Пространство и время что это
ПРОСТРАНСТВО И ВРЕМЯ
Полезное
Смотреть что такое «ПРОСТРАНСТВО И ВРЕМЯ» в других словарях:
ПРОСТРАНСТВО И ВРЕМЯ — категории, обозначающие осн. формы существования материи. Пр во (П.) выражает порядок сосуществования отд. объектов, время (В.) порядок смены явлений. П. и в. осн. понятия всех разделов физики. Они играют гл. роль на эмпирич. уровне физ. познания … Физическая энциклопедия
ПРОСТРАНСТВО И ВРЕМЯ — физ. и философские категории, обозначающие основные формы существования (см.). В мире нет материи, не обладающей пространственно временными свойствами, а пространство и (см.) не существуют сами по себе, т. е. вне материи или независимо от неё.… … Большая политехническая энциклопедия
ПРОСТРАНСТВО И ВРЕМЯ — ПРОСТРАНСТВО И время, философские категории. Пространство форма существования материальных объектов и процессов (характеризует структурность и протяженность материальных систем); время форма последовательной смены состояний объектов и процессов… … Современная энциклопедия
ПРОСТРАНСТВО И ВРЕМЯ — философские категории. Пространство форма сосуществования материальных объектов и процессов (характеризует структурность и протяженность материальных систем); время форма и последовательные смены состояний объектов и процессов (характеризует… … Большой Энциклопедический словарь
ПРОСТРАНСТВО И ВРЕМЯ — ПРОСТРАНСТВО И ВРЕМЯ, философские категории. Пространство форма сосуществования материальных объектов и процессов (характеризует структурность и протяженность материальных систем); время форма и последовательные смены состояний объектов и… … Энциклопедический словарь
Пространство и время — ПРОСТРАНСТВО И ВРЕМЯ, философские категории. Пространство форма существования материальных объектов и процессов (характеризует структурность и протяженность материальных систем); время форма последовательной смены состояний объектов и процессов… … Иллюстрированный энциклопедический словарь
Пространство и время — всеобщие формы существования материи (См. Материя). П. и в. не существуют вне материи и независимо от неё. Пространственными характеристиками являются положения относительно др. тел (координаты тел), расстояния между ними, углы… … Большая советская энциклопедия
ПРОСТРАНСТВО И ВРЕМЯ — см. ПРОСТРАНСТВО … Новейший философский словарь
пространство и время — см. вселенная … Китайская философия. Энциклопедический словарь.
Пространство и Время (Доктор Кто) — Пространство, Время Space, Time Серия «Доктора Кто» … Википедия
Спросите Итана: пространство-время – реальная сущность или просто концепция?
Схема сильного искривления пространства-времени вблизи горизонта событий чёрной дыры. Чем ближе вы приближаетесь к массивному телу, тем сильнее искривляется пространство. В итоге вы оказываетесь в таком месте, откуда не может убежать даже свет: внутри горизонта событий.
Большинство людей, думая о Вселенной, представляют себе материальные объекты, находящиеся на огромных космических расстояниях друг от друга. Под действием собственной гравитации материя схлопывается, формируя такие космические структуры, как галактики. Газовые облака, сжимаясь, порождают звёзды и планеты. Звёзды испускают свет, сжигая топливо в реакциях ядерного синтеза. Этот свет проходит по всей Вселенной, подсвечивая всё, на что натолкнётся. Однако Вселенная – это не только объекты внутри неё. Есть ещё и ткань пространства-времени, играющая по своим правилам – по правилам общей теории относительности (ОТО). Ткань пространства-времени искривляется в присутствии материи и энергии, при этом само искривление ткани пространства-времени диктует материи и энергии, как им двигаться. Но что такое, конкретно, пространство-время – это нечто «реальное», или просто облегчающий подсчёты инструмент? Об этом нас спрашивает читатель:
Что именно представляет собой пространство-время? Это реальная штука типа атомов, или математический конструкт, используемый для описания того, как масса «порождает» гравитацию?
Отличный вопрос, а его тема достаточно сложна для размышлений. Более того, до появления Эйнштейна наше представление о Вселенной сильно отличалось от текущего. Давайте вернёмся в далёкое прошлое Вселенной, когда у нас ещё не было концепции пространства-времени, и будем двигаться вперёд, до сегодняшнего дня.
