Процесс регенерации что это такое в медицине
Что такое регенеративная медицина
Несколько десятков лет назад возможность компенсировать функции утраченных органов или полностью заменить их казалась казуистикой. За десятилетия медицина продвинулась так далеко, что уже активно обсуждаются полное избавление человека от заболеваний и продление жизни. Регенеративная медицина получила не только признание, но и большие инвестиции вкупе с государственной поддержкой.
Регенерация как возможность сохранения здоровья
Человеку свойственна регенерация. До 11 лет организм способен восстановить утраченный кончик пальца, на протяжении всей жизни — заживлять повреждения мягких тканей и переломы.
Ее задача — научить стволовые клетки дифференцироваться в специализированные, которые полностью восстановят функцию утраченных органов.
Исторические факты
Впервые этот термин был использован в 1992 г. Леландом Кайзером. Он описал медицину будущего и возможность избавления от хронических заболеваний.
Дальнейшие опорные моменты развития отрасли можно представить следующим образом:
Сегодня вопросы восстановления регенерации изучаются во всех развитых странах мира.
Работает свыше 2000 научных центров, открытия разной степени важности регистрируются практически ежедневно.
Что такое регенеративная медицина
Регенеративная медицина — новый метод лечения, способный восстановить целостность разрушенных болезнью или травмой органов при использовании стволовых клеток животного или человека.
Направление располагается на стыке биологии, генной инженерии и практической медицины. В ближайшие годы отрасль может полностью изменить жизнь людей, избавив их от хронических и неизлечимых патологий, продлив им молодость.
Классы стволовых клеток
В зависимости от источника получения, начальные клетки можно классифицировать следующим образом:
Также возможно подразделение клеток (и, соответственно, способа трансплантации) на аутологичные и аллогенные. Критерий классификации — принадлежность организму.
Аутологичные
Представляют из себя собственные клетки человека. При аутологичной трансплантации они изымаются, хранятся некоторое время, а затем возвращаются. Чаще трансплантируются гемопоэтические и сердечные клетки, используемые для лечения дегенерации миокарда.
Аллогенные
При аллогенной трансплантации в роли донора и реципиента выступают разные люди.
Основными источниками при этом являются:
Аллогенная трансплантация всегда сопряжена с рисками. Современная регенеративная медицина смогла снизить вероятность отторжения с 70-90% до 10-50%.
Виды стволовых клеток
В зависимости от потентности (способности производить другие типы клеток), клетки бывают:
Несмотря на разнообразие, широкое практическое применение в медицине нашли только мультипотентные. Они и служат предметом большинства научных исследований.
Типы мультипотентных стволовых клеток
Мультипотентные клетки подразделяются на:
Мультипотентные клетки содержат фактор роста и могут модулировать воспалительную реакцию, способны самостоятельно переходить в ткани. Поэтому они привлекают внимание травматологов, проктологов и общих хирургов всего мира.
Жировая ткань в регенеративной терапии
Жировая ткань — второй по важности источник мультипотентных мезенхимальных стромальных клеток (ММСК).
Жировое депо имеет массу преимуществ по сравнению с костным мозгом. Среди них:
Клетки жировой ткани перед введением в организм требуют тщательного и длительного выделения и культивирования в питательных средах.
Их использование без предварительного выращивания не оправдано.
Применение регенеративной медицины для лечения заболеваний
Отрасль реализует себя, когда остается мало шансов не только на выздоровление, но и на сохранение жизни. Основными пациентами являются лица с онкологическими и наследственными патологиями, орфанными болезнями.
Все чаще технологии регенеративной медицины используют для эстетических и косметологических целей. Они позволяют устранить дефекты после массивных операций и травм.
Диабет
Стволовые жировые клетки могут быть внедрены в печень. После трансплантации они начинают делиться и вырабатывать инсулин — основной гормон поджелудочной железы.
Печень компенсирует эндокринную функцию панкреатической железы, позволяя облегчить течение сахарного диабета или вылечить его. На сегодня исследования выполнялись только на грызунах.
Гепатология
ММСК костного мозга оправдали себя при использовании с целью запуска регенерации клеток печени. Технология позволяет полностью восстановить функцию гепатоцитов при тяжелых формах печеночной недостаточности (жировом гепатозе, циррозе).
