Прямое измерение и косвенное что
Метрология. Прямые и косвенные измерения.
Метрологией называется наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.
Измерением называется нахождение значения физической величины опытным путем с помощью специальных технических средств. Результатом измерения является количественная характеристика физической величины в виде числа единиц измеряемой величины и погрешность, с которой получено данное число.
Виды измерений. В зависимости от способа получения числового значения измеряемой величины измерения делятся на прямые, косвенные и совокупные измерения.
Прямыми называются измерения, при которых искомое значение величины получают из опытных данных. При прямых измерениях экспериментальные операции производятся над самой измеряемой величиной. Числовое значение измеряемой величины получают в экспериментальном сравнении с мерой или по показаниям приборов. Например, измерение тока амперметром, напряжения вольтметром, температуры термометром, массы на весах.
Косвенными называют такие измерения, при которых числовое значение измеряемой величины определяется по известной функциональной зависимости через другие величины, которые можно прямо измерить. При косвенных измерениях числовое значение измеряемой величины получают с участием оператора на основе прямых измерений – решением одного уравнения. К косвенным измерениям прибегают в тех случаях, когда неудобно или невозможно осуществить автоматическое вычисление известной зависимости между одной или несколькими входными величинами и измеряемой величиной. Например, мощность в цепях постоянного тока определяет оператор, умножая напряжение на ток, измеренные прямым измерением с помощью амперметра и вольтметра.
Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения.
Абсолютная погрешность измерения равна разности между результатом измерения и истинным значением измеряемой величины : .
Относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения к истинному значению измеряемой величины. Обычно относительная погрешность выражается в процентах %.
25. Основные понятия и определения: информация, алгоритм, программа, команда, данные, технические устройства.
Информация — от латинского слова «information», что означает сведения, разъяснения, изложение.
Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения.
Алгоритм — последовательность чётко определенных действий, выполнение которых ведёт к решению задачи. Алгоритм, записанный на языке машины, есть программа решения задачи.
Свойства алгоритмов: дискретность, понятность, результативность, определенность, массовость.
Программа — последовательность действий, инструкций, предписаний для некоторого вычислительного устройства; файл, содержащий эту последовательность действий.
Команда — это указание компьютерной программе действовать как некий интерпретатор для решения задачи. В более общем случае, команда — это указание некоему интерфейсу командной строки.
Технические устройства (средства информатизации) – это совокупность систем, машин, приборов, механизмов, устройств и прочих видов оборудования, предназначенных для автоматизации различных технологических процессов информатики, причем таких, выходным продуктом которых является именно информация (сведения, знания) или данные, используемые для удовлетворения информационных потребностей в разных областях предметной деятельности общества.
Все технические средства информатизации в зависимости от выполняемых функций можно разделить на шесть групп : устройства ввода информации, устройства вывода информации, устройства обработки информации, устройства передачи и приема информации, устройства хранения информации, многофункциональные устройства.
27.2. Виды измерений
Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.
По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.
Прямые измерения — это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т.е. линейкой.
Косвенные измерения отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью, Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех названных величин можно рассчитать мощность электрической цепи.
Совокупные измерения сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.
Совместные измерения — это измерения двух или более неоднородных физических величин для определения зависимости между ними.
Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.
По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.
Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.
Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.
Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения.
Статические и динамические измерения в идеальном виде на практике редки.
По количеству измерительной информации различают однократные и многократные измерения.
Однократные измерения — это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.
Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений — в значительном снижении влияний случайных факторов на погрешность измерения.
По отношению к основным единицам измерения делят на абсолютные и относительные.
Абсолютными измерениями называют такие, при которых используются прямое измерение одной (иногда нескольких) основной величины и физическая константа. Так, в известной формуле Эйнштейна Е=тс 2 масса (m) — основная физическая величина, которая может быть измерена прямым путем (взвешиванием), а скорость света (c) — физическая константа.
Относительные измерения базируются на установлении отношения измеряемой величины к однородной, применяемой в качестве единицы. Естественно, что искомое значение зависит от используемой единицы измерений.
С измерениями связаны такие понятия, как «шкала измерений», «принцип измерений», «метод измерений».
Шкала измерений — это упорядоченная совокупность значений физической величины, которая служит основой для ее измерения. Поясним это понятие на примере температурных шкал.