На всех масштабах, от макроскопических до субатомных, размеры фундаментальных частиц играют мало роли в определении конечных размеров составных структур. Являются ли эти строительные кирпичики материи воистину фундаментальными точечными частицами, неизвестно до сих пор. Однако мы разбираемся в строении Вселенной от гигантских, космических масштабов, до крохотных, субатомных. К примеру, в человеческом теле содержится около 10 28 атомов.
На фундаментальном уровне мы уже давно подозревали, что если взять какой угодно объект во Вселенной, и начать делить его на всё меньшие и меньшие составные части, в итоге можно достичь чего-то неделимого. Слово «атом» буквально и означает «неделимый», от греческого ἄτομος. Первое упоминание об этой идее встречается 2400 лет назад, у Демокрита. Однако вполне вероятно, что идею могли придумать и раньше. Такие неделимые сущности реально существуют – они известны, как квантовые частицы. Несмотря на то, что мы назвали атомами элементы таблицы Менделеева, истинно неделимыми являются субатомные частицы – кварки, глюоны и электроны (а также те частицы, что вовсе не встречаются в атомах).
Все эти кванты связываются вместе и составляют все известные нам сегодня составные структуры Вселенной – от протонов и атомов до молекул и людей. И все эти кванты, вне зависимости от их типа – материя это или антиматерия, есть у них масса или нет, фундаментальные они или составные, субатомные у них масштабы или космические – существуют в рамках той же самой Вселенной, что и мы.
Если знать все правила, отвечающие за движение объекта в пространстве-времени, а также начальные условия и все силы, действующие между объектом и остальной частью системы, можно предсказать, как он будет двигаться сквозь пространство и время. Но местоположение объекта нельзя указать точно, не добавив к пространственным координатам временную.
А это важно, поскольку если вы хотите, чтобы все вещи во Вселенной делали что-то друг с другом – взаимодействовали, связывались, формировали структуры, передавали энергию – нужно, чтобы существовал способ это делать. Представьте себе пьесу, в которой все персонажи прописаны, актёры готовы их играть, костюмы подготовлены, все строки прописаны и выучены. Недостаёт лишь одной, но очень важной вещи – сцены.
Что играет роль сцены в физике?
До появления Эйнштейна сцену обустраивал Ньютон. Всех «актёров» Вселенной можно было описать набором координат – местоположением в трёхмерном пространстве и моментом во времени. Всё было похоже на решётку декартовых координат – трёхмерную структуру с осями x, y и z, где у каждого объекта может быть импульс, описывающий его движение в пространстве как функция от времени. Само время считалось линейным, идущим с неизменной скоростью. В представлении Ньютона пространство и время были абсолютными.
Мы часто представляем себе пространство в виде трёхмерной решётки, хотя это чрезмерное упрощение, зависящее от системы отсчёта. На самом деле пространство-время искривляется в присутствии материи и энергии, а расстояния в нём не фиксированы, а изменяются с расширением или сжатием Вселенной
Однако открытие в конце XIX века радиоактивности бросило на картину мира Ньютона тень сомнений. Узнав, что атомы могут испускать субатомные частицы, движущиеся со скоростью света, мы поняли нечто удивительное: когда частица движется со скоростью, близкой к скорости света, она воспринимает пространство и время совершенно не так, как объект, движущийся медленно или покоящийся.
Нестабильные частицы, очень быстро распадающиеся в состоянии покоя, жили тем дольше, чем ближе их скорость была к скорости света. Эти частицы проходили расстояния большие, чем должны были, исходя из их скорости и времени жизни. А при попытке подсчитать энергию или импульс движущейся частицы разные наблюдатели (движущиеся с разными скоростями относительно неё) получали несовпадающие значения.
Получается, что с концепцией пространства-времени от Ньютона что-то было не так. На скоростях, близких к скорости света время удлиняется, расстояния сжимаются, а энергия и импульс зависят от системы отсчёта. То есть, ваше восприятие Вселенной зависит от того, как вы двигаетесь.
Световые часы, в которых протон отражается от двух зеркал, могут отсчитывать время для любого наблюдателя. И хотя двое наблюдателей могут не сойтись во мнении о том, сколько времени прошло между двумя моментами, они могут договориться о законах физики и константах Вселенной, в частности, о скорости света. У неподвижного наблюдателя время идёт как обычно, а у быстро движущегося часы будут идти медленнее, чем у неподвижного.