Сердечно-сосудистые болезни
Пересадка юных клеток из сердца свиньи позволяет устранить дегенеративные изменения миокарда человека после перенесенной ишемии. Технология основана на идентичности свиного и человеческого сердец и ждет исследований на людях. Способ позволит вылечить неподдающуюся медикаментозной терапии аритмию или сердечную недостаточность.
Глазные болезни
Регенерация используется для устранения врожденных и приобретенных дефектов роговицы глаза. Технология применяется в целях терапии ожогов и рубцов (после тяжелых травм и инфекционных заболеваний) роговицы.
Нервные болезни
Опыты на крысах и мышах демонстрируют способность эмбриональных клеток возвращать подвижность парализованным конечностям. В экспериментах ученые вводили их грызунам прямо в спинной мозг. Методика ждет признания и исследования на людях. Она поможет бороться с остаточными явлениями после инсульта.
Ортопедия и травматология
Сегодня медицина уже способна искусственно создавать протезы хрящей и суставов, выращивать их внутри организма. Для этого применяются аутологичные регенеративные концентраты. Опробовано восстановление тканей не только опорно-двигательного аппарата, но и внутреннего уха и глаза.
Стоматология
Медикаменты на основе аллогенных фибробластов и кератиноцитов человека, бычьего коллагена могут быть введены в ткани челюстно-лицевой области. Данный метод восстанавливает целостность мягких тканей десны и челюстей без лоскутных пересадок.
Косметология
Плазма, обогащенная тромбоцитами, и мезенхимальные клетки используются для избавления от признаков старения кожи. После их введения запускаются процессы регенерации, синтеза коллагеновых и эластиновых волокон. Кожа становится гладкой и эластичной, мелкие морщины разглаживаются.
Уретропластика
Использование трансинженерных систем для запуска регенерации уротелия позволяет полностью восстановить проходимость протоков мочевыделительной системы и функцию эпителия. Направление применяется для устранения дефектов эпителия, полученных в ходе поражения конкрементами, инородными телами или опухолью.
Облысение
Ученые научились внедрять клонированные волосяные фолликулы в очаги облысения волосистой части головы. Затем в зоне вмешательства выполняется стимуляция, запускается рост волос. Можно полностью излечить наследственное облысение, которое не реагирует на лечение.
Лидеры в области регенеративной медицины
Рынок находится на этапе зарождения, выделить лидеров пока сложно. Аналитики прогнозируют быстрый рост объема инвестиций всех компаний, расположенных преимущественно на территории США.
Спрос на донорские органы
Сегодня в мире спрос на донорские органы чрезвычайно высок. Например, только в России ежегодно требуется свыше 18 000-25 000 трансплантаций органов. Однако только 5-10% больных получают необходимую помощь.
Направление тормозится ввиду этических и моральных аспектов, которые в некоторых странах установлены на законодательном уровне.
Вопросы морального характера
Дифференцированные стволовые клетки помогают побороть рак и заболевания крови, но их количество и области внедрения ограничены. Наиболее ценным источником считаются эмбрионы, однако юридические и моральные нормы не позволяют добывать из них клетки в неограниченном количестве. Большинство исследований пока ограничиваются организмами животных.
Доступные аптечные препараты
Для лечения большого числа патологий выпускаются такие препараты:
Рынок медикаментов расширяется рекордными темпами. Сейчас свыше 5 000 препаратов проходят регистрацию.
Медицинские учреждения
Научно-исследовательские центры и организации практической медицины расположены по всему миру. Большая их часть сосредоточена на территории Европы и Северной Америки. В России функционирует свыше 45 структур, занимающихся изучением и внедрением в лечебную работу последних достижений медицины в области регенерации.
Перспективы лечения стволовыми клетками
Медицина уже способна избавить человека от цирроза или последствий инфаркта миокарда, восполнить грубые дефекты после травм или операций, компенсировать пороки развития внутренних органов, вновь подарить сенсорные функции.
Отрасль имеет большие перспективы развития и ставит перед собой запредельные задачи (достижение абсолютного здоровья и бессмертия, избавление от страданий), которые скоро могут стать реальностью.
Прогнозы на ближайшее будущее
По оценкам ученых, направление будет стремительно развиваться. Уже через 5-10 лет последуют открытия, которые перевернут традиционное понимание человеческого существования.