В шкале Цельсия за начало отсчета принята температура таяния льда, а в качестве основного интервала (опорной точки) — температура кипения воды. Одна сотая часть этого интервала является единицей температуры (градус Цельсия). В температурной шкале Фаренгейта за начало отсчета принята температура таяния смеси льда и нашатырного спирта (либо поваренной соли), а в качестве опорной точки взята нормальная температура тела здорового человека. За единицу температуры (градус Фаренгейта) принята одна девяносто шестая часть основного интервала. По этой шкале температура таяния льда равна + 32°F, а температура кипения воды + 212°F. Таким образом, если по шкале Цельсия разность между температурой кипения воды и таяния льда составляет 100°С, то по Фаренгейту она равна 180°F. На этом примере мы видим роль принятой шкалы как в количественном значении измеряемой величины, так и в аспекте обеспечения единства измерений. В данном случае требуется находить отношение размеров единиц, чтобы можно было сравнить результаты измерений, т.е. t o F/t°C.
В метрологической практике известны несколько разновидностей шкал: шкала наименований, шкала порядка, шкала интервалов, шкала отношений и др.
Шкала наименований — это своего рода качественная, а не количественная шкала, она не содержит нуля и единиц измерений. Примером может служить атлас цветов (шкала цветов). Процесс измерения заключается в визуальном сравнении окрашенного предмета с образцами цветов (эталонными образцами атласа
цветов). Поскольку каждый цвет имеет немало вариантов, такое сравнение под силу опытному эксперту, который обладает не только практическим опытом, но и соответствующими особыми характеристиками зрительных возможностей
Шкала порядка характеризует значение измеряемой величины в баллах (шкала землетрясений, силы ветра, твердости физических тел и т.п.).
Шкала интервалов (разностей) имеет условные нулевые значения, а интервалы устанавливаются по согласованию. Такими шкалами являются шкала времени, шкала длины.
Шкала отношений имеет естественное нулевое значение, а единица измерений устанавливается по согласованию. Например, шкала массы (обычно мы говорим «веса»), начинаясь от нуля, может быть градуирована по-разному в зависимости от требуемой точности взвешивания. Сравните бытовые и аналитические весы.
Прямые и косвенные измерения в физике
Понятие измерения в физике
Процедура «измерения показателя» физического параметра практически осуществляется через задействование разного рода измерительных способов и приборов специального назначения, систем и оборудования. Определение материальной величины состоит из двух базовых этапов:
Не нашли что искали?
Просто напиши и мы поможем
«Принцип измерений» принято считать физическим явлением или же совокупностью физических эффектов, которые положены в основание «измерения». «Метод измерений» – есть один приём или комплекс конкретных приёмов сопоставления величины, которая подвергается измерению, с её эталонной единицей (или шкалой единиц) в соответствии с осуществляемым принципом измерения, а также его средств. Чистота измерений отображает небольшую отдалённость их результатов от настоящих значений исследуемых величин. Извлечённая «погрешность», как характеристика точности, даёт чёткое понимание о достоверности выполненных измерений.
Примеры форматов измерений:
Важность существования и классификация измерений в физике
Измерения в области физики имеют большое значение и занимают важную позицию на том основании, что дают возможность сопоставлять результаты академических теорий и исследований, полученных путём эксперимента. Все без исключения измерения подлежат классификации указанным образом, в соответствии с:
Понятие прямых и косвенных измерений в физике
В соответствии с классификационным признаком измерения могут разделяться на прямые и косвенные, что и обозначает непосредственную характеристику их вида. «Прямым измерением» принято считать измерение, согласно которому, подлежащие нахождению значения физических величин достигаются непосредственным способом. В ситуации осуществления прямых измерений, с целью проведения замеров используются приборы специального назначения, которые отвечают за преобразование непосредственно исследуемой величины.
В частности, массу тел, к примеру, можно определить, пользуясь показателем на весах; длина становится известной при измерении объекта линейкой, а вот время определяется посредством секундомера. «Косвенное измерение» в физике считается обнаружением искомого значения величины вследствие обретённых в процессе измерения итогов прямого измерения прочих физических величин, которые взаимосвязаны с исходной величиной функциональным способом.
Сложно разобраться самому?