Эйнштейн отвечает за выдающийся прорыв в концепции реальности, описывавшей, какие величины не меняются при движении наблюдателя, а какие зависят от системы отсчёта. К примеру, скорость света одинакова для всех наблюдателей, как и масса покоя любого количества материи. А вот расстояние между двумя точками сильно зависит от вашего движения вдоль линии, их соединяющей. Скорость, с которой идут ваши часы, также зависит от вашего движения.
Пространство и время оказались не абсолютными, как думал Ньютон, и воспринимались разными наблюдателями по-разному. Они оказались относительными, поэтому теория и называется «теорией относительности». Более того, между восприятием неким наблюдателем пространства и времени есть определённая связь. Через пару лет после публикации Эйнштейном специальной теории относительности (СТО) её вывел его бывший профессор Герман Минковский. Он вывел единую математическую структуру, включающую пространство и время: пространство-время. Как писал он сам,
Отныне время само по себе и пространство само по себе становятся пустой фикцией, и только единение их сохраняет шанс на реальность.
Сегодня это пространство-время широко используется до сих пор, если можно пренебречь гравитацией: пространство Минковского.
Световой конус, трёхмерная поверхность, составленная из всех возможных световых лучей, приходящих и исходящих из одной точки пространства-времени. Чем больше вы проходите в пространстве, тем меньше вы проходите во времени, и наоборот. Сегодня на вас может воздействовать только то, что было в световом конусе прошлого. В будущем вы сможете воспринять только те вещи, которые содержатся в вашем световом конусе будущего. Это иллюстрация плоского пространства Минковского, не искривлённого пространства ОТО.
Но в реальной Вселенной есть гравитация. Эта сила не действует мгновенно через огромные пространства космоса. Она распространяется с той же скоростью, что и все безмассовые кванты: со скоростью света. Все правила, сформулированные в СТО, остаются применимыми, но чтобы включить в картину гравитацию, требовалось нечто большее: представление о наличии у пространства-времени собственной кривизны, зависящей от присутствия в нём материи и энергии.
В каком-то смысле это просто: если вы разместили на сцене актёров, сцена должна выдерживать их вес. Если актёры массивные, а сцена не идеально жёсткая, она будет деформироваться в их присутствии.
То же явление работает и с пространством-временем: наличие материи и энергии искривляет его, а это искривление влияет на расстояния (пространство) и скорость хода часов (время). Более того, влияние это получается довольно сложным. Если вычислять влияние материи и энергии на пространство-время, то пространственные и временные эффекты оказываются связанными. Линии трёхмерной решётки, которую мы представляли в СТО, в ОТО искривляются.
Появление массы в пустой трёхмерной решётке заставляет её линии искривляться определённым образом. Они как бы вытягиваются в сторону массы.
Пространство-время можно представлять себе как чисто вычислительный инструмент, и остановиться на этом. В математике даже пространство-время можно описать метрическим тензором. Этот формализм позволяет вычислить, как любое поле, прямая, дуга, расстояние и т.п. могут существовать в нём определённым, точно описанным образом. Пространство может быть плоским или сколь угодно искривленным, конечным или бесконечным, открытым или закрытым, и состоять из любого количества измерений. В ОТО метрический тензор четырёхмерный (с тремя пространственными и одним временным измерением), а кривизну пространства-времени определяют материя, энергия и его внутренние напряжённости.
Проще говоря, кривизну пространства-времени определяет содержимое Вселенной. А затем можно взять кривизну пространства-времени и предсказать, как любая часть материи и энергии будет двигаться и меняться со временем. Правила ОТО позволяют нам предсказывать, как материя, свет, антиматерия, нейтрино и даже гравитационные волны будут двигаться сквозь Вселенную. Все эти предсказания прекрасно совпадают с нашими наблюдениями и измерениями.
Что мы не измеряем, так это само пространство-время. Мы можем измерять расстояния и временные интервалы – но всё это непрямое зондирование лежащего в их основе пространства-времени. Мы можем измерить всё, что с нами взаимодействует – тела, инструменты, детекторы – однако взаимодействие происходит только при наличии двух объектов в одной точке пространства-времени, когда при их встрече регистрируется «событие».