Главное — создать условия для доминирования науки, привлечения инвестиций. Это невозможно без строго государственного регулирования и поддержки.
Регенеративная медицина и клеточные технологии
Морские звезды могут отрастить новые тела, акулы — зубы, ящерицы — конечности. Однако человек на такое еще не способен. С целью восстановления поврежденных органов и тканей, лечения тяжелых заболеваний и сохранения молодости появились технологии регенеративной медицины, которые развиваются рекордными темпами и уже дают впечатляющие результаты.
Что такое регенеративная медицина
Это особый метод терапии, позволяющий восстановить поврежденные или пораженные болезнями ткани при помощи стволовых клеток человека и животных. Методика появилась около 25 лет назад и активно развивается.
Регенеративная медицина объединяет достижения практической медицины, генной инженерии и биологии.
Ученые считают, что она сможет полностью изменить жизнь людей в будущем.
Когда применяются методы регенеративной медицины
Направление применимо при заболеваниях и травмах, когда шансы не только на выздоровление, но и на выживание низки, когда иные методы лечения уже исчерпали себя. Это онкологические, наследственные и орфанные заболевания. Они часто затрагивают детей и людей среднего возраста.
Направление может применяться и в эстетических или косметологических целях (с целью устранения дефектов после травм и опухолей).
Последние достижения
Регенеративная медицина постоянно развивается: разрабатываются все новые методы лечения и коррекции общего состояния, восстановления поврежденных и утраченных органов. Разработки бывают неудачными, но далеко не всегда.
Гепатология
Лечение больных с тяжелыми формами печеночной недостаточности (циррозом, жировым гепатозом) — одно из ключевых направлений медицины. На экспериментальных моделях оказались эффективны технологии длительной восстановительной регенерации пораженных гепатоцитов при использовании мультипотентных мезенхимальных стромальных клеток (ММСК) костного мозга.
Также с высокой эффективностью опробованы выделенные из печени белковые факторы и инженерные тканевые конструкции билиарного тракта.
Диабет
Исследования обнаружили, что среди клеток жировой ткани имеются те, которые могут делиться и вырабатывать инсулин после пересадки в печень. Опыты проводились на грызунах. В результате печень брала на себя функцию поджелудочной железы и не просто облегчала течение сахарного диабета I и II типов, но и полностью избавляла человека от данного заболевания.
Сердечно-сосудистые болезни
Опробована методика пересадки стволовых клеток из работоспособного сердца свиньи для устранения деструктивных изменений миокарда после инфаркта.
Ввиду того что сердце свиньи аналогично по строению таковому у человека, появился шанс опробовать технологию на людях. Направление позволит устранить симптомы аритмии или сердечной недостаточности при длительном течении ишемической болезни сердца или несвоевременно оказанной помощи при инфаркте миокарда.
Облысение
Наследственное облысение до сих пор не поддается терапии. Активно проводятся исследования, основанные на клонировании волосяных фолликулов с их последующим внедрением в облысевшие области головы. Затем в зоне воздействия проводится стимуляция роста волос.
Нервные болезни
Эксперименты на грызунах показали, что даже парализованные конечности ввиду поражения нервных тканей позвоночника снова могут стать подвижными. В опытах ученые вводили мышам и крысам эмбриональные клетки в нервные ткани. В скором времени начнутся испытания методики на людях.
Глазные болезни
Внедрение стволовых клеток в роговицу позволяет устранить многочисленную группу врожденных и приобретенных дефектов. Технология разработана и с успехом применяется для лечения посттравматических и постинфекционных рубцов роговицы, ожогов.
Уретропластика
Дефекты многослойного эпителия мочевыделительных путей, полученные в ходе поражения опухолью или инородными телами, конкрементами, под влиянием пороков формирования и развития, поддаются терапии.
Трансинженерные системы показали высокую эффективность при использовании в целях регенерации пораженного уротелия. Медицина позволяет полностью восстановить проходимость протоков и функциональную активность эпителия.
Косметология
Для устранения морщин и других признаков старения кожи активно применяются не только плазма, обогащенная тромбоцитами, но и стволовые клетки. После внедрения в кожу они запускают процессы клеточной регенерации, синтез коллагеновых и эластиновых волокон. Кожа становится гладкой и эластичной, мелкие морщины разглаживаются.