Попробуй обратиться за помощью к преподавателям
При других обстоятельствах те же самые величины могут быть главным образом в результате косвенных измерений – пересчету оставшихся крупных величин, значения которых были сняты во время прямых измерений. Подобным образом физики производят подсчёт расстояния от планеты Земля до Солнца, массу нашей планеты или, к примеру, длительность геологических периодов.
Определение плотности тел (в соответствии с показателями их массы и объёмов), скорости подвижного состава (исходя из величины пройденного пути за определённое время), опять-таки нужно зачислить к косвенному измерению. На том основании, что физика, по аналогии с математикой, не является точной наукой, стопроцентная точность ей не свойственна. Следовательно, в пределах физических экспериментов какой угодно вид измерения (как прямой, так и косвенный) способен допускать не полностью точное, а всего лишь ориентировочное значение физической величины, которую измеряют.
Таким образом, конечный итог неявных измерений, которые были вычислены по приблизительным результатам, образовавшимся вследствие прямых измерений, в свою очередь, выявятся приблизительными. Вот почему, одновременно с результатом, каждый раз необходимо подтверждение его точности и это называется «абсолютной погрешностью» результатов.
Не нашли нужную информацию?
Закажите подходящий материал на нашем сервисе. Разместите задание – система его автоматически разошлет в течение 59 секунд. Выберите подходящего эксперта, и он избавит вас от хлопот с учёбой.
Гарантия низких цен
Все работы выполняются без посредников, поэтому цены вас приятно удивят.
Доработки и консультации включены в стоимость
В рамках задания они бесплатны и выполняются в оговоренные сроки.
Вернем деньги за невыполненное задание
Если эксперт не справился – гарантируем 100% возврат средств.
Тех.поддержка 7 дней в неделю
Наши менеджеры работают в выходные и праздники, чтобы оперативно отвечать на ваши вопросы.
Тысячи проверенных экспертов
Мы отбираем только надёжных исполнителей – профессионалов в своей области. Все они имеют высшее образование с оценками в дипломе «хорошо» и «отлично».
Гарантия возврата денег
Эксперт получил деньги, а работу не выполнил?
Только не у нас!
Деньги хранятся на вашем балансе во время работы над заданием и гарантийного срока
Гарантия возврата денег
В случае, если что-то пойдет не так, мы гарантируем возврат полной уплаченой суммы
Лекция 2. Виды и методы измерений
Описание
1. Основные понятия и определения. Виды измерений.
2. Методы измерений.
3. Понятие о точности измерений.
4. Основы обеспечения единства измерений
Оглавление
1. Основные понятия и определения. Виды измерений
Измерение — совокупность операций по применению системы измерений для получения значения измеряемой физической величины.
Измерения могут быть классифицированы по метрологическому назначению на три категории:
Ненормированные – измерения при ненормированных метрологических характеристиках.
Технические – измерения при помощи рабочих средств измерений.
Метрологические – измерения при помощи эталонов и образцовых средств измерений.
Ненормированные измерения наиболее простые. В них не нормируются точность и достоверность результата. Поэтому область их применения ограничена. Они не могут быть применены в области, на которую распространяется требование единства измерений. Каждый из нас выполнял ненормированные измерения длины, массы, времени, температуры не задумываясь о точности и достоверности результата. Как правило, результаты ненормированных измерений применяются индивидуально, т.е. используются субъектом в собственных целях.
Технические измерения удовлетворяют требованиям единства измерений, т.е. результат бывает получен с известной погрешностью и вероятностью, записывается в установленных единицах физических величин, с определённым количеством значащих цифр. Выполняются при помощи средств измерений с назначенным классом точности, прошедших поверку или калибровку в метрологической службе. В зависимости от того, предназначены измерения для внутрипроизводственных целей или их результаты будут доступны для всеобщего применения, необходимо выполнение калибровки или поверки средств измерений. Средство измерений, прошедшее калибровку или поверку, называют рабочим средством измерений. Примером технических измерений является большинство производственных измерений, измерение квартирными счётчиками потреблённой электроэнергии, измерения при взвешивании в торговых центрах, финансовые измерения в банковских терминалах. Средство измерений, применяемое для калибровки других средств измерений, называют образцовым средством измерений. Образцовое средство измерений имеет повышенный класс точности и хранится отдельно, для технических измерений не применяется.