А также множество других воздействий. Однако из того, что мы можем измерять лишь воздействие пространства-времени на материю и энергию Вселенной, но не само пространство-время, следует, что пространство-время ведёт себя неотличимым от простого инструмента вычисления образом.
Квантовая гравитация пытается объединить ОТО Эйнштейна с квантовой механикой. Квантовые поправки к классической гравитации обозначаются в виде петлевых диаграмм, как та, что показана на рисунке белым цветом. Если расширить Стандартную Модель, включив в неё гравитацию, симметрия, описывающая CPT (симметрия Лоренца) может стать только приблизительной, могут появиться её нарушения. Однако пока что в экспериментах таких нарушений не наблюдалось.
Но это не значит, что пространство-время не является реальной физической сущностью. Наблюдая актёров, играющих пьесу, вы вправе назвать то место, где идёт пьеса, «сценой», будь то поле, платформа, голая земля и т.п. Даже если бы пьеса разыгрывалась в невесомости космоса, вы бы просто могли отметить, что в качестве сцены используется свободно падающая система отсчёта.
В физической Вселенной, насколько нам известно, невозможно существование объектов и взаимодействие между ними без пространства-времени. Где есть пространство-время, там работают законы физики, и существуют фундаментальные квантовые поля, лежащие в основе всего. В каком-то смысле, «ничто» – это вакуум пустого пространства-времени, а разговор о том, что происходит в отсутствии пространства-времени, не имеет смысла – по крайней мере, с точки зрения физики. Нет смысла говорить о «где», лежащем за границами пространства, и «когда», выходящем за границы времени. Возможно, что-то такое и существует, но физических концепций этой сущности у нас нет.
Анимация взаимодействия пространства-времени с массой, движущейся сквозь него. Из неё видно, что пространство-время – это не просто некая ткань. Всё трехмерное пространство искривляется в присутствии массы и энергии. Несколько вращающихся друг вокруг друга масс порождают гравитационные волны.
Самое интересное, что у нас есть ещё много вопросов о природе пространства-времени, оставшихся без ответа. Являются ли пространство и время квантовыми и дискретными, разделёнными на невидимые участки, или же они непрерывны? Является ли гравитация квантовым взаимодействием, как все остальные известные силы, или это классическая, непрерывная ткань, тянущаяся вплоть до планковских масштабов? Если пространство-время отличается от того, что говорит нам ОТО, то как именно, и каким образом мы можем это обнаружить?
Но, несмотря на всё то, что пространство-время позволяет нам предсказать и узнать, оно не является такой же реальной сущностью, как атом. Нельзя каким-то образом напрямую «обнаружить» пространство-время – обнаружить можно только отдельные кванты материи и энергии, существующие в вашем пространстве-времени. Мы описали пространство-время в виде ОТО Эйнштейна, и она успешно предсказывает и объясняет все физические явления, когда-либо обнаруженные и измеренные нами. Однако вопрос о том, что оно собой представляет, и реально оно или нет, для современной науки пока остаётся открытым.
Что такое пространство-время?
С точки зрения физики, исследуя ничтожно малое пространство, мы увидим, что оно состоит из квантов. Но что это за кирпичики?
Люди, как правило, воспринимают пространство как нечто само собой разумеющееся. Ну, в самом деле: это просто-напросто пустота, фон для всего остального. Время тоже простая штука: беспрестанно тикает и тикает. Однако, если физики, долгие годы бившиеся над объединением их фундаментальных теорий, и сумели извлечь из этого хоть что-то полезное, так это то, что пространство и время образуют систему такой ошеломляющей сложности, что любые, даже самые отчаянные попытки осмыслить её могут оказаться тщетными.
Альберт Эйнштейн увидел этот назревавший результат уже в ноябре 1916 года. Годом ранее он сформулировал общую теорию относительности, согласно которой гравитация является не силой, действующей в пространстве, а свойством самого пространства-времени. Шар, брошенный высоко вверх, по дуге возвращается к земле, потому что Земля так искажает окружающее его пространство-время, что пути шара и земли снова пересекаются. В письме к другу Эйнштейн размышлял о проблеме объединения общей теории относительности и его другого детища — зарождавшейся квантовой механики. Получалось, что, если объединение состоится, разговорами о том, что пространство искажается, ограничиться не удастся: придётся вести речь о его демонтаже. Обдумывая математические расчёты, он плохо понимал, с чего следует начать. «Как же я измучил себя на этом пути!» — написал он.