Стоматология
Тканевая инженерия внедрена и в челюстно-лицевую хирургию. Препараты на основе аллогенных кератиноцитов и фибробластов организма человека и бычьего коллагена уже одобрены Управлением по санитарному надзору за качеством медикаментов и пищевых продуктов (FDA).
Подобные препараты позволяют восстановить целостность тканей десны и челюстей без использования травматичных лоскутных пересадок.
Клеточные и тканевые технологии
Сейчас уже доступны такие методы генной терапии, как выращивание и клонирование отдельных тканей, частей и даже целых органов. Создание новых участков может происходить как внутри, так и вне тела человека. При этом риск отторжения минимален.
Биопринтинг (3D-печать) органов и тканей
Печать органических 3D-моделей основана на послойном построении трехмерных структур биологических тканей. На первом этапе принтер печатает материал с учетом разнообразия тканей в клеточном строении. Затем модель помещается в инкубатор, где в течение короткого периода выращивается.
3D-биопринтинг уже опробован. Изготовлены ткани кожных покровов, сердца и кровеносных сосудов, костей.
Выращивание органов
В основе направления лежит использование трехмерных структур клеток для выращивания «зачатков» органов — органоидов. Из них впоследствии выращивают «крупный» аналог.
Органоиды используются и для:
Сложность технологии позволяет выращивать только простые по строению органы. К ним относятся влагалище, мочевой пузырь, сосуды.
Технологии ксенотрансплантации
Ксенотрансплантация — это пересадка тканей или органов от одного биологического вида другому. Несмотря на сходство между человеком и приматами, приоритетные разработки затрагивают исключительно свиней. Свиньи — это неограниченный и доступный ресурс органов для человека.
Восстановление органов человека
Данное направление активно развивается уже на протяжении десятилетий. Ключевыми достижениями являются:
Уже прослежены отдаленные результаты оперативных вмешательств (давностью до 8 лет).
Технологии донорства органов
После пересадки от одного человека другому органы приживаются не всегда. Например, почки остаются только в 75% случаев.
С помощью редактирования генома наука создала CAR-T-клетки, которые подавляют иммунный ответ организма и позволяют приживаться практически любому органу. Так стала возможна аллотрансплантация — пересадка органов иммунологически несхожему организму.
Технологии протезирования
Регенеративная медицина может не только создавать полноценные искусственные протезы некоторых хрящей и суставов, сосудов, полостных органов, но и выращивать их внутри организма.
Активно применяются следующие аутологичные регенеративные концентраты:
Введение данных веществ через небольшой прокол (реже — надрез) к очагу поражения позволяет полностью восстановить разрушенные структуры. Уже возможно восстановление слуха (кохлеарный имплантат) и зрения (бионический глаз).
Переливание молодой крови и парабиоз
На рубеже XX в. ученые смогли соединить кровеносные системы 2 животных разного возраста (молодого и пожилого). Такую модель назвали гетерохроническим парабиозом. Через некоторое время возрастная особь стала более активной, продолжительность ее жизни увеличилась.
Переливание плазмы человека мышам приводит не только к увеличению продолжительности их жизни, но и к снижению частоты нейродегенеративных заболеваний и патологий опорно-двигательного аппарата. Направление считается молодым в науке, в скором времени возможны новые открытия.
Компания Ambrosia
Компания-стартап Ambrosia недавно применила явление парабиоза на практике. В ходе исследования лицам до 25 лет переливали плазму крови людей старше 35 лет. У некоторых испытуемых было зафиксировано снижение темпов или исчезновение некоторых признаков старения. Специалисты практиковали и введение их собственной пуповинной крови.
В начале 2019 года FDA выпустила пресс-релиз, где высказала обеспокоенность в отношении использования данного метода. Ambrosia прекратила свою деятельность.
Стартап Elevian
Проект Elevian занимался продлением молодости. Специалисты подошли к долголетию с научно обоснованной точки зрения. Ученые выделили молекулу GDF-11 у молодых мышей. После введения данного компонента в кровь возрастных грызунов отмечалось восстановление поврежденных тканей сердечной мышцы, центральной нервной системы, легких и почек. Ученые ставят перед собой задачу восстановить естественную способность организма человека к регенерации, которая была эволюционно утрачена.