Метрологические измерения не просто удовлетворяют требованиям единства измерений, а являются одним из средств обеспечения единства измерений. Выполняются с целью воспроизведения единиц физических величин для передачи их размера образцовым и рабочим средствам измерений. Метрологические измерения выполняет метрологическая служба в стандартных условиях, сертифицированным персоналом.
В дисциплине «Метрология, стандартизация и сертификация» рассматриваются технические измерения.
Можно выделить следующие виды измерений.
1) По характеру зависимости измеряемой величины от времени методы измерений подразделяются на:
2) По способу получения результатов измерений (виду уравнений измерений) методы измерений разделяют на прямые, косвенные, совокупные и совместные.
При прямом измерении искомое значение величины находят непосредственно из опытных данных (например, измерение диаметра штангенциркулем).
При косвенном измерении искомое значение величины определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.
Совместными называют измерения двух или нескольких не одноимённых величин, производимые одновременно с целью нахождения функциональной зависимости между величинами (например, зависимости длины тела от температуры).
Совокупные – это такие измерения, в которых значения измеряемых величин находят по данным повторных измерений одной или нескольких одноименных величин (при различных сочетаниях мер или этих величин) путем решения системы уравнений.
3) По условиям, определяющим точность результата измерения, методы делятся на три класса.
Измерении максимально возможной точности (например, эталонные измерения), достижимой при существующем уровне техники.
Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторое заданное значение.
Технические измерения, в которых погрешность результата определяется характеристиками средств измерения.
4) По способу выражения результатов измерений различают абсолютные и относительные измерения.
Абсолютное измерение основано на прямых измерениях величины и (или) использования значений физических констант.
При относительных измерениях величину сравнивают с одноименной, играющей роль единицы или принятой за исходную (например, измерение диаметра вращающейся детали по числу оборотов соприкасающегося с ней аттестованного ролика).
5) В зависимости от совокупности измеряемых параметров изделия различают поэлементный и комплексный методы измерения.
Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала).
Комплексный метод характеризуется измерением суммарного показателя качества (а не физической величины), на который оказывают влияние отдельные его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.).
2. Методы измерений
Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений. Можно выделить следующие методы измерений.
По способу получения значения измеряемых величин различают два основных метода измерений.
Метод непосредственной оценки – метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия.
Метод сравнения с мерой – метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.
Разновидности метода сравнения:
При измерении линейных величин независимо от рассмотренных методов различают контактный и бесконтактный методы измерений.
В зависимости от измерительных средств, используемых в процессе измерения, различают:
3. Понятие о точности измерений
Точность результата измерения – характеристика качества измерения, отражающая близость к нулю погрешности его результата.
Эти погрешности являются следствием многих причин: несовершенства средств измерений, метода измерений, опыта оператора; недостаточной тщательности проведения измерения; воздействия внешних условий и т.д. Для оценки степени приближения результатов измерения к истинному значению измеряемой величины используются методы теории вероятности и математической статистики, что позволяет с определенной достоверностью оценить границы погрешностей, за пределы которых они не выходят. Это дает возможность для каждого конкретного случая выбрать средства и методы измерения, обеспечивающие измерение результата, погрешности которого не превышают заданных границ с требуемой степенью доверия к результатам измерений (достоверностью).
Класс точности – обобщённая метрологическая характеристика средства измерения.
Класс точности определяется и обозначается по-разному. Наибольшее распространение получили три варианта, каждый представляет собой выраженное в процентах значение относительной погрешности:
– относительно измеренного значения (относительная погрешность),
– относительно максимального значения шкалы (приведённая погрешность),
– относительно участка шкалы (приведённая к участку шкалы погрешность).
Рассмотрим эти три варианта.
Вариант 1. Относительная погрешность.
Чтобы по классу точности определить значение абсолютной погрешности, результат измерения умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В.
Абсолютная погрешность составит: (10,000 В ∙ 0,1 %) / 100 % = 0,010 В. Запись результата: (10,000 ± 0,010) В, с вероятностью 95 % (эта вероятность по умолчанию назначается для технических измерений, исходя из этой вероятности определяется и класс точности). При нормировании по относительной погрешности, значение класса точности заключают в кружок. Как правило, обозначение класса точности размещают в правом нижнем углу на шкале средства измерений.
Вариант 2. Приведённая погрешность.