Продвинуться далеко Эйнштейну не удалось. Даже сейчас конкурирующих версий квантовой теории гравитации почти столько же, сколько учёных, работающих над данной темой. В горячих спорах упускают из виду важную истину: все конкурирующие версии говорят о том, что пространство происходит от чего-то более глубокого. Эта идея идёт вразрез с 2500-летним опытом научного и философского осмысления пространства.
Вглубь чёрной дыры
Проблему, стоящую перед физиками, прекрасно иллюстрирует обычный магнит. Он легко поднимает с пола скрепку, несмотря на гравитацию целой планеты Земля. Гравитация слабее магнетизма, электрических и ядерных связей. Какими бы ни были квантовые эффекты, они чрезвычайно слабы. Единственное осязаемое свидетельство того, что они всё же существуют, — это пёстрый узор ранней Вселенной, который, как полагают, не мог появиться без участия квантовых флуктуаций гравитационного поля.
Лучше всего исследовать квантовую гравитацию с помощью чёрных дыр. «Они самые подходящие объекты для проведения экспериментов», — говорит Тед Джекобсон (Ted Jacobson) из Мэрилендского университета в Колледж-Парке (University of Maryland, College Park). Он и другие теоретики изучают чёрные дыры как теоретические точки опоры. Что произойдёт, если взять уравнения, которые отлично работают в ходе лабораторных исследований, и применить их для чёрной дыры — самого экстремального объекта? Проявится ли какой-нибудь тонкий изъян?
Согласно общей теории относительности, стоит какому-то материальному предмету попасть в центр чёрной дыры — и он окажется бесконечно сжатым. Это математический тупик, называемый сингулярностью. Теоретики не могут экстраполировать траекторию попавшего в чёрную дыру предмета за пределы сингулярности; там пресекается не только траектория, но и линия времени. Даже говорить про «там» проблематично, ибо само пространство-время, определяющее местоположение сингулярности, перестаёт существовать. Исследователи надеются, что квантовой теории удастся выступить в роли микроскопа, дающего возможность разглядеть, что происходит с материальным предметом, попадающим в сингулярность.
На подступах к чёрной дыре материя не настолько сжата и гравитация не настолько сильна, чтобы не работали известные нам законы физики. Однако они, как это ни странно, не работают. Границей чёрной дыры является горизонт событий, рубеж невозврата: материя, которая сюда попадает, вернуться не может. Спуск в дыру необратим, и это — физическая проблема, ибо все известные ныне законы фундаментальной физики, в том числе квантовой механики в её обычной интерпретации, обратимы. У вас должна быть, по крайней мере, принципиальная возможность обратить вспять движение всех частиц и восстановить то, что у вас было.
Очень похожая проблема встала перед физиками в конце 1800-х годов, когда они исследовали математику «чёрного тела», идеализированная модель которого представляет собой полость, заполненную электромагнитным излучением. Согласно теории электромагнетизма Джеймса Клерка Максвелла, такой объект должен поглощать всё падающее на него излучение и никогда не сможет прийти к равновесию с окружающей средой. «Он поглощает бесконечное количество тепла из резервуара, температура которого остаётся постоянной», — объясняет Рафаэль Соркин (Rafael Sorkin) из Института теоретической физики «Периметр» (Perimeter Institute for Theoretical Physics) в Онтарио. Говоря на языке термодинамики, температура этого объекта фактически равна абсолютному нулю. Данный вывод противоречит результатам наблюдения за реальными чёрными телами (такими как печь). Опираясь на исследования Макса Планка, Эйнштейн показал, что чёрное тело может достичь теплового равновесия, если излучаемую энергию получают дискретные единицы, или кванты.