Вопрос о безопасности новых технологий
Регенеративная терапия — это метод лечения высокого риска. Направление слишком молодое, чтобы говорить не только о его эффективности, но и о безопасности для здоровья и жизни. История развития фармакологии показала, что ошибки при разработке лекарств могут проявиться даже через десятилетия. Бурно развивающейся отрасли нужно минимум 25-30 лет, чтобы оценить эффективность и безопасность.
Ограничения и запреты
Выделяют 2 типа стволовых клеток:
Взрослые клетки эффективны в целях терапии рака и заболеваний крови, но имеются в организме в ограниченном количестве. Их сложно изъять, а сама процедура имеет ряд сложностей. Самый ценный источник стволовых клеток — эмбрионы (абортированные или на ранней стадии развития). Однако юридические и моральные аспекты запрещают подобную практику в большинстве стран.
Перспективы лечения стволовыми клетками
Регенеративная медицина помогла вылечить детей от лейкоза, эффективно побороть гемофилию, восполнить посттравматические дефекты или нарушения развития органов. Уже сегодня проводятся операции по пластике половых органов, восстановлению сенсорных функций, устранению нарушений функций сердца.
Ученые ставят перед собой практически непреодолимую цель — сделать человека здоровым и бессмертным, избавить его от физических и моральных страданий.
Прогнозы на ближайшее будущее
Сперва ученые пытались внедрять стволовые клетки напрямую в ткани для восстановления миокарда или регенерации центральной нервной системы. Затем начались оправданные вмешательства внутрь клетки и генома.
В ближайшие 5-10 лет регенеративная медицина будет развиваться опережающими темпами. Главное — обеспечить для этого единство научных подходов, инвестиций и государственных интересов, а также должное регулирование всех действий.
Процесс регенерации что это такое в медицине
До недавнего времени считалось, что возможность репаративной регенерации организма, происходящей после повреждения или утраты какой-либо части тела, была утеряна практически всеми живыми организмами в процессе эволюции и, как следствие, усложнения строения организма, кроме некоторых существ, включая амфибий. Одним из открытий, сильно поколебавшим этот догмат, стало обнаружение гена р21 и его специфических свойств: блокирование регенеративных возможностей организма, группой исследователей из Вистарского Института, штат Филадельфия, США (The Wistar Institute, Philadelphia).
По словам ученых, при отсутствии гена р21 клетки грызунов ведут себя как регенерирующие эмбриональные стволовые клетки. А не как зрелые клетки млекопитающих. То есть, они скорее выращивают новую ткань, чем восстанавливают поврежденную. Здесь будет уместно вспомнить, что такая же схема регенерации присутствует и у саламандр, обладающих возможностью отращивать заново не только хвост, но и утерянные конечности, или у планарий, ресничных червей, которых можно разрезать на несколько частей, и из каждого кусочка вырастет новая планария.
По осторожным замечаниям самих исследователей, следует вывод, что теоретически, отключение гена р21 может запускать аналогичный процесс и в человеческом организме. Безусловно, стоит отметить и тот факт, что ген р21 тесно связан с другим геном, р53. который контролирует деление клеток и препятствует образованию опухолей. В обычных взрослых клетках организма р21 блокирует деление клеток в случае повреждения ДНК, поэтому у мышей, у которых он был отключен, больше риск возникновения рака.
Но хотя исследователи действительно обнаружили большие повреждения ДНК в ходе эксперимента, они не нашли следов рака: напротив, у мышей усилился механизм апоптоза, программируемого «суицида» клеток, который также защищает от возникновения опухолей. Такая комбинация может позволять клеткам делиться быстрее, не превращаясь в «раковые».
Избегая далеко идущих выводов, все же отметим, что сами исследователи говорят лишь о временном отключении этого гена с целью ускорения регенерации: «While we are just beginning to understand the repercussions of these findings, perhaps, one day we´ll be able to accelerate healing in humans by temporarily inactivating the p21 gene». Перевод: «В данный момент мы только начинаем понимать все последствия наших открытий, и возможно, когда-нибудь мы сможем ускорять исцеление людей, временно инактивируя ген р21» [1].
1. ЭСК экспрессируют такие факторы, связанные с плюрипотентными клетками, как Oct4, Sox2, Tert, Utfl и Rex1 (Carpenter and Bhatia 2004).
