем под защитной оболочкой для защиты алюминиевой жилы от атмосферной влаги.
Силовой кабель для воздушных линий электропередачи напряжением 620 кВ (марка SAXKAW) представляет собой жгут из трех однофазных силовых кабелей, скрученных вокруг несущего троса. Токопроводящие жилы выполнены из уплотненного алюминия, несущий трос из стали. Кабели имеют продольную и поперечную защиту от проникновения влаги.
Универсальный кабель (марка MULTIWISKI) состоит из трех однофазных скрученных кабелей. Предназначен для монтажа на опорах ВЛ 620 кВ, для прокладки в земле в виде подземной кабельной линии, а так же для прокладки по дну искусственных водоемов и естественных водных преград в виде подводной кабельной линии. Силовые кабели для ВЛ 620 кВ и универсальные кабели являются менее распространенными на практике, их применение целесообразно в отдельных случаях при повышенных технических и (или) экологических требованиях к линиям электропередачи в конкретных условиях.
Применение защищенных проводов является наиболее приемлемым и распространенным техническим решением для ВЛ 620 кВ.
Разновидности проводов марки СИП
Существуют три основные системы самонесущих изолированных проводов:
— финская система «АМКА», где неизолированный нулевой проводник является несущим проводом. Модифицированная система «АМКА Т», с изолированным несущим нулевым проводником, эта система используется в Финляндии, Дальнем и Ближнем Востоке, Южной Америке.
— французкая система. По техническим характеристикам напоминает «АМКУ Т», системы отличаются сечением несущего нулевого проводника. Помимо Франции эта система используется в Бельгии, Испании, Италии и Греции.
— четырёхпроводная система, где механическую нагрузку несут все четыре проводника, все фазные и нулевой проводники изолированы, и механическая нагрузка распределена между ними поровну. Четырёхпроводная система главным образом применяется в Швеции, Германии, Австрии, Великобритании, Ирландии, Португалии, Польше и становится все более популярной в других странах.