Над проблемой равновесия чёрных дыр физики-теоретики бьются уже почти полвека. В середине 1970-х годов недавно почивший Стивен Хокинг (Stephen Hawking) из Кембриджского университета (University of Cambridge) сделал огромный шаг вперёд: изучая с помощью квантовой теории поле излучения вокруг чёрных дыр, он показал, что температура этих объектов не является нулевой. В таком случае, они не только поглощают, но и излучают энергию. Хотя благодаря Хокингу чёрные дыры прописались в термодинамике, проблема необратимости усугубилась. Излучение чёрной дыры не несёт никакой информации о том, что у неё внутри. Это случайная тепловая энергия. Если, запустив данный процесс в обратном порядке, вы вернёте дыре её энергию, то поглощённая ею материя не выскочит назад; вы просто получите больше тепла. И нет оснований считать, будто попавшие в дыру материальные предметы всего лишь заперты в ней, но продолжают существовать, ибо, излучая, дыра сжимается и, согласно расчётам Хокинга, в конце концов неминуемо исчезает.
Эту проблему называют информационным парадоксом, так как чёрная дыра съедает ту информацию о поглощённых ею частицах, с помощью которой вы могли бы обратить их движение вспять. Если физика чёрных дыр действительно допускает обратимость любого процесса, то что-то должно нести информацию из этих дыр, и, чтобы так оно и было, возможно, нашу концепцию пространства-времени следует изменить.
Атомы пространства-времени
Тепло — это хаотическое движение микроскопических частиц, таких как молекулы газа. Поскольку чёрные дыры могут нагреваться и остывать, разумно предполагать, что они включают в себя частицы — в общем, имеют микроскопическую структуру. А поскольку чёрная дыра — это всего-навсего пустое пространство (согласно общей теории относительности, поглощаемая материя проходит через горизонт событий, но не может не исчезнуть), её частицы должны быть частицами самого пространства. Чёрная дыра, простая настолько, насколько может быть простым простор пустого пространства, скрывает в себе беспредельную сложность.
Даже теории, провозглашающие свою приверженность обычному пониманию пространства-времени, в конечном итоге приходят к выводу, что за этим безликим фасадом что-то скрывается. Например, в конце 1970-х годов Стивен Вайнберг (Steven Weinberg), ныне работающий в Техасском университете в Остине (University of Texas at Austin), стремился дать описание гравитации, похожее на описание других сил природы. Однако и он вынужден был отметить, что пространство-время, если брать его в том масштабе, в каком оно проявляет себя максимально ярко, выглядит весьма и весьма необычно.
Первоначально физики изображали микроскопическое пространство в виде мозаики, сложенной из маленьких кусков. Считалось, что взглянув на него в масштабе Планка, то есть имея дело с умопомрачительно малой единицей длины, составляющей 10 −35 метров, мы увидим нечто вроде шахматной доски. Однако, на самом деле, картина пространства будет несколько иной. И, прежде всего, следует отметить, что в сетке этой шахматной доски разные направления неравноценны, в результате чего имеют место асимметрии, противоречащие специальной теории относительности. Например, скорость света может зависеть от его цвета — точь-в-точь как в стеклянной призме, расщепляющей свет на цвета радуги. И эти нарушения относительности будут бросаться в глаза, хотя обычно, имея дело с малыми масштабами, трудно наблюдать какие-либо эффекты.
Кроме того, термодинамика чёрных дыр заставляет усомниться в том, что пространство представляет собой простую мозаику. Измеряя тепловое поведение любой системы, вы можете более или менее точно рассчитать число входящих в неё частей. Вбросьте в систему энергию и посмотрите на термометр. Если температура взлетела, вброшенную энергию получило сравнительно небольшое количество молекул. В сущности, то, что вы измеряете, — это энтропия. Она характеризует микроскопическую сложность системы.
Если вы имеете дело с обычной материей, с увеличением изучаемого объёма растёт число молекул. Тут всё закономерно: увеличьте радиус пляжного мяча в 10 раз — и внутри него окажется в 1000 раз больше молекул. Однако, увеличив в 10 раз радиус чёрной дыры, вы получите всего лишь стократное увеличение числа её «молекул». Количество частиц, из которых состоит дыра, пропорционально площади её поверхности, а не её объёму. Чёрная дыра выглядит трёхмерной, а ведёт себя, как двухмерная.
Этот странный эффект называют голографическим принципом, потому что он ассоциируется с голограммой. Глядя на голограмму, мы видим трёхмерный объект, хотя, на самом деле, перед нами двухмерный лист плёнки. Если голографический принцип учитывает микроскопические частицы пространства и его содержание, — а с этим согласны многие физики-теоретики, — то для создания пространства мало простого объединения маленьких кусочков.