3. ЭСК могут самообновляться путем многократных делений.
Отдельно остановимся на механизмах работы и регуляции стволовых клеток. Особые характеристики стволовых клеток определяются не одним геном, но целым их набором. Возможность идентификации этих генов непосредственно связана с разработкой метода культивирования эмбриональных стволовых клеток in vitro, а также с возможностью использования современных методов молекулярной биологии (в частности, использование фактора ингибирования лейкемии LIF).
В результате совместных исследований компаний Geron Corporation и Celera Genomics были созданы библиотеки кДНК недифференцированных ЭСК и частично дифференцированных клеток (кДНК получают путем синтеза на основе молекулы иРНК, комплиментарной молекулы ДНК при помощи фермента обратной транскриптазы). При анализе данных по секвенированию нуклеотидных последовательностей и экспрессии генов было выявлено более 600 генов, включение или выключение которых отличает недифференцированные клетки, и составлена картина молекулярных путей, по которым идет дифференцировка этих клеток.
В настоящее время принято отличать стволовые клетки по их поведению в культуре и по химическим маркерам на клеточной поверхности. Однако, гены, ответственные за проявление этих особенностей, в большинстве случаев остаются неизвестными. Тем не менее, проведенные исследования позволили выделить две группы генов, придающих стволовым клеткам их замечательные свойства. С одной стороны, свойства стволовых клеток проявляются в определенном микроокружении, известном как ниша стволовых клеток. При изучении этих клеток, которые окружают, питают и поддерживают стволовые клетки в недифференцированном состоянии, было обнаружено около 4000 генов. При этом указанные гены были активны в клетках микроокружения, и неактивны во всех других
клетках [3, 4].
Следует отметить, что база данных по генам, определяющим свойства стволовых клеток, постоянно пополняется. Полный каталог генов стволовых клеток может улучшит процесс их идентификации, а также прояснить механизмы функционирования этих клеток, что обеспечит получение дифференцированных клеток, необходимых для терапевтического применения, а также позволит получить новые возможности для разработки лекарств. Значение этих генов велико, так как они обеспечивают организму возможность сохранять себя и регенерировать ткани.
Здесь у читателя может возникнуть вопрос: «А насколько далеко продвинулись ученые в практическом применении этих знаний?». Используются ли они в медицине? Имеются ли перспективы дальнейшего развития у этих направлений? Чтобы ответить на эти вопросы, проведем небольшой обзор по научным разработкам в данном русле, как старым, чему не нужно удивляться, ведь исследования в области регенеративной медицины ведутся давно, минимум с начала 20 века, так и совсем новым, подчас весьма необычным и экзотическим.
Для начала отметим, что еще в 80-е годы 20 века в СССР в Институте эволюционной экологии и морфологии животных им. Северцева АН СССР, в лаборатории А.Н. Студицкого проводились эксперименты: измельченное мышечное волокно пересаживалось в поврежденный участок, которое впоследствии восстанавливаясь, заставляло регенерировать нервные ткани. Были сделаны сотни успешных операций на человеке.
Отдельно отметим, что еще в середине 20 века группой советских ученых, под руководством Л.В. Полежаева проводились исследования, с успешным практическим применением их результатов по регенерации костей свода черепа у животных и человека; область дефекта достигала до 20 квадратных сантиметров. Края пробоины засыпались измельченной костной тканью, что вызывало процесс регенерации, в ходе которого происходило восстановление поврежденных участков.
Так же, хотелось бы заострить внимание на таком повседневном и привычном объекте, как соль (NaCl). Широко известны лечебные свойства морского климата, мест, с высоким содержанием соли в воде и в воздухе, наподобие Мертвого моря в Израиле или Соль-Илецка в России, соляных шахт, широко применяемых в стационарах, санаториях и курортах по всему миру. Спортсмены и люди, ведущие активный образ жизни, хорошо знакомы и с соляными ванночками, применяемыми при лечении травм опорно-двигательного аппарата. В чем же секрет этих удивительных свойств обычной соли? Как обнаружили ученые из университета Тафтса (США), для процесса восстановления отрезанного или откушенного хвоста головастикам необходима поваренная соль. Если посыпать ею ранку, хвост отрастает быстрее даже в том случае, если уже успела образоваться рубцовая ткань (шрам). При наличии соли ампутированный хвост отрастает, а отсутствие ионов натрия блокирует этот процесс. Безусловно, следует порекомендовать воздержаться от безудержного потребления соли, в надежде ускорить процесс исцеления. Многочисленные исследования наглядно демонстрируют тот вред, который наносит организму чрезмерное употребление соли в пищу. По всей видимости, для запуска и ускорения процесса регенерации, ионы натрия должны поступать к поврежденным участкам иными путями [6].