Чтобы по классу точности определить значение абсолютной погрешности, максимальное значение шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В. Максимальное значение шкалы составляет 20,000 В.
Абсолютная погрешность составит: (20,000 В ∙ 0,1 %) / 100 % = 0,020 В. Запись результата: (10,000 ± 0,020) В, с вероятностью 95 %. При нормировании по приведённой погрешности, значение класса точности не сопровождают никакими знаками.
Вариант 3. Приведённая к участку шкалы погрешность.
Чтобы по классу точности определить значение абсолютной погрешности, размер участка шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Рассмотрим два примера, для случая, когда вся шкала поделена на два участка.
Пример 1. Участок шкалы от 0,000 В до 12,000 В, отмечен галочкой. Вольтметром класса точности 0,1 получено значение 10,000 В.
Абсолютная погрешность составит: (12,000 В ∙ 0,1 %) / 100 % = 0,012 В. Запись результата: (10,000 ± 0,012) В, с вероятностью 95 %.
Пример 2. Участок шкалы от 12,000 В до 20,000 В, также отмечен галочкой. Вольтметром класса точности 0,1 получено значение 15,000 В.
Абсолютная погрешность составит: (8,000 В ∙ 0,1 %) / 100 % = 0,008 В. Запись результата: (15,000 ± 0,008) В, с вероятностью 95 %. При нормировании по приведённой к участку шкалы погрешности, значение класса точности помещают над галочкой. Участки шкалы, относительно которых нормируется погрешность, обозначают галочками.
Варианты классов точности обусловлены отличием конструктивных, системных и схемотехнических решений средств измерений.
Корректная запись результатов
Запись результатов измерений производится по следующим правилам.
1) Погрешность указывается двумя значащими цифрами, если первая равна 1 или 2. Погрешность указывается одной значащей цифрой, если первая равна 3 или более. Все остальные цифры должны быть не значащими.
Значащей цифрой называется любая цифра числа, записанного в виде десятичной дроби, начиная слева с первой отличной от нуля цифры, независимо от того, где она находится – до запятой или после запятой.
2) Результат измерения округляется в соответствии с его погрешностью, т.е. записывается с той же точностью, что и погрешность.
Рассмотрим пример. Результат измерения: 10,645701, погрешность 0,012908.
1) Рассматриваем погрешность. Первая значащая цифра 1, поэтому оставляем две значащие цифры, округляя, записываем: 0,013.
2) Рассматриваем результат измерения. Погрешность записана с точностью до третьего знака после запятой, поэтому в результате также оставим три знака. Округляя, записываем: 10,646.
Корректная запись: 10,646 ± 0,013.
Корректная запись обеспечивает адекватность и сопоставимость результатов различных измерений и является одним из элементов единства измерений. Как правило, отбрасывание избыточных цифр не приводит к дополнительной погрешности, поскольку избыточные цифры обусловлены точностью вычислений, а не точностью измерений.
4. Основы обеспечения единства измерений
Специализация и кооперирование производства в масштабах страны, основанные на принципах взаимозаменяемости, требуют обеспечения и сохранения единства измерений.
Обеспечение единства измерений – деятельность метрологических служб, направленная на достижение и поддержание единства измерений в соответствии с правилами, требованиями и нормами, установленными государственными стандартами и другими нормативно-техническими документами в области метрологии.
В 1993 г. был принят Закон Российской Федерации «Об обеспечении единства измерений», который устанавливает правовые основы обеспечения единства измерений в нашей стране. Он состоит из семи разделов: общие положения; единицы величин, средства и методики выполнения измерений; метрологические службы; государственный метрологический контроль и надзор; калибровка и сертификация средств измерений; ответственность за нарушение закона и финансирование работ по обеспечению единства измерений. В Законе дано следующее определение понятия «единство измерения»:
«Единство измерения – состояние измерений, при котором их результаты выражены в узаконенных единицах величин и погрешности измерений не выходят за установленные границы с заданной вероятностью».
Обеспечение единства измерений является задачей метрологических служб.
Метрологическая служба – совокупность субъектов, деятельности и видов работ, направленных на обеспечение единства измерений.
Закон определяет, что Государственная метрологическая служба находится в ведении Госстандарта России и включает: государственные научные метрологические центры; органы Государственной метрологической службы регионов страны, а также городов Москва и Санкт-Петербург.