Во всяком случае, отношение части к целому редко бывает простым. Молекула H2O — это не просто частица воды. Вспомним известные нам свойства данной жидкости: она течёт, образует капли, рябь и волны, замерзает и кипит. Отдельная молекула H2O ничего такого не делает: молекул должно быть много. Аналогично, кирпичики пространства могут не быть пространственными. «Атомы пространства не являются мельчайшими частицами пространства, — говорит Даниэле Орити (Daniele Oriti) из Института гравитационной физики Общества Макса Планка (нем. Max-Planck-Institut für Gravitationsphysik) в Потсдаме, Германия. — Они лишь то, из чего образуется пространство. Геометрические свойства пространства — новые, коллективные, более или менее точные свойства системы, состоящей из многих таких атомов».
Что именно представляют собой эти кирпичики, зависит от теории. В теории петлевой квантовой гравитации это — кванты объёма, взаимодействующие на основе квантовых принципов. В теории струн это — родственные электромагнитным поля, живущие в плоскости, образуемой движущейся струной — нитью или петлёй энергии. В М-теории, которую можно рассматривать как фундамент теории струн, это — особый тип частиц: мембрана, сжатая в точку. В теории причинностного множества (causal sets theory) это — события, связанные сетью причины и следствия. В теории амплитуэдра и некоторых других теоретических схемах никаких кирпичиков, образующих пространство, нет вообще — по крайней мере, в том смысле, в каком их обычно понимают.
Во всех этих теориях, несмотря на разные принципы их построения, используется так называемый «реляционизм» немецкого философа XVII—XVIII веков Готфрида Лейбница. С точки зрения реляционизма, пространство возникает из определённой структуры корреляций между объектами. Выходит, оно — своеобразный пазл. Вы начинаете с большой кучи кусочков, смотрите, какие между ними связи, и соответственно складываете из этих кусочков какую-то картину. Если два кусочка имеют что-то схожее, например цвет, их, по-видимому, следует разместить рядом; если же они сильно отличаются друг от друга, вы постараетесь разместить их так, чтобы между ними было большое расстояние. Выражаясь языком физики, это — сеть с определённой структурой связности. Отношения здесь задаются законами квантовой теории или другими принципами, и на этой основе образуется пространство.
Ещё одна общая для разных теорий тема — фазовые переходы. Пространство, которое складывается из кирпичиков, можно и разобрать. Затем из его кирпичиков можно создать нечто, совсем непохожее на пространство. «Подобно тому, как вещество имеет разные фазовые состояния, такие как лёд, вода и водяной пар, у атомов пространства, благодаря их способности перенастраиваться, тоже есть разные фазы», — утверждает Тхану Падманабхан (Thanu Padmanabhan) из Межуниверситетского центра астрономии и астрофизики (Inter-University Center for Astronomy and Astrophysics) в Индии. С этой точки зрения, чёрные дыры могут быть местами исчезновения пространства в ходе фазового перехода. Привычные теории рушатся, и нужна более фундаментальная теория для описания нового фазового состояния атомов пространства. Физика продолжает работать даже там, где исчезает пространство.
Запутанные сети
Большой интеллектуальный прогресс последних лет, разрушивший старые границы физических теорий, состоит в осознании того, что изучаемые физикой отношения могут быть связаны с квантовой запутанностью. Будучи сверхмощным типом корреляции, который исследуется в рамках квантовой механики, запутанность, по-видимому, первичнее пространства. К примеру, экспериментатор может сделать так, чтобы две частицы полетели в противоположных направлениях. Если эти частицы запутаны, то, каким бы огромным ни было разделяющее их пространство, между ними сохранится координация.
Обычно в разговорах о «квантовой» гравитации обсуждали квантовую дискретность, квантовые флуктуации, кучу других квантовых эффектов, но только не квантовую запутанность. Ситуация изменилась, когда в эти разговоры вмешались чёрные дыры. Пока существует чёрная дыра, в неё попадают запутанные частицы. Их партнёры, не поглощённые дырой, с её исчезновением остаются запутанными… ни с чем. «Хокинг назвал бы это проблемой запутанности», — говорит Самир Матур (Samir Mathur) из Университета штата Огайо (The Ohio State University).