В дальнейшем был разработан специальный пластик, разлагаемый микроорганизмами. Из него был изготовлен имплантант на спине мыши: пластиковый каркас, отлитый в форме человеческого уха, покрытый живыми клетками. Клетки в процессе роста прилипают к волокнам и принимают необходимую форму. Со временем клетки начинают доминировать и формировать новую ткань (например, хрящ ушной раковины). Другой вариант данного метода: имплантант на спине пациента, представляющий собой каркас необходимы формы, засеивается стволовыми клетками определенной ткани. Через некоторое время этот фрагмент удаляется со спины и имплантируется на место.
Тот же пластик, о котором упоминалось чуть выше, был использован для восстановления поврежденного спинного мозга у лабораторных мышей. Принцип здесь был тот же: волокна пластика сворачивали в жгут и высеивали на него эмбриональные нервные клетки. В результате разрыв закрывался новой тканью, и происходило полное восстановление всех моторных функций. Достаточно полный обзор приводится в документальном фильме ВВС «Сверхчеловек. Самоисцеление».
. А чего нельзя? Нельзя ставить крест на больном лишь потому, что в учебники еще не вошло все, что могут сегодня специалисты. Те же врачи, которые принимали больного и все видели, удивлялись: «Ну, помилуйте, товарищи ученые, конечно, у вас там наука, но ведь полный перерыв спинного мозга, о чем можно говорить?!» Вот так. Видели и не видели. Есть научный фильм, все заснято.
Чем раньше после поражения мозга начинается стимуляция, тем более вероятен эффект. Однако даже в случаях давних травм многое удается и узнать, и сделать.
В этом же направлении имеются и более экзотичные пути, наподобие трехмерного биопринтера, созданного в Австралии, который уже печатает кожу, и в ближайшем будущем, по заверениям разработчиков, сможет печатать и целые органы. В основу его работы заложен тот же принцип, что и в описанном случае создания мочевого пузыря: высеивание живых клеток слой за слоем [1].
Второе направление регенеративной медицины можно условно обозначить одной фразой: «Зачем выращивать новое, если можно починить старое?». Главной задачей приверженцы данного направления считают восстановление поврежденных участков силами самого организма, используя его резервы, скрытые возможности (стоит вспомнить начало данной статьи) и определенные вмешательства извне, в основном в виде поставки дополнительных ресурсов и строительного материала для репарации.
Возможных вариантов здесь также большое количество. Для начала, следует отметить, что по некоторым оценкам, в каждом органе от рождения есть запас резервных стволовых клеток примерно в 30 %, которые расходуются в процессе жизни. В соответствии с этим, по мнению некоторых геронтологов, видовой предел жизни человека составляет 110-120 лет. Следовательно, биологический резерв жизни человека 30-40 лет, а учитывая российские реалии эти цифры можно увеличить до 50-60 лет. Другой вопрос, что современные условия жизни не способствуют этому: крайне плачевное, и с каждым годом все более ухудшающееся состояние экологии; сильные, и что еще более важно постоянные стрессы; огромные психические, интеллектуальные и физические нагрузки; удручающее на местах состояние медицины, в частности российской; направленность фармацевтики не на помощь людям, а на получение сверхприбыли и многое другое, полностью изнашивают человеческий организм к тому моменту, когда по идее должен наступать самый расцвет наших сил и возможностей. Тем не менее, данный резерв может сильно помочь при восстановлении после травм и лечении серьезных заболеваний, особенно в младенческом и детском возрасте [7].