Даже в вакууме, при отсутствии частиц, электромагнитные и другие поля демонстрируют внутреннюю запутанность. Измеряя поле в двух разных местах, вы увидите, что показания вашего прибора колеблются случайным, но скоординированным образом. И если вы разделите какую-то область на две части, эти части будут коррелировать друг с другом со степенью корреляции, зависящей от единственной общей для них геометрической величины — площади их контакта. В 1995 году Джекобсон заявил, что запутанность обеспечивает связь между наличием вещества и геометрией пространства-времени, а значит, может объяснить закон гравитации. «Чем больше запутанности, тем слабее гравитация, то есть жёстче пространство-время», — утверждает он.
В настоящее время целый ряд концепций квантовой гравитации — и, прежде всего, теория струн — отводит запутанности решающую роль. Теория струн применяет голографический принцип не только к чёрным дырам, но и ко всей Вселенной. При этом получился рецепт создания пространства — по крайней мере, некоторых его видов. Например, структурированные особым образом поля, пронизывая двухмерное пространство, генерируют дополнительное измерение. С появлением третьего измерения исходное двухмерное пространство превращается в границу более роскошного царства, известного как объёмное пространство. И то, что объединяет объёмное пространство в сопредельное целое, это — запутанность.
Для обоснования данной гипотезы Марк ван Раамсдонк (Mark Van Raamsdonk) из Университета Британской Колумбии (University of British Columbia) в 2009 году провёл элегантное доказательство. Предположим, что поля на границе не запутаны. Образуя пару некоррелирующих систем, они соответствуют двум автономным вселенным. Путешествовать из одной в другую невозможно. Когда системы запутываются, между автономными вселенными возникает нечто похожее на туннель или лаз, благодаря чему космический корабль получает возможность пролететь из одной вселенной в другую. С усилением запутанности туннель всё короче и короче, вселенные всё ближе и ближе друг к другу, и, наконец, их сближение достигает такой фазы, на которой говорить о них как о двух вселенных уже бессмысленно. «Появление большого пространства-времени напрямую связано с запутыванием степеней свободы, имеющихся у полей», — считает ван Раамсдонк. Наблюдаемые нами корреляции в электромагнитных и других полях являются остатком запутанности, обеспечивающей единство пространства.
По-видимому, запутанность определяет не только сопредельность пространства, но и многие другие его свойства. Ван Раамсдонк и Брайан Свингл (Brian Swingle), ныне работающий в Мэрилендском университете в Колледж-Парке, объясняют универсальный характер гравитации — то, что она затрагивает все объекты и не поддаётся экранированию, — вездесущностью запутанности. Что касается чёрных дыр, то Леонард Сасскинд (Leonard Susskind) из Стэнфордского университета (Stanford University) и Хуан Мальдацена (Juan Maldacena) из Института перспективных исследований (Institute for Advanced Study) в Принстоне, штат Нью-Джерси, считают, что запутанность между чёрной дырой и её излучением создаёт лаз — чёрный вход в дыру. Возможно, это поможет физике чёрных дыр решить проблему сохранения информации и обратимости.
Данные идеи теории струн работают только в рамках конкретных геометрий и реконструируют только одно измерение пространства. Некоторые исследователи попытались объяснить, как всё пространство может возникнуть с чистого листа. К примеру, Чуньцзюнь Цао (ChunJun Cao), Спиридон Михалакис (Spyridon Michalakis) и Шон М. Кэрролл, все из Калифорнийского технологического института (California Institute of Technology), начинают с минималистского квантового описания системы, введённой без прямой ссылки на пространство-время и даже на материю. Если система имеет правильную структуру корреляций, её можно расщепить на составные части, которые могут быть идентифицированы как разные области пространства-времени. В этой модели степень запутанности определяет понятие пространственного расстояния.
Не только в физике, но и в других естественных науках пространство и время — основа всех теорий. Однако мы не можем наблюдать пространство-время непосредственно. Мы выводим его существование из нашего повседневного опыта. Мы предполагаем, что некий механизм, действующий в пространстве-времени, — это наиболее экономичное объяснение наблюдаемых нами явлений. Но главный урок, который следует извлечь из теории квантовой гравитации, состоит в следующем: не все явления аккуратно вписываются в пространство-время. Физикам нужно найти какой-то новый фундамент, и, найдя его, они смогут завершить революцию, начатую чуть более века назад Альбертом Эйнштейном.