Отдельно выделим создание гемобанков по сбору пуповинной крови новорожденных, являющейся одним из наиболее перспективных источников стволовых клеток. Известно, что пуповинная кровь богата гемопоэтическими стволовыми клетками (ГСК). Характерной особенностью полученных из пуповинной крови СК является их значительно большее, чем у взрослых СК сходство с клетками из эмбриональных тканей по таким параметрам, как биологический возраст и способность к размножению. Пуповинная кровь, полученная из плаценты сразу после рождения ребенка, богата СК с большими пролиферативными возможностями, чем у клеток, полученных из костного мозга или периферической крови. Подобно любому продукту крови, СК пуповинной крови нуждаются в инфраструктуре для их сбора, хранения и установления пригодности для трансплантации. Пуповина пережимается через 30 секунд после рождения ребенка, плацента и пуповина отделяются, и пуповинную кровь собирают в специальный пакет. В образце должно быть не менее 40 мл, чтобы его можно было использовать. Кровь типируется по HLA и культивируется. Незрелые клетки человеческой пуповинной крови с высокой способностью к пролиферации, размножению вне организма и выживанию после трансплантации могут храниться замороженными более 45 лет, затем после оттаивания они с большой вероятностью сохраняют эффективность при клинической трансплантации. Банки пуповинной крови существуют по всему миру, только в США их более 30 и еще много частных банков. Национальные институты здоровья США спонсируют программу изучения трансплантации пуповинной крови. В Нью-Йоркском центре крови есть программа плацентарной крови, и своя программа исследований есть у Национального регистра доноров костного мозга [2].
Другой важной областью исследований является изучение способности СК пуповинной крови к дифференцировке в клетки различных тканей, помимо гемопоэтической, и установление соответствующих линий СК. Исследователи из университета Южной Флориды (University of South Florida (USF, Tampa,FL)) использовали ретиноевую кислоту, чтобы заставить СК пуповинной крови дифференцироваться в нервные клетки, что было продемонстрировано на генетическом уровне анализом строения ДНК. Эти результаты показали возможность использования этих клеток для лечения нейродегенеративных болезней. Пуповинная кровь для этой работы была предоставлена родителями ребенка; она была обработана в оснащенной на современном уровне лаборатории CRYO-CELL и фракционированные замороженные клетки были переданы ученым USF. Пуповинная кровь оказалась источником гораздо более разнообразных клеток-предшественников, чем считалось раньше. Она может быть использована для лечения нейродегенеративных болезней, в том числе в сочетании с генотерапией, травм и генетических болезней. В ближайшем будущем станет возможным при рождении детей с генетическими дефектами собирать их пуповинную кровь, методами генной инженерии исправлять дефект и возвращать эту кровь ребенку.
1) не травмировать ткани механически;
2) не поражать здоровые клетки;
3) не вызывать побочных эффектов;
4) лекарства должны самостоятельно:
Наиболее экзотическим вариантом являются так называемые нанороботы. Среди проектов будущих медицинских нанороботов уже существует внутренняя классификация на макрофагоциты, респироциты, клоттоциты, васкулоиды и другие. Все они являются по сути искусственными клетками, в основном иммунитета или крови человека. Соответственно, их функциональное предназначение напрямую зависит от того, какие клетки они замещают. Помимо медицинских нанороботов, существующих пока только в головах ученых и отдельных проектов, в мире уже созданы ряд технологий для наномедицинской отрасли. К ним относятся: адресная доставка лекарств к больным клеткам, диагностика заболеваний с помощью квантовых точек, лаборатории на чипе, новые бактерицидные средства [10].
И ученым это удалось: они синтезировали искусственный аналог активного сайта белка MMPS9: ион цинка, скоординированный тремя гистидиновыми остатками. Его инъекция лабораторным мышам приводила к выработке антител, действующих ровно в той же манере, в какой работают белки TIMPS: блокируя вход в активный сайт [1].
В России Министерство образования и науки создало Межведомственный научно-технический совет по проблеме нанотехнологий и наноматериалов, деятельность которого направлена на сохранение технологического паритета в будущем мире. Для развития нанотехнологий в целом и наномедицины в частности. Готовится принятие федеральной целевой программы по их развитию. Данная программа будет включать подготовку целого ряда специалистов в длительной перспективе.
Достижения наномедицины станут доступны по разным оценкам только через 40-50 лет. Сам Эрик Дрекслер называет цифру в 20-30 лет. Но учитывая масштаб работы в данной области и количество вкладываемых в нее денег, все больше аналитиков сдвигают первоначальные оценки на 10-15 лет в сторону уменьшения [10].